
**AECOM** 





# Former Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2024

Prepared By

Kara Hoppes, PG (WY)

Geologist

Reviewed By

Dennis P. Connair, CPG Principal Geologist, VP

Approved By

Jeremy Hurshman, PG (WY)

\_ T.W.L

Project Manager

AECOM Environment AA-1

## **Acronyms and Abbreviations**

95% LCL 95 percent lower confidence limit
ACM assessment of corrective measure
AECOM Technical Services, Inc.

amsl above mean sea level
BAT Bottom Ash Transfer
bgs below ground surface

CCR Coal Combustion Residuals

CCR units CCR landfills and surface impoundments

CFR Code of Federal Regulations

EROP Engineering Report and Operational Plan

ft/day foot/feet per day

GWPS Groundwater Protection Standard
MCLs Maximum contaminant levels

mg/L milligrams per liter

Platte River Power Authority
Rawhide Station or Site Rawhide Energy Station

SSI statistically significant increase
SSL statistically significant level

TDS total dissolved solids
UPL upper prediction limit

USEPA United States Environmental Protection Agency

AECOM Environment

# **Table of Contents**

| 1.0 | Intro | oduction                                          | 1-1 |
|-----|-------|---------------------------------------------------|-----|
|     | 1.1   | Report Organization                               | 1-1 |
| 2.0 | Facil | lity Description                                  | 2-1 |
|     | 2.1   | Facility Location and Operational History         | 2-1 |
|     | 2.2   | BAT Impoundments Description                      | 2-1 |
|     | 2.3   | Rawhide Station Hydrogeology                      | 2-1 |
|     | 2.4   | BAT Impoundments Hydrogeology                     | 2-2 |
| 3.0 | Grou  | undwater Monitoring Activities                    | 3-1 |
|     | 3.1   | Water Level Measurements                          | 3-1 |
|     | 3.2   | Groundwater Sample Collection                     | 3-1 |
|     | 3.3   | Analytical Program                                | 3-2 |
|     | 3.4   | Quality Control/Quality Assurance                 | 3-3 |
|     | 3.5   | Data Validation                                   | 3-3 |
| 4.0 | Mon   | itoring Results and Evaluation                    | 4-1 |
|     | 4.1   | Groundwater Potentiometric Surface                | 4-1 |
|     | 4.2   | Groundwater Flow Rate                             | 4-1 |
|     | 4.3   | Groundwater Analytical Results                    | 4-1 |
|     | 4.4   | Groundwater Monitoring System Evaluation          | 4-2 |
|     | 4.5   | Problems Encountered and Actions Taken            | 4-2 |
| 5.0 | Stati | istical Analysis Results                          | 5-1 |
|     | 5.1   | Appendix III SSI Determination                    | 5-1 |
|     | 5.2   | Appendix IV SSI Determination                     | 5-2 |
|     | 5.3   | Establishment of Groundwater Protection Standards | 5-2 |
|     | 5.4   | Appendix IV SSL Determination                     | 5-2 |
| 6.0 | Proje | ected Activities in 2025                          | 6-1 |
| 7.0 | Sum   | nmary and Findings                                | 7-1 |
| 8.0 | Refe  | erences                                           | 8-1 |

AECOM Environment ii

# **List of Tables**

| Table 1 | BAT Impoundments Monitoring Well Construction Details            |
|---------|------------------------------------------------------------------|
| Table 2 | BAT Impoundments Water Level Measurements 2024                   |
| Table 3 | BAT Impoundments Analytical Results and Statistical Summary 2024 |
| Table 4 | BAT Impoundments Appendix III Background Upper Prediction Limits |
| Table 5 | BAT Impoundments Appendix IV Background Upper Prediction Limits  |

# **List of Figures**

| Figure 1 | BAT Monitoring Well Network                             |
|----------|---------------------------------------------------------|
| Figure 2 | BAT Monitoring Well Network April 2024 Water Levels     |
| Figure 3 | BAT Monitoring Well Network September 2024 Water Levels |

# **List of Appendices**

| Appendix A | Groundwater Sampling Forms                          |
|------------|-----------------------------------------------------|
| Appendix B | Laboratory Analytical and Data Validation Reports   |
| Appendix C | Groundwater Velocity Calculation Sheet              |
| Appendix D | Statistical Analysis Results and Input/Output Files |

AECOM Environment iii

# **Executive Summary**

This report summarizes groundwater monitoring and corrective action activities completed between January 1 and December 31, 2024 at the Coal Combustion Residuals (CCR) Bottom Ash Transfer (BAT) Impoundments at the Platte River Power Authority (Platte River) Rawhide Energy Station (Rawhide Station or Site), as required by 40 Code of Federal Regulations (CFR) Section 257.90(e) of the United States Environmental Protection Agency CCR Rule. The location of the CCR unit and program monitoring network for the CCR unit, including supporting monitoring wells, are illustrated on **Figure 1**.

At the start of the 2024 reporting period, Platte River was monitoring the BAT Impoundments under the Assessment monitoring program outlined in 40 CFR Section 257.95. The Assessment monitoring program for the BAT Impoundments was initiated on January 15, 2018 upon identification of Appendix III statistically significant increases (SSIs) over background (AECOM 2018). In the 2024 reporting period, monitoring data reported the detections of the following Appendix III constituents in downgradient monitoring wells at concentrations that represent SSIs over background:

- Calcium in monitoring wells BAT-03, BAT-04R, and BAT-05
- Chloride in monitoring wells BAT-01 and BAT-02
- Sulfate in monitoring well BAT-03

Per CCR rule requirements, groundwater protection standards (GWPS) were developed for each detected Appendix IV constituent and the data were tested for whether the concentrations represented statistically significant levels (SSLs) above their respective GWPSs. Downgradient wells with a constituent or constituents reported above GWPSs at an SSL are as follows:

Cobalt in monitoring well BAT-05

Other salient points for the 2024 annual reporting period include:

- Semiannual Assessment-mode groundwater monitoring events were conducted in April/May and September/October. Monitoring involved sampling of background monitoring wells and downgradient monitoring wells.
- No program transitions (Detection to Assessment or vice versa) were triggered.

Planned activities for the next annual reporting period include:

- Completion of two semi-annual Assessment-mode groundwater monitoring events.
- Statistical evaluation of groundwater data for Appendix III and Appendix IV constituents.
- Abandonment of monitoring well BAT-13 due to insufficient water volume.
- Installation of two to three network monitoring wells to further characterize groundwater conditions between the former BAT Impoundments and Hamilton Reservoir.
- Evaluation of the corrective actions presented in the assessment of corrective measure (ACM) that was prepared in June 2019 and presented at a public meeting in November 2019 (AECOM 2019a). Evaluation will include determining if adequate monitoring data, hydrogeological data, contaminant migration pathways information and contaminant exposure pathways information is available to make the final remedy selection.

AECOM Environment 1-1

#### 1.0 Introduction

This is the 2024 Annual Groundwater Monitoring and Corrective Action Report for the former Coal Combustion Residuals (CCR) Bottom Ash Transfer (BAT) Impoundments at the Platte River Power Authority (Platte River) Rawhide Energy Station (Rawhide Station or Site) in Larimer County, Colorado. This report was developed by AECOM Technical Services, Inc. (AECOM) at the request of Platte River. The purpose of this report is to provide a summary of the groundwater monitoring activities performed at the decommissioned BAT Impoundments in 2024 to comply with the requirements of Title 40 of the Code of Federal Regulations (CFR) Part 257 Subpart D, known as the CCR Rule, which became effective on October 19, 2015. The rule provides standards for the disposal of CCR in landfills and surface impoundments (CCR units) and establishes groundwater monitoring requirements in 40 CFR 257.90 through 257.95. In accordance with 40 CFR 257.90(e), an annual report must be prepared to document the status of the groundwater monitoring and correction action program (as applicable) for the CCR unit, summarize the key actions completed the previous year, describe any problems encountered, discuss actions taken to resolve the problems, and project key activities for the upcoming year. The annual report will be considered complete when it is placed in the facility operating record by January 31, 2025.

#### 1.1 Report Organization

This report is divided into eight sections as outlined below and includes text, tables, figures, and appendices. The sections include:

- Section 1.0 includes an introduction and report organization;
- Section 2.0 provides a facility description that includes the facility location and operational history, a description of the CCR unit and a summary of the areal and site hydrogeology;
- Section 3.0 summarizes the groundwater monitoring activities performed in 2024, and references appendices to this report that contain detailed documentation of those activities;
- Section 4.0 summarizes the groundwater sampling; sampling data analysis and results; and problems encountered, and actions taken during groundwater sampling;
- Section 5.0 provides the statistical analysis and results;
- Section 6.0 provides a projection of the key activities anticipated in 2025;
- Section 7.0 provides a summary and findings; and
- Section 8.0 provides a list of references cited in the report.

The report also includes four appendices that provide supporting documentation of the groundwater monitoring and related activities conducted in 2024 that include:

- Appendix A Groundwater Sampling Forms
- Appendix B Laboratory Analytical and Data Validation Reports
- Appendix C Groundwater Velocity Calculation Sheet
- Appendix D Statistical Analysis Results and Input/Output Files

AECOM Environment 2-1

## 2.0 Facility Description

#### 2.1 Facility Location and Operational History

The Rawhide Station encompasses approximately 4,560 acres north of Wellington in Larimer County, Colorado. In addition to the plant buildings, the major feature of the facility is an approximately 500-acre dry-land constructed reservoir of reclaimed wastewater from the City of Fort Collins, also known as Hamilton Reservoir, which contains approximately 15,000 acre-feet of water and is used for cooling processes at the station. The power block area contains the boiler and turbine buildings, the air quality control equipment, and the administrative offices. A rail spur along the northern edge of the Site connects the Rawhide Facility with the mainline of the Burlington Northern Santa Fe Railway Company and is used to deliver coal and construction materials for plant operations. Six generating units are located at the Rawhide Station. Units A, B, C, D, and F are fueled by natural gas, and Unit 1 is fueled by coal mined from the Powder River Basin in Wyoming.

#### 2.2 BAT Impoundments Description

The BAT Impoundments were located northwest of the main plant, south of the coal stockpile, and north of Hamilton Reservoir (**Figure 1**). Bottom ash produced during the coal combustion process was hydraulically sluiced from the Unit 1 boiler to one of the two BAT Impoundments. These impoundments also received resin filter backwash water from the demineralizer at the wastewater treatment plant. The impoundments were constructed in the early 1980s by excavating below grade into the underlying Pierre Shale and then lining the bottom with 18 inches of compacted clay. Each of the two impoundments measured approximately 725 feet by 225 feet at the surface (approximately 7.5 acres total) with a bottom elevation of 5,660 feet above mean sea level (amsl), a normal water elevation of 5,674 feet amsl, and a top of berm elevation of between 5,678 and 5,679 feet amsl.

In 2020, the BAT Impoundments were decommissioned per the requirements of 40 CFR 257.101 and 257.102. The two impoundments were taken out of service following a transfer of operations to the Concrete Setting Tank which was constructed and tested in 2018 and 2019 and is located to the south and east of the former BAT Impoundments. During decommissioning of the BAT Impoundments, the CCR material was removed from the impoundments and hauled to the ASH Monofill located at the northwest corner of the site for disposal. Water present in the impoundments was transferred to the phosphorus removal system (PRS) ponds located east of the ASH Monofill. Following CCR material removal, the area was regraded and vegetated. Details of the BAT Impoundments decommissioning can be found in the Bottom Ash Transfer Impoundment Construction Completion Certification Report (AECOM 2021a). Groundwater in this area is currently being monitored to establish post-decommissioning groundwater conditions. Current data suggest that there is an inward flow of groundwater in the former BAT Impoundment area towards monitoring well BAT-05 as discussed in Section 4.0.

#### 2.3 Rawhide Station Hydrogeology

The hydrogeology of the Rawhide Station is discussed in the Engineering Report and Operational Plan (EROP) for the Solid Waste Disposal Facility (Platte River 1980), and in the Final Report Investigation of the Groundwater Monitoring Program for the Bottom Ash Disposal Site conducted by Lidstone and Anderson (1989). According to the 1980 EROP, hydrogeology of the Rawhide Station was originally investigated by drilling and installing 23 piezometers in conjunction with the original geotechnical investigation of the site prior to construction of the facility. Data from the piezometers indicated that a groundwater table exists within the weathered and fractured Pierre Shale bedrock beneath the Site, and in alluvial deposits along Coal Creek. The report indicated that the depth to groundwater varied across the Site from 11 to 67 feet below ground surface (bgs), with groundwater generally flowing to the south-southeast. The shallow water table, as explained in the 1980 EROP, was reported to be directly recharged by infiltration from precipitation and surface runoff.

AECOM Environment 2-2

Following construction and operation of the Rawhide Station, Lidstone and Anderson (1989) concluded that sufficient groundwater data were collected to determine that a mound had formed in the shallow, weathered, and fractured Pierre Shale in the vicinity of Hamilton Reservoir. After a review of available groundwater level information for Rawhide Station, AECOM concluded that the CCR units present at the Site are located hydraulically upgradient of any groundwater mound created by Hamilton Reservoir.

#### 2.4 BAT Impoundments Hydrogeology

The uppermost water-bearing stratum around the former BAT Impoundments is identified as the weathered and fractured Pierre Shale, which lies approximately 3 to 17 feet bgs. As noted above, the impoundments were constructed by excavating into the Pierre Shale, which created an environment in which groundwater appears to have been largely recharged by leakage from the former impoundments. Groundwater beneath the former BAT Impoundments is present under water table conditions, where the depth to groundwater ranged from approximately 8.99 feet bgs in BAT-10 in April 2024 to 37.11 feet bgs in BAT-13 in September 2024.

Groundwater in BAT-13 appears to not be hydraulically connected to surrounding monitoring wells as the groundwater elevation in BAT-13 is approximately 25 feet below the elevation in BAT-05, located less than 15 feet away, and is approximately 30 feet lower in elevation than nearby monitoring wells BAT-04R, BAT-06, and BAT-12. BAT-13 also generates much lower volumes of water than surrounding wells. Prior to BAT closure, groundwater flow was generally from north to south across the unit towards Hamilton Reservoir, generally following the topographic slope. However, a groundwater depression developed within the BAT Impoundments as the impoundments were drained of water and decommissioned between July and October 2020. This depression was evidenced by the lowest water levels occurring in BAT-02 and BAT-05. The water levels have recovered partially, but still suggest inward flow to the former impoundments. Under the current observed groundwater flow condition, the previously designated downgradient wells are retained for compliance evaluation purposes and analytical results are compared statistically to upgradient designated wells to identify differences even though the downgradient designated wells are not strictly downgradient of the unit due to the inward observed flow.

Previous reports indicate that little to no groundwater was present in geotechnical boreholes completed in the area of the BAT Impoundments at the time of their construction (Black & Veatch Consulting Engineers 1979). The BAT Impoundments were constructed on a local topographic high, suggesting that groundwater, if present, likely flowed away from the area of the impoundments prior to construction. The previously observed water table beneath the BAT Impoundments, prior to impoundments decommissioning, appears to have been a perched saturated zone in the underlying weathered and fractured Pierre Shale. The drop and rebound of groundwater elevations in the monitored wells observed in 2020 through 2021, suggests that groundwater temporarily drained toward and into the BAT pond excavations until the wells returned to equilibrium with natural static levels. Since 2021, groundwater elevations in the monitored wells appear to be slowly dropping. Current groundwater flow conditions (2024) are discussed in Section 4.0 below.

AECOM Environment 3-1

## 3.0 Groundwater Monitoring Activities

This section summarizes groundwater monitoring activities conducted during 2024 to comply with the CCR Rule. Activities included:

- Measuring groundwater levels at each monitoring well prior to purging for sampling to provide potentiometric data.
- Conducting semiannual Assessment-mode groundwater monitoring events in April/May and September/October. Monitoring involved sampling of background monitoring wells and downgradient monitoring wells for analysis of Appendix III and Appendix IV constituents to identify potential releases from the BAT Impoundments and to collect supplemental data to update the background statistics as needed.
- Statistical analysis of the 2024 Appendix III and Appendix IV monitoring data to determine if
  there were any statistically significant increases (SSIs) over background and whether any of the
  SSIs were above groundwater protection standards (GWPS) at a statistically significant level
  (SSL).

Assessment-mode groundwater monitoring and statistical analysis was completed in accordance with the Sitewide Monitoring Plan, Revision 4 (AECOM 2019c).

#### 3.1 Water Level Measurements

During each monitoring event, groundwater levels in BAT Impoundment monitoring network wells were measured using an electronic water level meter. **Table 1** presents monitoring well survey locations, and well construction details including surveyed top of casing elevation results. Groundwater level measurements were recorded to the nearest hundredth (0.01) of a foot. The water level meter cable and sensor were decontaminated at the start of field activities and after use at each well to limit the potential for cross-contamination between wells. Water level measurements were recorded on groundwater sampling forms, provided in **Appendix A**, and are tabulated in **Table 2** for the groundwater sampling events in April/May and September/October 2024.

#### 3.2 Groundwater Sample Collection

Appendix III and Appendix IV Assessment monitoring groundwater samples were collected from BAT Impoundment monitoring wells BAT-01, BAT-02, BAT-03, BAT-04R, BAT-05, BAT-06, BAT-09, BAT-10, BAT-11, and BAT-12 from May 7 to May 13, 2024, and October 10 to October 16, 2024. An attempt to sample new monitoring well, BAT-13, was also made during the May and October events; however, BAT-13 did not yield enough groundwater to fill complete sample sets during either event despite repeated attempts after purging.

Groundwater samples were collected in accordance with the CCR BAT Impoundments Groundwater Detection Monitoring Plan (AECOM 2017). Each well (with the exception of BAT-13, which was sampled by disposable bailer) was initially purged using a submersible bladder pump and dedicated polyethylene bonded tubing. Disposable bladder liners were replaced before sampling each monitoring well and the pump casing was decontaminated prior to purging and sampling each monitoring well to avoid cross contamination between wells. The bladder pump and tubing were lowered into the well to a depth within the screen interval that was at least 1 to 2 feet off the bottom of the well to avoid disturbing accumulated sediment in the lower part of the well screen. Monitoring wells were purged using low flow sampling techniques until field parameter measurements of pH, temperature, dissolved oxygen, oxidation reduction potential, turbidity, and conductivity stabilized within ±10 percent and drawdown in the well was less than 0.33 feet for three consecutive readings. If a well did not stabilize, it was purged dry and allowed to recharge prior to sample collection within 24 hours of purging. BAT-13 was purged dry during the May and October sampling events. A bladder pump was not used to sample this well as the level of

AECOM Environment 3-2

water in the well was below the intake port of the bladder pump. Purge water volumes were recorded on groundwater sampling forms (**Appendix A**).

After purging, the groundwater samples were collected from the discharge tube of the bladder pump directly into laboratory-supplied sample containers. Sample water was slowly pumped into each laboratory sample container until the containers were appropriately filled, taking care not to spill the laboratory preservative contained in sample bottles. The sample containers were then labeled and placed on ice in a sample cooler. At the conclusion of the field day, the samples were delivered by overnight carrier (FedEx) to Pace Analytical in Lenexa, Kansas, or Greensburg, Pennsylvania for analysis.

#### 3.3 Analytical Program

Groundwater samples collected from the BAT Impoundment wells were analyzed using United States Environmental Protection Agency (USEPA) SW-846 methods for Appendix III and IV constituents. All analytical results are reported as totals. **Table 3** summarizes the 2024 groundwater analytical results for each sampling event. The laboratory analytical reports are provided in **Appendix B**.

#### Appendix III constituents include:

| Chemical Name | Analytical Method                                                            |  |  |  |  |
|---------------|------------------------------------------------------------------------------|--|--|--|--|
| Boron         | 6010C                                                                        |  |  |  |  |
| Chloride      | 9056A                                                                        |  |  |  |  |
| Calcium       | 6010C                                                                        |  |  |  |  |
| Fluoride      | 9056A                                                                        |  |  |  |  |
| рН            | Field measurement                                                            |  |  |  |  |
| Sulfate       | 9056A                                                                        |  |  |  |  |
| TDS           | TDS (American Public Health Association et al. [1998] standard method 2540C) |  |  |  |  |

TDS = total dissolved solids.

AECOM Environment 3-3

#### Appendix IV constituents include:

| Chemical Name                | Analytical Method |  |  |  |  |
|------------------------------|-------------------|--|--|--|--|
| Antimony                     | 6020A             |  |  |  |  |
| Arsenic                      | 6020A             |  |  |  |  |
| Barium                       | 6020A             |  |  |  |  |
| Beryllium                    | 6020A             |  |  |  |  |
| Cadmium                      | 6020A             |  |  |  |  |
| Chromium                     | 6020A             |  |  |  |  |
| Cobalt                       | 6020A             |  |  |  |  |
| Fluoride                     | 9056A             |  |  |  |  |
| Lead                         | 6020A             |  |  |  |  |
| Lithium                      | 6010C             |  |  |  |  |
| Mercury                      | 7470A             |  |  |  |  |
| Molybdenum                   | 6020A             |  |  |  |  |
| Selenium                     | 6020A             |  |  |  |  |
| Thallium                     | 6020A             |  |  |  |  |
| Radium 226 and 228, combined | 9315/9320         |  |  |  |  |

#### 3.4 Quality Control/Quality Assurance

Quality assurance and quality control samples collected during sampling activities included one field duplicate for each round of assessment monitoring, one equipment rinse blank, and one matrix spike/matrix spike duplicate sample. The field duplicate samples were collected immediately following collection of the primary samples using the same sampling procedures. The equipment rinse blank samples were collected after decontaminating the bladder pump casing using techniques outlined in the Sampling and Analysis Plan.

#### 3.5 Data Validation

The laboratory data were validated by AECOM chemists using USEPA guidance. Data validation reports are provided in **Appendix B**.

AECOM Environment 4-1

## 4.0 Monitoring Results and Evaluation

This section discusses potentiometric surface elevations, groundwater flow directions, and groundwater analytical results for the BAT Impoundments during 2024.

#### 4.1 Groundwater Potentiometric Surface

Groundwater elevations were used to prepare potentiometric surface maps for the April/May and September/October 2024 monitoring events (**Figure 2** and **Figure 3**). These maps indicate that groundwater in the uppermost aquifer beneath the former BAT Impoundments flows back into the impoundment area towards monitoring wells BAT-02 and BAT-05 at an average hydraulic gradient of 0.0147 foot per foot in 2024 between monitoring wells BAT-10 and BAT-05. Water elevations near the BAT Impoundments post-decommissioning appeared to have returned to equilibrium conditions present prior to decommissioning with groundwater flow from north to south towards Hamilton Reservoir, except that levels in BAT-02 and BAT-05 did not recover fully. Groundwater elevations in these wells have rebounded slightly from the drop observed from 2020 to 2022 but have remained lower than all the surrounding wells post-decommissioning. As a consequence, it is unclear which wells are the most appropriate downgradient compliance points for the unit. As an interim measure, all surrounding monitoring wells (BAT-01 through BAT-06) are treated as downgradient compliance wells. Elevations will continue to be monitored and evaluated in BAT-02 and BAT-05 to see if they return to predecommissioning equilibrium conditions.

#### 4.2 Groundwater Flow Rate

An average groundwater flow rate was calculated for the uppermost aquifer beneath the former BAT Impoundments using the average hydraulic gradient (0.0147 foot per foot) between monitoring wells BAT-10 and BAT-05 (furthest upgradient point to lowest downgradient point); the minimum (0.0002 foot per day [ft/day]) and maximum (0.33 ft/day), and geometric mean (0.029 ft/day) hydraulic conductivities determined from historic slug tests; and an assumed effective porosity of 15 percent for fractured Pierre Shale. The results indicate that groundwater in the uppermost aquifer beneath the former BAT Impoundments in 2024 flows at a rate ranging from approximately 1.961E-5 to 3.236E-2 ft/day and a geometric mean of 2.844E-3 ft/day towards the depression seen in groundwater in monitoring wells BAT-02 and BAT-05. **Appendix C** presents the calculation sheet for the groundwater velocity in 2024. These groundwater flow rates are higher than those previously reported for the BAT impoundment area, which ranged from a minimum of 6.67E-6 ft/day between BAT-10 and BAT-12 in 2020 to a maximum of 1.279E-2 ft/day between monitoring wells BAT-11 and BAT-05 in 2021 (AECOM 2018, 2019b, 2020, 2021b, 2022, 2023, and 2024). Groundwater conditions in 2022 showed that groundwater was flowing inwards towards BAT-05 (AECOM 2023), while post-decommissioning conditions were still in flux. Similar conditions were observed in 2024 as water continued to show inward flow towards BAT-05.

#### 4.3 Groundwater Analytical Results

Groundwater samples were collected and analyzed for Appendix III and Appendix IV parameters during the April/May and September/October 2024 sampling events and analyzed as specified in Section 3.3. The laboratory analytical reports are provided in **Appendix B**. The laboratory results were reviewed for completeness against the project-required analytical methods and the chain-of-custody forms and were subsequently validated by AECOM. The data were found to be valid and useable with qualification as outlined in the data validation reports provided in **Appendix B**.

**Table 3** summarizes the groundwater analytical results for the April/May and September/October 2024 sampling rounds. Monitoring wells BAT-01, BAT-02, BAT-03, BAT-04R, BAT-05, BAT-06, BAT-09, BAT-10, BAT-11, BAT-12, and BAT-13 were sampled during April/May and September/October to fulfill the semiannual Assessment monitoring requirement. Final field parameter measurements prior to sample

AECOM Environment 4-2

collection are presented on **Table 3**. Field forms are presented in **Appendix A** and present all field parameter measurements collected during the well purging process.

#### 4.4 Groundwater Monitoring System Evaluation

Monitoring wells comprising the former BAT Impoundments groundwater monitoring network in 2024 were inspected during each sampling round and were found to be in good condition and capable of supplying a representative sample.

Analysis of the 2024 potentiometric surface maps constructed using the groundwater elevation measurements from the monitoring events confirm that monitoring wells BAT-09 and BAT-10 are located upgradient of the former BAT Impoundments and represent background groundwater quality. Monitoring well BAT-11 was determined to be up- and cross-gradient of the former BAT Impoundments but not representative of background groundwater quality, which is a change from previous evaluations.

As discussed above, monitoring wells BAT-01, BAT-02, BAT-03, BAT-04R, BAT-05, BAT-06, BAT-12, and BAT-13 do not appear to be hydraulically downgradient of the former BAT Impoundments as there is inward flow towards BAT-02 and BAT-05 but are designated as downgradient in anticipation that groundwater conditions will return to an equilibrium that reflects groundwater flow that more closely approximates the local topography that grades toward Hamilton Reservoir.

#### 4.5 Problems Encountered and Actions Taken

No new problems were encountered or actions taken during 2024 aside from the reevaluation of background statistics based on removal of monitoring well BAT-11 from the background dataset. Continued problems with limited groundwater production at well, BAT-13, were observed during both sampling events in 2024. A summary of the statistics reevaluation and the BAT-13 viability issues during 2024 are as follows:

- Based on further review of groundwater data, monitoring well BAT-11 was determined to be
  cross-gradient of groundwater flowing toward the former BAT Impoundments and is no longer
  considered representative of background conditions entering the impoundment area. In
  response to this determination, upper prediction limits (UPLs) for the Appendix III and IV
  background data were reevaluated without use of data from BAT-11. UPLs were calculated
  using BAT-09 and BAT-10, located directly upgradient of the impoundment area.
- Attempts to sample BAT-13 were made in May and October 2024. During both sampling events, there was an insufficient volume of groundwater within BAT-13 to use a bladder pump and therefore, a bailer was used to purge and attempt to sample the well. BAT-13 purged dry before field parameters were able to stabilize during the purge process and turbidity was noted as elevated by field personnel. Field personnel returned to BAT-13 to collect water volume for analytical samples three times during the May event and twice during the October event. BAT-13 was purged dry during each of these sampling attempts. A full analytical sample set was unable to be collected for either event due to insufficient groundwater volume. The groundwater elevation in BAT-13 is also approximately 25 feet lower in elevation than nearby monitoring well BAT-05 and nearly 30 feet lower in elevation than the next nearest monitoring wells BAT-04R, BAT-06, and BAT-12. Due to the consistently and anomalously low groundwater yield at BAT-13, Platte River plans to plug and abandon BAT-13 during the 2025 monitoring year. This planned action is noted below in Sections 6.0 and 7.0.

AECOM Environment 5-1

## 5.0 Statistical Analysis Results

The Appendix III and Appendix IV groundwater quality data were evaluated using the certified statistical approach presented in the CCR BAT Impoundments Groundwater Detection Monitoring Plan (AECOM 2017). The Appendix III and IV groundwater quality data were evaluated using an interwell approach that statistically compared constituent concentrations at downgradient monitoring wells to those present at background monitoring wells. For the Platte River former BAT Impoundments, monitoring wells BAT-09 and BAT-10 are designated as background wells because they are located upgradient of the impoundments, whereas monitoring wells BAT-01, BAT-02, BAT-03, BAT-4R, BAT-05, BAT-06, and BAT-12 are designated as compliance wells because they are located adjacent to the former waste boundary or downgradient of the former impoundments. Based on further review of groundwater data, BAT-11, which was considered a background well prior to 2024, was removed from the background statistics dataset. BAT-13, which was being considered as a possible well replacement for BAT-05, was unable to be sampled at low flow conditions during any sampling event between October 2023 and October 2024 and therefore will not be incorporated into the statistically evaluated monitoring well network and will be decommissioned in 2025.

The statistical analyses were performed in accordance with the USEPAs Final CCR Rule 40 CFR Parts 257.93(f), 257.93(g), and 257.93(h) and the Statistical Method Certification (AECOM 2017). Prediction limits (i.e., parametric or nonparametric) with retesting, were developed using ProUCL Version 5.1 for each constituent based on the frequency of non-detect values and whether the background data for that constituent exhibited a normal, lognormal, or nonparametric distribution. For the statistical analysis, non-detect values were represented as one-half the detection limit. No outliers were identified in the background data. Analytical data from background monitoring wells BAT-09 and BAT-10 collected between March 2016 and October 2024 were used to redevelop an upper prediction limit (UPL) for the Appendix III and IV background data at 95 percent confidence. The background data set was updated to reflect observed changes in the upgradient/background chemical conditions and the removal of BAT-11 from the program.

Data from the downgradient monitoring wells for the reporting period were compared to the updated UPL to identify SSIs over background. The Appendix III and Appendix IV UPLs are provided in **Table 4** and **Table 5**, respectively. The ProUCL statistical analysis input files and output files are provided in **Appendix D**.

#### 5.1 Appendix III SSI Determination

The Appendix III results were compared against their respective background UPLs (**Table 4**) to determine if they exhibited SSIs above background. The statistical analysis results indicate that the Appendix III constituents of calcium at monitoring wells BAT-03, BAT-04R, and BAT-05, chloride at BAT-01 and BAT-02, and sulfate at BAT-03 have verified SSIs over background UPLs as shown below. Fluoride in BAT-05 and BAT-06 also exceeded the UPL in October but have not been verified as SSIs by subsequent sampling events to date (**Table 3**). Boron, fluoride, pH, and TDS did not have any verified Appendix III SSIs over background. Appendix III SSIs found during 2024 are generally consistent with those identified between 2020 and 2023, except for the newly verified SSI of sulfate at BAT-03. These results confirm that Assessment monitoring is required at the BAT Impoundments. Specific events where exceedances were observed, and analytical concentrations of detections can be found on **Table 3**.

AECOM Environment 5-2

| Well    | Boron | Calcium | Chloride | Fluoride | рН | Sulfate | TDS |
|---------|-------|---------|----------|----------|----|---------|-----|
| BAT-01  |       |         | SSI      |          |    |         |     |
| BAT-02  |       |         | SSI      |          |    |         |     |
| BAT-03  |       | SSI     |          |          |    | SSI     |     |
| BAT-04R |       | SSI     |          |          |    |         |     |
| BAT-05  |       | SSI     |          |          |    |         |     |
| BAT-06  |       |         |          |          |    |         |     |
| BAT-12  |       |         |          |          |    |         |     |

#### Notes:

= concentration below UPL.

**SSI** = statistically significant increase (Indicating concentrations above the background UPL).

TDS = total dissolved solids.

#### 5.2 Appendix IV SSI Determination

The Appendix IV Assessment monitoring results were compared against their respective background UPLs (**Table 5**) to determine if they exhibited SSIs above background. This comparison indicates that cobalt at BAT-05 was the only constituent identified as having an SSI above background as shown below. Fluoride in BAT-05 and BAT-06 also exceeded UPLs in October but have not been verified as SSIs by subsequent sampling events to date (**Table 3**). No other Appendix IV constituents were identified as SSIs during the 2024 reporting period. SSLs were calculated for select constituents as described in Section 5.4 below.

| Well    | Sb | As | Ва | Ве | Cd | Cr | Со  | F | Pb | Li | Hg | Мо | Ra | Se | Th |
|---------|----|----|----|----|----|----|-----|---|----|----|----|----|----|----|----|
| BAT-01  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-02  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-03  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-04R |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-05  |    |    |    |    |    |    | SSI |   |    |    |    |    |    |    |    |
| BAT-06  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-12  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |

#### Notes:

---- = concentration below UPL.

| statistically significant increase (Indicating concentrations above the background UPL).

#### 5.3 Establishment of Groundwater Protection Standards

GWPSs were selected for the BAT Impoundments using the criteria specified in 40 CFR 257.95(h). The GWPSs listed on **Tables 3**, **4**, and **5** were selected from the USEPA drinking water maximum contaminant levels (MCLs), groundwater standards provided in 40 CFR 257.95(h)(2), or the background UPLs where they exceed either of the regulatory standards.

#### 5.4 Appendix IV SSL Determination

Appendix IV constituent cobalt at BAT-05, which exhibited an SSI over background, was further evaluated to determine whether those concentrations represent an SSL relative to the GWPS established under the CCR Rule [40 CFR 257.95(d)(2)]. SSLs are identified by calculating the 95 percent lower confidence limit (95% LCL) at each well where the Assessment monitoring constituents exhibited a verified SSI over background and comparing the 95% LCL to the GWPS. A constituent is present at an SSL over the GWPS if the 95% LCL is greater than the GWPS. Cobalt at monitoring well BAT-05 was the only Appendix IV constituent found to be present at an SSL above its GWPS because its 95% LCL

AECOM Environment 5-3

(0.00917 milligrams per liter [mg/L]) was greater than the GWPS of 0.006 mg/L as shown below. Appendix IV constituents that exceed the GWPS at an SSL require an alternate source demonstration or corrective action. No other Appendix IV constituents exhibited an SSL above the GWPS.

| Well    | Sb | As | Ва | Ве | Cd | Cr | Со  | F | Pb | Li | Hg | Мо | Ra | Se | Th |
|---------|----|----|----|----|----|----|-----|---|----|----|----|----|----|----|----|
| BAT-01  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-02  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-03  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-04R |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-05  |    |    |    |    |    |    | SSL |   |    |    |    |    |    |    |    |
| BAT-06  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |
| BAT-12  |    |    |    |    |    |    |     |   |    |    |    |    |    |    |    |

#### Notes:

= concentration below UPL.

SSL = stat

= statistically significant level (indicating 95% LCL exceeded GWPS).

| Well No. | Parameter with SSI over background | 95% LCL<br>(mg/L) | GWPS<br>(mg/L) |  |  |
|----------|------------------------------------|-------------------|----------------|--|--|
| BAT-05   | Cobalt                             | 0.00917           | 0.006          |  |  |

#### Notes:

Red highlighted value exceeds GWPS.

95% LCL = 95 percent lower confidence limit.

GWPS = Groundwater Protection Standard.

mg/L = milligrams per liter.

SSI = statistically significant increase.

AECOM Environment 6-1

## 6.0 Projected Activities in 2025

The following activities are planned to be performed at the former BAT Impoundments in calendar year 2025:

- Platte River will continue groundwater monitoring on a semiannual basis for the Appendix III and IV constituents that were detected as specified in 40 CFR 257.95(d)(1) or 40 CFR 257.95(f). The full list of Appendix IV constituents also will be sampled annually.
- Monitoring wells will continue to be monitored for high turbidity conditions. Elevated turbidity
  wells (greater than 100 NTU or wells having problematic results) may be redeveloped as
  needed.
- Monitoring well BAT-13 has been determined as an unsuitable replacement for monitoring well, BAT-05 due to consistent and anomalously low groundwater yield that inhibits the ability to collect a complete sample set using the same method (low flow bladder pump) as the rest of the monitoring network wells. Therefore, BAT-13 will be abandoned during the 2025 monitoring year.
- Two to three network monitoring wells are planned to be installed between the former BAT Impoundments and Hamilton Reservoir near monitoring wells BAT-06 and BAT-12 to better understand the apparent groundwater depression along the southwestern extent of the impoundment area and further refine the influence of Hamilton Reservoir on the BAT Impoundment area.
- An assessment of corrective measure (ACM) was prepared in June 2019 to identify potential remedial alternatives for cobalt in groundwater at the former BAT Impoundments. The ACM included a range of cleanup options that included monitored natural attenuation, groundwater pump and treat, and a permeable reactive barrier (AECOM 2019a). The ACM options were presented at a public meeting in November 2019. The BAT impoundments were subsequently decommissioned and CCR material was removed in 2020. In 2024, the corrective actions presented in ACM will be further evaluated for whether additional remedial action is warranted. Remedy selection will be based on adequate monitoring data, the site hydrogeology, contaminant migration pathways and contaminant exposure pathways.

AECOM Environment 7-1

## 7.0 Summary and Findings

AECOM, on behalf of Platte River, completed the groundwater sampling and analysis of semi-annual Appendix III and Appendix IV Assessment monitoring at the former BAT Impoundments. Monitoring data and analytical results collected as part of the Assessment monitoring program were evaluated to determine the aquifer hydraulic conductivities at the new monitoring wells, potentiometric surface elevations, groundwater flow directions and rates, and whether any constituents are present at an SSI above background UPLs or exceeded GWPS at an SSL.

In 2024, sulfate at BAT-03 was newly verified to exhibit an SSI above the UPL. Statistical analysis found that cobalt exceeded the GWPS at an SSL at BAT-05 in October 2024. Platte River will continue to obtain groundwater analytical data on a semi-annual basis.

After three consecutive sampling events, monitoring well BAT-13 has been determined to be an unsuitable replacement for monitoring well, BAT-05, due to consistent and anomalously low groundwater yield that inhibits the ability to collect a complete sample set using low flow methods and appearing to not be hydraulically connected to surrounding wells based on groundwater elevation data. As a result, BAT-13 is planned to be abandoned during the 2025 monitoring year.

An ACM was prepared in June 2019 to identify potential remedial alternatives for cobalt in groundwater at the BAT Impoundments. The ACM included a range of cleanup options that included monitored natural attenuation, groundwater pump and treat, and a permeable reactive barrier (AECOM 2019a). The ACM options were presented at a public meeting in November 2019. The BAT Impoundments were subsequently decommissioned in 2020. In 2024, the corrective actions presented in the ACM will be further evaluated for whether additional remedial action is warranted for final remedy selection.

AECOM Environment 8-1

### 8.0 References

AECOM Technical Services, Inc. (AECOM). 2017. Coal Combustion Residuals (CCR) BAT Impoundments Groundwater Detection Monitoring Plan Revision 0. Prepared for Platte River Power Authority Rawhide Energy Station Larimer County, Colorado. October 10, 2017.

- AECOM. 2018. Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report 2016 2017. Prepared for Platte River Power Authority. January 31.
- AECOM. 2019a. Assessment of Corrective Measures at the Bottom Ash Transfer (BAT) Impoundments Under the Coal Combustion Residuals (CCR) Rule. Prepared for Platte River Power Authority. June 13.
- AECOM. 2019b. Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2018. Prepared for Platte River Power Authority. January 31.
- AECOM. 2019c. Sitewide Monitoring Plan, Revision 4. Rawhide Energy Station, Platte River Lower Authority, Fort Collins, Colorado. June 2019.
- AECOM. 2020. Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2019. Prepared for Platte River Power Authority. January 31.
- AECOM. 2021a. Bottom Ash Transfer (BAT) Impoundment Construction Completion Certification Report. Rawhide Energy Station, Platte River Lower Authority, Fort Collins, Colorado. September 2, 2021.
- AECOM). 2021b. Former Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2020. Prepared for Platte River Power Authority. January 31.
- AECOM. 2022. Former Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2021. Prepared for Platte River Power Authority. January 31.
- AECOM. 2023. Former Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2022. Prepared for Platte River Power Authority. January 31.
- AECOM. 2024. Former Bottom Ash Transfer (BAT) Impoundments Annual Groundwater Monitoring and Corrective Action Report For 2023. Prepared for Platte River Power Authority. January 31.
- American Public Health Association, American Water Works Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater, 20<sup>th</sup> Edition.
- Black & Veatch Consulting Engineers. 1979. Geotechnical Analysis, Report Platte River Power Authority Rawhide Project, July 1979.
- Lidstone and Anderson, Inc. 1989. Investigation of the Ground-Water Monitoring Program for the Bottom Ash Disposal Site. March 1989.
- Platte River Power Authority (Platte River). 1980. Engineering Report and Operational Plan for the Solid Waste Disposal Facility, Rawhide Energy Project, December 1980.

AECOM Environment

## **Tables**

Table 1
BAT Impoundments Monitoring Well Construction Details
PRPA BAT Impoundments Annual Report for 2024
PRPA Rawhide Facility, Colorado

| Well Name | Location Relative<br>to Waste Unit | Easting<br>(ft) | Northing<br>(ft) | Ground<br>Surface<br>Elevation<br>(ft amsl) | Top of<br>Casing<br>Elevation<br>(ft amsl) | Total<br>Depth<br>(ft bgs) | Well<br>Screen<br>Interval<br>(ft bgs) | Well Screen<br>Lithology |
|-----------|------------------------------------|-----------------|------------------|---------------------------------------------|--------------------------------------------|----------------------------|----------------------------------------|--------------------------|
| BAT-01    | Downgradient                       | 3129532.039     | 1557740.813      | 5683.12                                     | 5682.48                                    | 34.0                       | 23-33                                  | Shale                    |
| BAT-02    | Downgradient                       | 3129988.382     | 1557738.969      | 5682.95                                     | 5682.41                                    | 33.8                       | 23.8-33.8                              | Shale                    |
| BAT-03    | Downgradient                       | 3130388.569     | 1557729.857      | 5682.96                                     | 5682.40                                    | 36.0                       | 26-36                                  | Shale                    |
| BAT-04R   | Downgradient                       | 3130456.241     | 1557262.480      | 5684.62                                     | 5686.98                                    | 34.0                       | 24-34                                  | Shale                    |
| BAT-05    | Downgradient                       | 3129956.757     | 1557217.374      | 5682.63                                     | 5682.13                                    | 39.0                       | 23-38                                  | Shale                    |
| BAT-06    | Downgradient                       | 3129515.003     | 1557233.002      | 5682.84                                     | 5685.46                                    | 49.0                       | 25-35                                  | Shale                    |
| BAT-09    | Upgradient                         | 3129552.166     | 1558136.308      | 5690.86                                     | 5693.03                                    | 36.5                       | 26.5-36.5                              | Shale                    |
| BAT-10    | Upgradient                         | 3130029.322     | 1558338.258      | 5687.73                                     | 5690.59                                    | 29.0                       | 12-27                                  | Shale                    |
| BAT-11    | Upgradient                         | 3130022.498     | 1560138.622      | 5702.01                                     | 5704.87                                    | 37.0                       | 20-35                                  | Shale                    |
| BAT-12    | Downgradient                       | 3129941.937     | 1557014.170      | 5698.62                                     | 5701.60                                    | 42.0                       | 25-40                                  | Shale                    |
| BAT-13    | Downgradient                       | 3129968.59      | 1557214.37       | 5682.41                                     | 5682.00                                    | 39.0                       | 29-39                                  | Shale                    |

BAT = Bottom Ash Transfer

ft amsl = feet above mean sea level; ft bgs = feet below ground surface

Wells surveyed in North American Datum 1983 (NAD83) and North American Vertical Datum 1988 (NAVD88)

Table 2
BAT Impoundments Water Level Measurements 2024
PRPA BAT Impoundments Annual Report for 2024
PRPA Rawhide Facility, Colorado

|         |                |             | Measuring |          |             |
|---------|----------------|-------------|-----------|----------|-------------|
|         |                |             | Point     | Depth to | Groundwater |
|         |                | Measurement | Elevation | water    | Elevation   |
| Well ID | Sampling Event | Date        | (ft amsl) | (btoc)   | (ft amsl)   |
| BAT-01  | May 2024       | 4/29/2024   | 5682.48   | 12.34    | 5670.14     |
| BAT-01  | October 2024   | 9/30/2024   | 5682.48   | 11.78    | 5670.70     |
| BAT-02  | May 2024       | 4/29/2024   | 5682.41   | 17.80    | 5664.61     |
| BAT-02  | October 2024   | 9/30/2024   | 5682.41   | 19.44    | 5662.97     |
| BAT-03  | May 2024       | 4/29/2024   | 5682.40   | 9.91     | 5672.49     |
| BAT-03  | October 2024   | 9/30/2024   | 5682.40   | 13.54    | 5668.86     |
| BAT-04R | May 2024       | 4/29/2024   | 5686.98   | 15.88    | 5671.10     |
| BAT-04R | October 2024   | 9/30/2024   | 5686.98   | 16.42    | 5670.56     |
| BAT-05  | May 2024       | 4/29/2024   | 5682.13   | 20.30    | 5661.83     |
| BAT-05  | October 2024   | 9/30/2024   | 5682.13   | 20.48    | 5661.65     |
| BAT-06  | May 2024       | 4/29/2024   | 5685.46   | 15.29    | 5670.17     |
| BAT-06  | October 2024   | 9/30/2024   | 5685.46   | 16.93    | 5668.53     |
| BAT-09  | May 2024       | 4/29/2024   | 5693.03   | 18.38    | 5674.65     |
| BAT-09  | October 2024   | 9/30/2024   | 5693.03   | 19.30    | 5673.73     |
| BAT-10  | May 2024       | 4/29/2024   | 5690.59   | 11.85    | 5678.74     |
| BAT-10  | October 2024   | 9/30/2024   | 5690.59   | 12.90    | 5677.69     |
| BAT-11  | May 2024       | 4/29/2024   | 5704.87   | 27.85    | 5677.02     |
| BAT-11  | October 2024   | 9/30/2024   | 5704.87   | 28.09    | 5676.78     |
| BAT-12  | May 2024       | 4/29/2024   | 5701.60   | 30.86    | 5670.74     |
| BAT-12  | October 2024   | 9/30/2024   | 5701.60   | 31.48    | 5670.12     |
| BAT-13  | May 2024       | 4/29/2024   | 5682.00   | 35.29    | 5646.71     |
| BAT-13  | October 2024   | 9/30/2024   | 5682.00   | 36.70    | 5645.30     |

BAT = Bottom Ash Transfer

NM = not measured

ft = feet

ft amsl = feet above mean sea level

ft btoc = feet below top of casing

Table 3
BAT Impoundments Analytical Results and Statistical Summary 2024
PRPA BAT Impoundments Annual Report for 2024
PRPA Rawhide Facility, Colorado

|                               |                   |                |              | Sample Location | BAT-01    | BAT-01     | BAT-02    | BAT-02     | BAT-03      | BAT-03     | BAT-04R   | BAT-04R    | BAT-04R    | BAT-05    | BAT-05     | BAT-06    | BAT-06     |
|-------------------------------|-------------------|----------------|--------------|-----------------|-----------|------------|-----------|------------|-------------|------------|-----------|------------|------------|-----------|------------|-----------|------------|
|                               |                   |                |              | Sample Type     | N         | N          | N         | N          | N           | N          | N         | N          | FD         | N         | N          | N         | N          |
|                               |                   |                |              | Sample Date     | 5/9/2024  | 10/14/2024 | 5/8/2024  | 10/15/2024 | 5/13/2024   | 10/15/2024 | 5/7/2024  | 10/16/2024 | 10/16/2024 | 5/8/2024  | 10/14/2024 | 5/7/2024  | 10/14/2024 |
| Chemical Name                 | Analytical Method | Background UPL | GWPS         | Unit            |           |            |           |            |             |            |           |            |            |           |            |           |            |
| Appendix III Parameters       |                   |                |              |                 |           |            |           |            |             |            |           |            |            |           |            |           |            |
| Boron                         | SW6010            | 2.39           |              | mg/L            | 1.74      | 1.6        | 1         | 1.13       | 1.24        | 1.22       | 0.739     | 0.742      | 0.728      | 1.15      | 1.17       | 1.8       | 1.81       |
| Calcium                       | SW6010            | 433            |              | mg/L            | 117       | 104        | 342       | 359        | 452         | 442        | 455       | 487        | 480        | 420       | 453        | 116       | 106        |
| Chloride                      | EPA9056           | 190            |              | mg/L            | 686       | 393        | 259       | 181        | 17.5        | 14.3       | 41.2 J+   | 29.9       | 32.6       | 66.7      | 53.2       | 10.9      | 11.7       |
| Fluoride                      | EPA9056           | 0.93           |              | mg/L            | 0.71      | 0.90       | < 0.20    | 0.51       | 1.1         | 0.92       | < 0.20    | 0.47       | 0.76       | < 0.20    | 1.4        | < 0.20    | 1.4        |
| Sulfate                       | EPA9056           | 2972           |              | mg/L            | 1050      | 675        | 1770      | 1400       | 3420        | 2180       | 1550 J-   | 1930       | 1940       | 2930      | 2370       | 1550 J-   | 1540       |
| Total Dissolved Solids        | SM2540C           | 4482           |              | mg/L            | 1570      | 1850       | 2310      | 3010       | 2360        | 4340       | 2210      | 3470       | 3460       | 2540      | 4350       | 2390      | 2480       |
| Appendix IV Parameters        |                   |                |              |                 |           |            |           |            |             |            |           |            |            |           |            |           |            |
| Antimony                      | SW6020            | 0.001          | 0.006        | mg/L            | < 0.0020  | < 0.0010   | < 0.0020  | < 0.0010   | < 0.0010    | < 0.0010   | < 0.0010  | < 0.0010   | < 0.0010   | < 0.0020  | < 0.0010   | < 0.0010  | < 0.0010   |
| Arsenic                       | SW6020            | 0.003          | 0.01         | mg/L            | < 0.0020  | < 0.0100   | < 0.0020  | < 0.0100   | < 0.0010    | < 0.0100   | < 0.0010  | < 0.0100   | < 0.0100   | 0.0022    | < 0.0100   | < 0.0010  | < 0.0100   |
| Barium                        | SW6020            | 0.038          | 2.0          | mg/L            | 0.0382    | 0.0308     | 0.0168    | 0.0138     | 0.0156 J+   | 0.0346     | 0.0251    | 0.0121     | 0.0119     | 0.0359    | 0.0166     | 0.0160    | 0.0228     |
| Beryllium                     | SW6020            | 0.0005         | 0.004        | mg/L            | < 0.0010  | < 0.0010   | < 0.0010  | < 0.0010   | < 0.00050   | < 0.0010   | < 0.00050 | < 0.0010   | < 0.0010   | < 0.0010  | < 0.0010   | < 0.00050 | < 0.0010   |
| Cadmium                       | SW6020            | 0.0005         | 0.005        | mg/L            | < 0.0010  | < 0.0050   | < 0.0010  | < 0.0050   | < 0.00050   | < 0.0050   | < 0.00050 | < 0.0050   | < 0.0050   | < 0.0010  | < 0.0050   | < 0.00050 | < 0.0050   |
| Chromium                      | SW6020            | 0.002          | 0.10         | mg/L            | < 0.0020  | < 0.0050   | < 0.0020  | < 0.0050   | < 0.0010 UJ | < 0.0050   | < 0.0010  | < 0.0050   | < 0.0050   | 0.0052    | < 0.0050   | < 0.0010  | < 0.0050   |
| Cobalt                        | SW6020            | 0.002          | 0.006        | mg/L            | < 0.0020  | < 0.0050   | < 0.0020  | < 0.0050   | 0.0014      | < 0.0050   | < 0.0010  | < 0.0050   | < 0.0050   | 0.0083    | 0.0062     | < 0.0010  | < 0.0050   |
| Fluoride                      | EPA9056           | 0.93           | 4.0          | mg/L            | 0.71      | 0.90       | < 0.20    | 0.51       | 1.1         | 0.92       | < 10.0    | 0.47       | 0.76       | < 0.20    | 1.4        | < 10.0    | 1.4        |
| Lead                          | SW6020            | 0.001          | 0.015        | mg/L            | < 0.0020  | < 0.0100   | < 0.0020  | < 0.0100   | < 0.0010    | < 0.0100   | < 0.0010  | < 0.0100   | < 0.0100   | 0.0032    | < 0.0100   | < 0.0010  | < 0.0100   |
| Lithium                       | SW6010            | 0.33           | 0.33 (0.040) | mg/L            | 0.19      | 0.177      | 0.211     | 0.197      | 0.282       | 0.264      | 0.185     | 0.177      | 0.172      | 0.236     | 0.231      | 0.187     | 0.173      |
| Mercury                       | EPA7470           | 0.0002         | 0.002        | mg/L            | < 0.00020 | < 0.00020  | < 0.00020 | < 0.00020  | < 0.00020   | < 0.00020  | < 0.00020 | < 0.00020  | < 0.00020  | < 0.00020 | < 0.00020  | < 0.00020 | < 0.00020  |
| Molybdenum                    | SW6020            | 0.032          | 0.10         | mg/L            | 0.0037    | < 0.0200   | < 0.0020  | < 0.0200   | < 0.0010    | < 0.0200   | 0.0010    | < 0.0200   | < 0.0200   | 0.0024    | < 0.0200   | 0.0083    | < 0.0200   |
| Radium, total                 | TRC               | 2.83           | 5.0          | pCi/L           | 1.60      | 1.17       | 0.739     | 1.00       | 1.48        | 0.939      | 1.31      | 0.903      | 0.721      | 1.08      | 1.35       | 1.10      | 0.932      |
| Radium-226                    | E903.1            | 2.83           | 5.0          | pCi/L           | 0.240     | 0.642      | -0.326    | 0.245      | 0.655       | 0.260      | 0.455 J   | 0.183      | 0.403      | 0.627     | 0.641      | 0.738     | 0.559      |
| Radium-228                    | E904.0            | 2.83           | 5.0          | pCi/L           | 1.36      | 0.524      | 0.739     | 0.756      | 0.821       | 0.679      | 0.859     | 0.720      | 0.318      | 0.456     | 0.709      | 0.358     | 0.373      |
| Selenium                      | SW6020            | 0.188          | 0.188 (0.05) | mg/L            | < 0.0020  | < 0.0150   | < 0.0020  | < 0.0150   | < 0.0010    | < 0.0150   | 0.0232    | < 0.0150   | < 0.0150   | < 0.0020  | < 0.0150   | < 0.0010  | < 0.0150   |
| Thallium                      | SW6020            | 0.001          | 0.002        | mg/L            | < 0.0020  | < 0.0010   | < 0.0020  | < 0.0010   | < 0.0010    | < 0.0010   | < 0.0010  | < 0.0010   | < 0.0010   | < 0.0020  | < 0.0010   | < 0.0010  | < 0.0010   |
| Field Parameters              |                   |                |              |                 |           |            |           |            |             |            |           |            |            |           |            |           |            |
| Temperature                   | Field Measure     |                |              | Degrees C       | 10.67     | 14.0       | 11.87     | 13.0       | 11.96       | 15.5       | 12.01     | 12.4       | 12.4       | 11.55     | 13.2       | 12.76     | 15.4       |
| рН                            | Field Measure     | 7.77           |              | SU              | 7.10      | 7.54       | 7.39      | 6.97       | 6.78        | 6.82       | 6.70      | 6.98       | 6.98       | 7.35      | 7.04       | 7.37      | 7.69       |
| Specific Conductivity         | Field Measure     |                |              | us/cm           | 2581      | 2729       | 2795      | 3538       | 3502        | 4658       | 2949      | 3541       | 3541       | 3554      | 4020       | 3089      | 3015       |
| Oxidation Reduction Potential |                   |                |              | mV              | 141.8     | -129.9     | 101.3     | -72.7      | 163         | -20.3      | 160.7     | 83.3       | 83.3       | 187.3     | 10.4       | 143.2     | -178.4     |
| Dissolved Oxygen              | Field Measure     |                |              | mg/L            | 1.75      | 0.15       | 8.03      | 0.78       | 1.03        | 0.29       | 0.41      | 2.73       | 2.73       | 11.13     | 0.01       | 1.93      | 0.08       |
| Turbidity                     | Field Measure     |                |              | NTU             | 6.96      | 11.7       | 15.7      | 9.79       | 7.67        | 27.9       | 6.95      | 13.1       | 13.1       | 77.9      | 21.2       | 5.83      | 4.45       |

N = primary sample

FD = field duplicate

-- = not analyzed

mg/L = milligrams per liter

pCi/L = picoCuries per liter

< = less than reporting limit
Bold **black** value is detected result

Bold **red** value exceeds groundwater protection standard (GWPS)

SSI = statistically significant increase over background upper prediction limit (UPL)

SSL = statistically significant level above the GWPS

J = estimated concentration (+ = biased high, - = biased low)

U = not detected

The GWPS represents the maximum contaminant limits (MCLs) outlined by 40 CFR 257.95 (h), unless the background UPL exceeds the MCL, in which case the GWPS will be represented by the UPL. For GWPSs represented by the UPL, the MCL is presented next to it in parentheses.

Table 3
BAT Impoundments Analytical Results and Statistical Summary 2024
PRPA BAT Impoundments Annual Report for 2024
PRPA Rawhide Facility, Colorado

|                               |                   |                |              | Sample Location | BAT-09    | BAT-09     | BAT-10    | BAT-10     | BAT-11    | BAT-11     | BAT-12    | BAT-12    | BAT-12     | BAT-13   | BAT-13    | BAT-13     | BAT-13     | BAT-13     |
|-------------------------------|-------------------|----------------|--------------|-----------------|-----------|------------|-----------|------------|-----------|------------|-----------|-----------|------------|----------|-----------|------------|------------|------------|
|                               |                   |                |              | Sample Type     | N         | N          | N         | N          | N         | N          | N         | FD        | N          | N        | N         | N          | N          | N          |
|                               |                   |                |              | Sample Date     | 5/7/2024  | 10/10/2024 | 5/9/2024  | 10/15/2024 | 5/9/2024  | 10/10/2024 | 5/8/2024  | 5/8/2024  | 10/10/2024 | 5/8/2024 | 5/10/2024 | 10/14/2024 | 10/15/2024 | 10/16/2024 |
| Chemical Name                 | Analytical Method | Background UPL | GWPS         | Unit            |           |            |           |            |           |            |           |           |            |          |           |            |            |            |
| Appendix III Parameters       |                   |                |              |                 |           |            |           |            |           |            |           |           |            |          |           |            |            |            |
| Boron                         | SW6010            | 2.39           |              | mg/L            | 2.11      | 2.23       | 0.815     | 0.819      | 0.398     | 0.354      | 0.221     | 0.229     | 0.23       |          | 1.47      |            |            | 1.56       |
| Calcium                       | SW6010            | 433            |              | mg/L            | 186       | 228        | 425       | 404        | 97.5      | 92         | 101       | 103       | 111        |          | 245       |            |            | 266        |
| Chloride                      | EPA9056           | 190            |              | mg/L            | 103       | 94.9       | 29.3      | 23.4       | 8.6       | 5.3        | 180       | 188       | 168        |          | 31.4      |            | 25.8       |            |
| Fluoride                      | EPA9056           | 0.93           |              | mg/L            | < 0.20    | 2.3        | < 0.20    | 0.62       | < 0.20    | 0.28       | 0.96      | 1.0       | < 0.20     |          | 0.83      |            | 2.2        |            |
| Sulfate                       | EPA9056           | 2972           |              | mg/L            | 1760      | 1830       | 3100      | 2180       | 180       | 181        | 399       | 397       | 369        |          | 2800      |            | 2370       |            |
| Total Dissolved Solids        | SM2540C           | 4482           |              | mg/L            | 2610      | 3140       | 1860      | 4060       | 667       | 732        | 897       | 947       | 996        |          |           |            | -          |            |
| Appendix IV Parameters        |                   |                |              |                 |           |            |           |            |           |            |           |           |            |          |           |            |            |            |
| Antimony                      | SW6020            | 0.001          | 0.006        | mg/L            | < 0.0010  | < 0.0010   | < 0.0030  | < 0.0010   | < 0.0010  | < 0.0010   | < 0.0010  | < 0.0010  | < 0.0010   |          | < 0.0030  |            |            | < 0.0020   |
| Arsenic                       | SW6020            | 0.003          | 0.01         | mg/L            | < 0.0010  | < 0.0100   | < 0.0030  | < 0.0100   | < 0.0010  | < 0.0100   | 0.0013    | 0.0012    | < 0.0100   |          | 0.0086    |            |            | < 0.0100   |
| Barium                        | SW6020            | 0.038          | 2.0          | mg/L            | 0.0102    | 0.0138     | 0.0144    | 0.0151     | 0.0414    | 0.0331     | 0.0276    | 0.0306    | 0.0311     |          | 0.223     |            |            | 0.162      |
| Beryllium                     | SW6020            | 0.0005         | 0.004        | mg/L            | < 0.00050 | < 0.0010   | < 0.0015  | < 0.0010   | < 0.00050 | < 0.0010   | < 0.00050 | < 0.00050 | < 0.0010   |          | < 0.0015  |            | -          | < 0.0010   |
| Cadmium                       | SW6020            | 0.0005         | 0.005        | mg/L            | < 0.00050 | < 0.0050   | < 0.0015  | < 0.0050   | < 0.00050 | < 0.0050   | < 0.00050 | < 0.00050 | < 0.0050   |          | < 0.0015  |            | -          | < 0.0050   |
| Chromium                      | SW6020            | 0.002          | 0.10         | mg/L            | < 0.0010  | < 0.0050   | < 0.0030  | < 0.0050   | < 0.0010  | < 0.0050   | < 0.0010  | 0.0014    | < 0.0050   |          | 0.0294    |            |            | 0.0277     |
| Cobalt                        | SW6020            | 0.002          | 0.006        | mg/L            | < 0.0010  | < 0.0050   | < 0.0030  | < 0.0050   | < 0.0010  | < 0.0050   | < 0.0010  | < 0.0010  | < 0.0050   |          | 0.0128    |            |            | 0.0118     |
| Fluoride                      | EPA9056           | 0.93           | 4.0          | mg/L            | < 10.0    | 2.3        | < 0.20    | 0.62       | < 0.20    | 0.28       | 0.96      | 1.0       | < 0.20     |          | 0.83      |            | 2.2        |            |
| Lead                          | SW6020            | 0.001          | 0.015        | mg/L            | < 0.0010  | < 0.0100   | < 0.0030  | < 0.0100   | < 0.0010  | < 0.0100   | < 0.0010  | < 0.0010  | < 0.0100   |          | 0.0161    |            |            | 0.0153     |
| Lithium                       | SW6010            | 0.33           | 0.33 (0.040) | mg/L            | 0.231     | 0.252      | 0.23      | 0.213      | 0.0698    | 0.0655     | 0.0881    | 0.0917    | 0.0928     |          | 0.273     |            |            | 0.26       |
| Mercury                       | EPA7470           | 0.0002         | 0.002        | mg/L            | < 0.00020 | < 0.00020  | < 0.00020 | < 0.00020  | < 0.00020 | < 0.00020  | < 0.00020 | < 0.00020 | < 0.00020  |          | < 0.00020 |            | -          | < 0.00020  |
| Molybdenum                    | SW6020            | 0.032          | 0.10         | mg/L            | 0.0023    | < 0.0200   | 0.0050    | < 0.0200   | 0.0042    | < 0.0200   | 0.0066    | 0.0065    | < 0.0200   |          | 0.0610    |            |            | 0.0385     |
| Radium, total                 | TRC               | 2.83           | 5.0          | pCi/L           | 0.274     | 1.87       | 1.57      | 0          | 1.40      | 0.747      | 0.0693    | 0.778     | 0.470 J    |          | 3.78      |            | -          |            |
| Radium-226                    | E903.1            | 2.83           | 5.0          | pCi/L           | 0         | 0.650      | 0.250     | -0.0908    | 0.352     | 0.122      | -0.628    | 0         | 0.470      |          | 1.04      |            |            |            |
| Radium-228                    | E904.0            | 2.83           | 5.0          | pCi/L           | 0.274     | 1.22       | 1.32      | -0.0121    | 1.05      | 0.625      | 0.0693    | 0.778     | 0.000364   |          | 2.74      |            | -          |            |
| Selenium                      | SW6020            | 0.188          | 0.188 (0.05) | mg/L            | < 0.0010  | < 0.0150   | 0.136     | 0.175      | 0.0054    | < 0.0150   | 0.0029    | 0.0031    | < 0.0150   |          | 0.0146    |            |            | < 0.0150   |
| Thallium                      | SW6020            | 0.001          | 0.002        | mg/L            | < 0.0010  | < 0.0010   | < 0.0030  | < 0.0010   | < 0.0010  | < 0.0010   | < 0.0010  | < 0.0010  | < 0.0010   |          | < 0.0030  |            |            | < 0.0020   |
| Field Parameters              |                   |                |              |                 |           |            |           |            |           |            |           |           |            |          |           |            |            |            |
| Temperature                   | Field Measure     |                | -            | Degrees C       | 12.00     | 15.8       | 10.77     | 14.5       | 10.00     | 12.7       | 11.77     | 11.77     | 15.7       | 10.20    |           | 11.9       |            |            |
| рН                            | Field Measure     | 7.77           |              | SU              | 6.89      | 7.25       | 6.94      | 7.31       | 7.09      | 7.56       | 7.58      | 7.58      | 7.68       | 7.55     |           | 7.79       |            |            |
| Specific Conductivity         | Field Measure     |                |              | us/cm           | 3472      | 3679       | 3467      | 4388       | 949       | 931        | 1261      | 1261      | 1278       | 3669     |           | 4406       |            |            |
| Oxidation Reduction Potential |                   |                |              | mV              | 122.4     | 19.9       | 175       | 75.5       | 138.5     | 53.3       | 169.6     | 169.6     | 63.2       | 188.9    |           | 195.2      |            |            |
| Dissolved Oxygen              | Field Measure     |                |              | mg/L            | 0.75      | 2.21       | 4.53      | 3.15       | 8.26      | 0.01       | 3.99      | 3.99      | 0.01       | 3.55     |           | 0.02       |            |            |
| Turbidity                     | Field Measure     |                |              | NTU             | 4.61      | 3.45       | 3.90      | 6.98       | 8.37      | 2.56       | 14.6      | 14.6      | 23.9       | >1000    |           | >1000      |            |            |

N = primary sample

FD = field duplicate

-- = not analyzed

mg/L = milligrams per liter

pCi/L = picoCuries per liter

< = less than reporting limit
Bold **black** value is detected result

Bold **red** value exceeds groundwater protection standard (GWPS)

SSI = statistically significant increase over background upper prediction limit (UPL)

SSL = statistically significant level above the GWPS

J = estimated concentration (+ = biased high, - = biased low)

U = not detected

The GWPS represents the maximum contaminant limits (MCLs) outlined by 40 CFR 257.95 (h), unless the background UPL exceeds the MCL, in which case the GWPS will be represented by the UPL. For GWPSs represented by the UPL, the MCL is presented next to it in parentheses.

Table 4
BAT Impoundments Appendix III Background Upper Prediction Limits
PRPA BAT Impoundments Annual Report for 2024
PRPA Rawhide Facility, Colorado

| Parameter<br>(Units)          | Number of<br>Samples | Percent<br>Non-detects | Normal or<br>Lognormal<br>Distribution? | Statistical<br>Test | Background<br>Upper<br>Prediction<br>Limit |
|-------------------------------|----------------------|------------------------|-----------------------------------------|---------------------|--------------------------------------------|
| Boron (mg/L)                  | 38                   | 0                      | No/No                                   | Nonparametric       | 2.39                                       |
| Calcium (mg/L)                | 38                   | 0                      | No/No                                   | Nonparametric       | 433                                        |
| Chloride (mg/L)               | 38                   | 0                      | No/No                                   | Nonparametric       | 190                                        |
| Fluoride (mg/L)               | 39                   | 54                     | No/Yes                                  | Parametric          | 0.93                                       |
| pH (standard units)           | 34                   | 0                      | Yes/Yes                                 | Parametric          | 7.77                                       |
| Sulfate (mg/L)                | 35                   | 3                      | No/No                                   | Nonparametric       | 2,972                                      |
| Total Dissolved Solids (mg/L) | 38                   | 0                      | Yes/Yes                                 | Nonparametric       | 4,482                                      |

BAT = Bottom Ash Transfer

mg/L = milligrams per liter

Upper prediction limits calculated using data from September 2016 through October 2024

Table 5
BAT Impoundments Appendix IV Background Upper Prediction Limits
PRPA BAT Impoundments Annual Report for 2024
PRPA Rawhide Facility, Colorado

| Parameter<br>(Units)                | Number<br>of<br>Samples | Percent<br>Non-<br>detects | Normal or<br>Lognormal<br>Distribution? | Statistical<br>Test | Background<br>Upper<br>Prediction<br>Limit | GWPS            |
|-------------------------------------|-------------------------|----------------------------|-----------------------------------------|---------------------|--------------------------------------------|-----------------|
| Antimony (mg/L)                     | 39                      | 82                         | Yes/No                                  | Parametric          | 0.001                                      | 0.006           |
| Arsenic (mg/L)                      | 39                      | 67                         | Yes/Yes                                 | Parametric          | 0.003                                      | 0.01            |
| Barium (mg/L)                       | 39                      | 0                          | Yes/Yes                                 | Parametric          | 0.038                                      | 2.0             |
| Beryllium (mg/L)                    | 39                      | 100                        | No/No                                   | RDL                 | 0.0005                                     | 0.004           |
| Cadmium (mg/L)                      | 39                      | 97                         | No/No                                   | RDL                 | 0.0005                                     | 0.005           |
| Chromium (mg/L)                     | 39                      | 79                         | Yes/Yes                                 | Parametric          | 0.002                                      | 0.1             |
| Cobalt (mg/L)                       | 39                      | 64                         | Yes/Yes                                 | Parametric          | 0.002                                      | 0.006           |
| Fluoride (mg/L)                     | 39                      | 54                         | No/Yes                                  | Parametric          | 0.93                                       | 4.0             |
| Lead (mg/L)                         | 39                      | 92                         | Yes/Yes                                 | Parametric          | 0.001                                      | 0.015           |
| Lithium (mg/L)                      | 39                      | 0                          | No/No                                   | Nonparametric       | 0.33                                       | 0.33<br>(0.04)  |
| Mercury (mg/L)                      | 39                      | 100                        | No/No                                   | RDL                 | 0.0002                                     | 0.002           |
| Molybdenum (mg/L)                   | 39                      | 10                         | Yes/Yes                                 | Parametric          | 0.032                                      | 0.1             |
| Selenium (mg/L)                     | 39                      | 36                         | Yes/No                                  | Parametric          | 0.188                                      | 0.188<br>(0.05) |
| Thallium (mg/L)                     | 39                      | 100                        | No/No                                   | RDL                 | 0.001                                      | 0.002           |
| Radium-226+228<br>Combined (pCi//L) | 38                      | 0                          | No/No                                   | Nonparametric       | 2.83                                       | 5.0             |

BAT = Bottom Ash Transfer

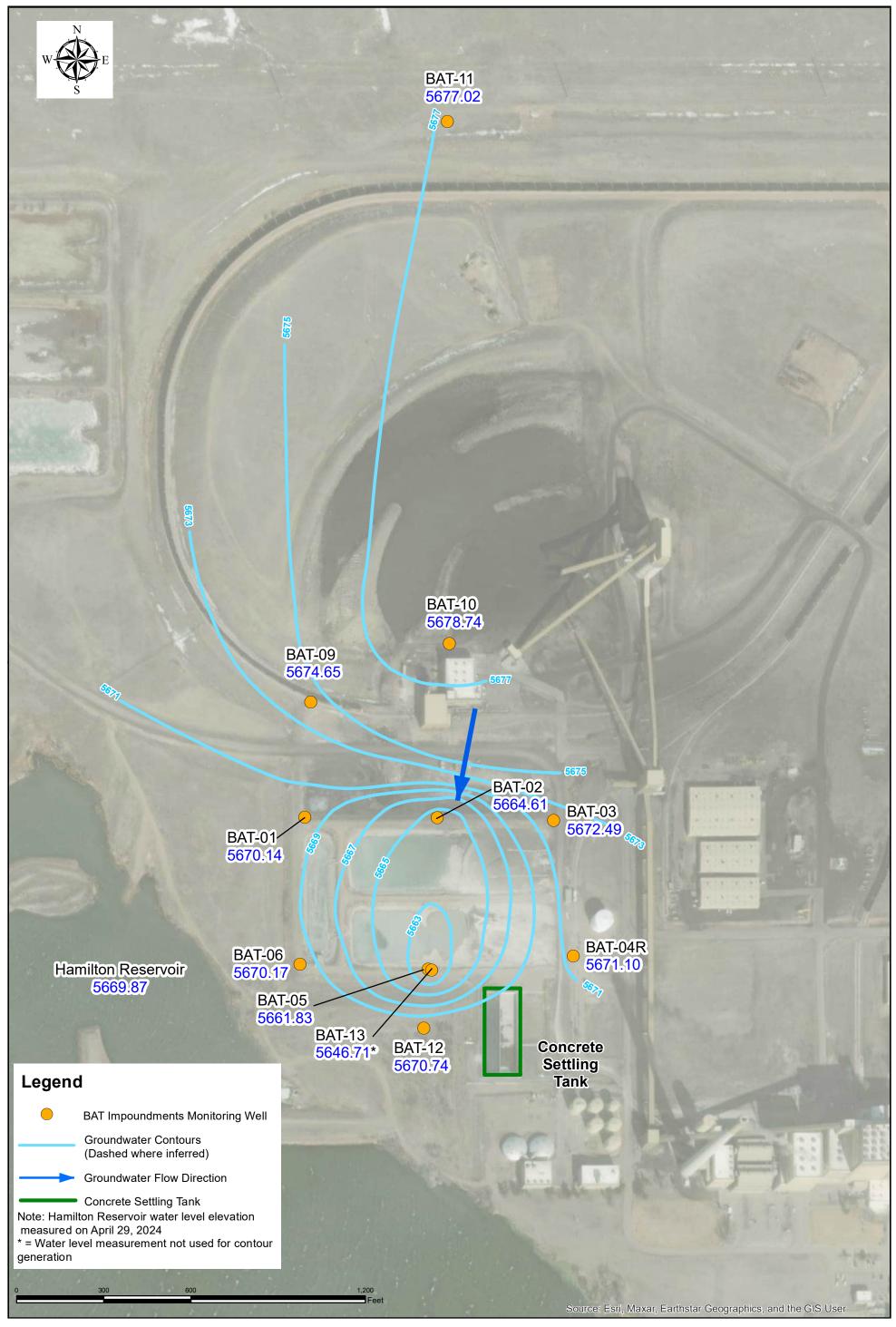
GWPS = Groundwater Protection Standard

RDL = background limit set at standard reporting detection limit

mg/L = milligrams per liter

pCi/L = picoCuries per liter

Background Upper Prediction Limit calculated with data from September 2016 through October 2024


All of the beryllium, mercury, and thallium results in the background monitoring well were reported as not detected and cadmium was only detected 3% of the time. For these constituents, the standard reporting detection limit was selected as the upper prediction limit (UPL) per the double quantification rule in the U.S. Environmental Protection Agency's Unified Statistical Guidance (2009).

The GWPS represents the maximum contaminant limits (MCLs) outlined by 40 CFR 257.95 (h), unless the background UPL exceeds the MCL, in which case the GWPS will be represented by the UPL. For GWPSs represented by the UPL, the MCL is presented below it in parentheses.

AECOM Environment

# **Figures**





October 1, 2024.

Note: Hamilton Reservoir water level elevation measured on

Source: Esri, Maxar, Earthstar Geographics, and the GIS User

AECOM Environment

Appendix A

**Groundwater Sampling Forms** 

AECOM Environment

# April/May 2024

Event:

PRPA Q2 Sampling
Top of Casing

MP:

Date:

Recorder: 0. Milinski + M. Swift

| M. J.       | Location        | Group      | DTW    | TD                 | Notes                                       |
|-------------|-----------------|------------|--------|--------------------|---------------------------------------------|
| 0930        | PZ-3            | Piezometer | 32.63  |                    | good work hion                              |
| 0918        | PZ-4            | Piezometer | 13.22  | -                  |                                             |
| 0925        | PZ-5            | Piezometer | 36.09  |                    | V                                           |
| 130/24/017  |                 | ASH        | 14.12  |                    | Buffalo Area - Need Escort and condition    |
| ,           | ASH-02          | ASH        | 3.38   |                    | 1 0                                         |
| 1003        | ASH-03          | ASH        | 38.62  | 7==                |                                             |
| 35404118    | ASH-04          | ASH 13,87  | 13772  | 5 <del>-1-</del>   |                                             |
|             | ASH-05 ★        | ASH        | 21.25  |                    | replaced tubing                             |
| 0910        | ASH-06          | ASH        | 62.51  |                    |                                             |
|             | ASH-07          | ASH        | 14.31  | i <del>nt</del>    | •                                           |
| 1022        | ASH-08          | ASH        | 9.32   |                    | 3                                           |
| 10.18       | ASH-09          | ASH        | 3.34   | 122                |                                             |
| 1105        | BAT-01          | BAT        | 12.34  |                    |                                             |
|             | BAT-02          | BAT        | 17.80  | -                  |                                             |
|             | BAT-03          | BAT        | 9.91   | 1221               | *                                           |
| 1119        | BAT-04R         | BAT        | 15.88  | ) <del>***</del> : | o_case**                                    |
|             | BAT-05 <b>★</b> | BAT        | 20,30  |                    |                                             |
|             | BAT-06          | BAT        | 15.29  |                    |                                             |
|             | BAT-09 ·        | BAT        | 18.38  | 744 (1)            |                                             |
| 0900        | BAT-10          | BAT        | 11.85  | /                  |                                             |
| 0448        | BAT-11          | BAT        | 27.85  |                    |                                             |
| 4           | BAT-12+         | BAT        | 30,06  | 144                |                                             |
| 126         | BAT-13          | BAT        | \$ .29 |                    |                                             |
| 0.190       | PRS-01          | PRS        | 25.26  |                    |                                             |
|             | PRS-02          | PRS        | 23.00  | 122                | replaced tubing                             |
|             |                 | PRS        | 47.73  |                    | replaced fubing                             |
|             | PRS-04          | PRS        | 24.96  | 3 <del>5.5</del> . | '                                           |
|             | PRS-05          | PRS        | 26.17  |                    |                                             |
|             | PRS-06★         | PRS        | 70.55  |                    | replaced tubing                             |
| 7.5         | PRS-07          | PRS        | 24.12  | 155                | J                                           |
| 1212        | MW-3            | Sitewide   | 24.97  |                    |                                             |
| 100         | MW-4            | Sitewide   | 19.55  |                    |                                             |
| 30 [24 0820 |                 | Sitewide   | 21.77  |                    | Buffalo Area - Need Escort                  |
| 96 3094978  | MW-6            | Sitewide   | 1.25   | and .              | Cross Barbed Wire Fence and Access by Foot  |
| 0840        | MW-7            | Sitewide   | 1,90   |                    | Cross Barbed Wire Fence and Access by Foot  |
| 1327        | MW-8            | Sitewide   | 11.20  |                    | May need gate to be opened                  |
| 1202        | FTP-01          | FTP        | 30.00  |                    | Iviay fieed gate to be opened               |
|             | FTP-02          | FTP        | 8.95   |                    | May need gate to be opened 10 10(K          |
| 148         | FTP-03          | FTP        | 26.56  |                    | May need gate to be opened 100 TOCK         |
| 1225        | FTP-04          | FTP        | 17,73  |                    | May need gate to be opened , good condition |
| 1243        | FTP-05          | FTP        | 11,39  |                    | May need gate to be opened '                |

Acronyms:

DTW - Depth to Water

MP - Measuring Point

TD - Total Depth

\*- Pay close attention to readings.
Should be 1 20,20,30,20 ft bloc



| Well/Piezo ID:   |        |
|------------------|--------|
| VVCII/T ICZO ID. | BAT-01 |

# **Ground Water Sample Collection Record**

| Client:<br>Project No:   |            |         | River Powe<br>455 / 6073   |               | ty                     | _                     | Date:<br>Time: Start _ | 5 <u>/9/24</u><br>13:30 |                |                |
|--------------------------|------------|---------|----------------------------|---------------|------------------------|-----------------------|------------------------|-------------------------|----------------|----------------|
| Site Location            | :          |         | de Generat                 |               |                        |                       | _                      | Finish _                | 15:30          |                |
| Weather Con              | nds:       | sunny,  | , cold, rain               |               | Collector(s)           | M. Swift, J. Hurs     | hman                   |                         |                |                |
| WATER LEV                | EL DAT     | •       |                            | •             | O,                     |                       | Well                   |                         | Piezometer     |                |
| a. Total Well            | Length     |         |                            | c. Ca         | sing Material          | PVC                   | e. Lengtl              | h of Water Colu         | umn <u></u>    | (a-b)          |
| b. Water Tab             | ole Depth  | ١ .     | 12.34                      | d. Ca         | sing Diameter          | <u>2"</u>             | f. Calcula             | ated Well Volur         | me (see bac    | :k) <u></u>    |
| WELL PURG                |            |         | d <u>low flov</u>          | v samplin     | g with bladder         | pump_                 |                        |                         | _              |                |
| b. Field Testing Equipme |            |         |                            | Used:         | Make<br>YSI<br>LaMotte | Model<br>556<br>2020t |                        | r                       |                |                |
|                          | c. Field   | Testing | Equipment                  | t Calibrati   | on Documenta           | tion Found on De      | esignated (            | Calibration Log         |                |                |
| <u>_</u> .               | Volu       |         | <b>T</b> 0 (5)             |               | Spec. Cond             | 0                     | DO                     | Turbidity               | 0 :            | DTW            |
| Time<br>Stabilization    | Remov      | · ,     | T° (C)<br>+/- 3%           | pH<br>+/- 0.1 | (µs/cm)<br>+/- 3%      | ORP<br>+/- 10 MV      | mg/L<br>+/- 10%        | (NTU)<br>5 NTU, 10%     | Color          | (ft)<br>0.3 ft |
| 13:35                    | 1.0        |         | 12.03                      | 7.24          | 2535                   | 157.0                 | 2.07                   | 10.04                   | clear          | 13.70          |
| 13:40                    | 2.         |         | 12.04                      | 7.18          | 2545                   | 156.0                 | 1.92                   | 12.7                    | clear          | 14.30          |
| 13:45                    | 2.0        | )       | 11.63                      | 7.20          | 2550                   | 155.0                 | 1.95                   | 12.5                    | clear          | 14.70          |
| 13:50                    | 2.         |         | 11.33                      | 7.12          | 2557                   | 153.0                 | 1.92                   | 11.8                    | clear          | 15.42          |
| 13:55                    | 3.0        |         | 10.88                      | 7.11<br>7.14  | 2486<br>2566           | 152.0<br>149.5        | 1.83                   | 11.1<br>7.65            | clear          | 15.90          |
| 14:00<br>14:06           | 3.9<br>4.0 |         | 10.28<br>10.23             | 7.14          | 2569                   | 149.5                 | 2.10<br>1.81           | 7.65<br>7.69            | clear<br>clear | 16.70<br>17.20 |
| 14:12                    | 4.7        |         | 10.23                      | 7.11          | 2572                   | 146.3                 | 1.80                   | 6.79                    | clear          | 17.50          |
| 14:16                    | 5.0        | )       | 10.20                      | 7.11          | 2570                   | 145.2                 | 1.79                   | 7.53                    | clear          | 17.80          |
| 14:21                    | 5.2        |         | 10.32                      | 7.09          | 2576                   | 143.7                 | 1.76                   | 6.38                    | clear          | 18.10          |
| 14:25                    | 5.         | Ō       | 10.67                      | 7.10          | 2581                   | 141.8                 | 1.75                   | 6.96                    | clear          | 18.40          |
|                          |            |         |                            |               |                        |                       | -                      |                         |                |                |
|                          |            |         |                            |               |                        |                       | +                      |                         |                |                |
|                          |            |         |                            |               |                        |                       |                        |                         |                |                |
|                          |            |         |                            |               |                        |                       |                        |                         |                |                |
|                          |            |         |                            |               |                        |                       |                        |                         |                |                |
|                          | e Acce     | otance  | criteria pass              | s/fail        | Yes                    | No                    | N/A                    |                         |                |                |
|                          |            |         | lume been                  |               |                        | Ŭ                     |                        |                         |                |                |
|                          | Has r      | equired | I turbidity be             | en reach      |                        |                       |                        |                         |                |                |
|                          |            |         | eters stabili              |               |                        |                       |                        |                         |                |                |
|                          | IŤ         |         | I/A - Explair<br>and DTW n |               | to stabilize w/in      | ı reasonable amo      | ount of time           | <del>)</del> .          |                |                |
|                          |            | . 5111P |                            |               |                        | accabic affic         |                        |                         |                |                |
|                          |            |         |                            |               |                        |                       | •                      |                         |                |                |
| SAMPLE C                 | OLLECT     | ION:    |                            | Method:       | low flow blade         | der pump              |                        |                         |                |                |
| Sample                   | e ID       | Contai  | ner Type                   | No. of        | Containers             | Preservation          |                        | Analysis                |                | Time           |
| BAT-01-C                 |            |         | ee CoC                     |               | 10                     | see CoC               |                        | see CoC                 |                | 14:30          |
| BAT-01-CCR               |            | Se      | ee CoC                     |               | 5                      | see CoC               | 1                      | see CoC                 |                | 14:30          |
|                          |            |         |                            |               |                        |                       | -                      |                         |                |                |
|                          |            |         |                            |               |                        |                       |                        |                         |                |                |
|                          |            |         |                            |               |                        |                       |                        |                         |                |                |
|                          | ·          |         |                            |               |                        |                       |                        |                         |                |                |
| Comments:                |            |         |                            |               |                        |                       |                        |                         |                |                |
|                          |            |         |                            |               |                        |                       |                        |                         |                |                |
| Signature                |            | Mack    | ensie Swift                |               |                        |                       | Date                   | 5/9/24_                 |                |                |



| Well/Piezo ID: | BAT-02 |
|----------------|--------|
|----------------|--------|

# **Ground Water Sample Collection Record**

| Client: Project No: Site Location: |                          |                                | River Powe                                                  |                             | ty                     | _                     | Date:<br>Time: Start | 5 <u>/8/24</u><br>_14:30              | <u> </u>       |                |
|------------------------------------|--------------------------|--------------------------------|-------------------------------------------------------------|-----------------------------|------------------------|-----------------------|----------------------|---------------------------------------|----------------|----------------|
|                                    |                          |                                | de Generat                                                  |                             | n                      |                       | _                    |                                       | 15:30          |                |
| Weather Cor                        |                          |                                |                                                             |                             |                        | M. Swift, C., Ahr     | endt                 |                                       |                |                |
| WATER LEV                          |                          | •                              |                                                             | •                           | O,                     |                       | Well                 | •'                                    | Piezomete      |                |
| a. Total Well                      | Length                   |                                |                                                             | c. Ca                       | sing Material          | PVC                   | e. Lengtl            | n of Water Colu                       | ımn <u></u>    | (a-b)          |
| b. Water Tal                       | ole Depth                | ١.                             | 17.8                                                        | d. Ca                       | asing Diameter         | <u>2"</u>             | f. Calcula           | ated Well Volur                       | me (see bad    | ck) <u></u>    |
| WELL PURG                          |                          |                                | d <u>low flov</u>                                           | w samplin                   | g with bladder         | pump                  |                      | · · · · · · · · · · · · · · · · · · · | _              |                |
| b. Field Testing Equipm            |                          |                                |                                                             | Used:                       | Make<br>YSI<br>LaMotte | Model<br>556<br>2020t |                      |                                       |                |                |
|                                    |                          |                                | Equipment                                                   | t Calibrati                 |                        | tion Found on De      |                      |                                       |                |                |
| Time                               | Volu<br>Remove           |                                | T° (C)                                                      | <u></u>                     | Spec. Cond             | OPP                   | DO<br>mg/l           | Turbidity                             | Color          | DTW<br>(ft)    |
| Stabilization                      | Remove<br>               | (0 /                           | T° (C)<br>+/- 3%                                            | pH<br>+/- 0.1               | (µs/cm)<br>+/- 3%      | ORP<br>+/- 10 MV      | mg/L<br>+/- 10%      | (NTU)<br>5 NTU, 10%                   | COIOI          | (ft)<br>0.3 ft |
| 14:30                              | 0.                       |                                | 12.35                                                       | 7.73                        | 2804                   | 136.5                 | 11.69                |                                       | clear          |                |
| 14:35                              | 0.2                      |                                | 12.09                                                       | 7.57                        | 2796                   | 130.9                 | 11.90                | 16.31                                 | clear          | 20.57          |
| 14:40                              | 0.                       |                                | 12.06                                                       | 7.69                        | 2780                   | 111.3                 | 11.56                | 22.80                                 | clear          | 21.41          |
| 14:45                              | 0.                       |                                | 11.97                                                       | 7.61                        | 2775                   | 100.7                 | 10.03                | 20.40                                 | clear          | 22.20          |
| 14:50                              | 1.                       |                                | 12.23                                                       | 7.49                        | 2789                   | 98.1                  | 7.81                 | 19.01                                 | clear          | 21.81          |
| 14:55<br>15:00                     | 1.<br>1.                 |                                | 11.98<br>11.87                                              | 7.41<br>7.39                | 2788<br>2795           | 100.3<br>101.3        | 8.02<br>8.03         | 17.60<br>15.70                        | clear<br>clear | 22.09          |
| 13.00                              | l.                       | 3                              | 11.07                                                       | 1.39                        | 2193                   | 101.5                 | 0.03                 | 15.70                                 | Clear          |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    | e Acce                   | ntance (                       | criteria pass                                               | s/fail                      | Yes                    | No                    | N/A                  |                                       |                |                |
|                                    | Has req<br>Has I<br>Have | uired vo<br>required<br>parame | lume been<br>turbidity be<br>eters stabili<br>I/A - Explair | removed<br>een reach<br>zed |                        |                       |                      |                                       |                |                |
| SAMPLE C                           | OLLECT                   | ION:                           |                                                             | Method:                     | low flow blade         | der pump              |                      |                                       |                |                |
| Sample                             |                          |                                | ner Type                                                    | No. of                      | Containers             | Preservation          |                      | Analysis                              |                | Time           |
| BAT-02-C                           |                          |                                | e CoC                                                       |                             | 10                     | see CoC               |                      | see CoC                               |                | 13:00          |
| BAT-02-                            | BAT-02-CCR               |                                | See CoC                                                     |                             | 5                      | see CoC               | see CoC              |                                       |                | 13:00          |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
| Comments:                          |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
|                                    |                          |                                |                                                             |                             |                        |                       |                      |                                       |                |                |
| Signature                          |                          | Mack                           | ensie Swift                                                 | <u> </u>                    | _                      |                       | Date                 | 5/8/24                                | <del></del>    |                |



| Well/Piezo ID: |          |
|----------------|----------|
| Well/Plezo ID. | BAT-03   |
|                | D/ 11 00 |

| Client:<br>Project No:                  |            |                                                  | River Powe                 |              | у                      | _                     | Date:<br>Time: Start | 5 <u>/13/2</u><br>8:55                 | 4               |                 |
|-----------------------------------------|------------|--------------------------------------------------|----------------------------|--------------|------------------------|-----------------------|----------------------|----------------------------------------|-----------------|-----------------|
| Site Location: Rawhide Generating State |            |                                                  |                            |              | n                      |                       | =                    | Finish                                 |                 | _               |
| Weather Con                             |            |                                                  |                            |              |                        | M. Swift, K. Hop      | pes                  |                                        |                 |                 |
|                                         |            |                                                  |                            | _            | - ` '                  |                       |                      |                                        |                 |                 |
| WATER LEV                               | EL DAT     | •                                                |                            | •            | O,                     |                       | Well                 | •'                                     | Piezometer      |                 |
| a. Total Well Length                    |            |                                                  |                            | c. Ca        | sing Material          | PVC                   | e. Lengtl            | n of Water Colu                        | ımn <u></u>     | (a-b)           |
| b. Water Tab                            | ole Depth  |                                                  | 9.91                       | d. Ca        | sing Diameter          | <u>2"</u>             | f. Calcula           | ated Well Volu                         | me (see bac     | sk) <del></del> |
| WELL PURG                               |            |                                                  | d <u>low flov</u>          | w samplin    | g with bladder         | pump                  |                      |                                        | _               |                 |
| b. Field Testing Equipmen               |            |                                                  |                            | Used:        | Make<br>YSI<br>LaMotte | Model<br>556<br>2020t |                      | Serial Number<br>U11116IX<br>2214-3721 | r<br>           |                 |
|                                         | c. Field   | Testing                                          | Equipment                  | t Calibrati  | on Documenta           | ition Found on De     | esignated (          | Calibration Log                        |                 |                 |
|                                         | Volu       | me                                               |                            |              | Spec. Cond             |                       | DO                   | Turbidity                              |                 | DTW             |
| Time                                    | Remov      | · ,                                              | T° (C)                     | pН           | (µs/cm)                | ORP                   | mg/L                 | (NTU)                                  | Color           | (ft)            |
| Stabilization                           |            |                                                  | +/- 3%                     | +/- 0.1      | +/- 3%                 | +/- 10 MV             | +/- 10%              | 5 NTU, 10%                             | -1              | 0.3 ft          |
| 9:00<br>9:05                            | 3.0        |                                                  | 12.34<br>11.78             | 6.74<br>6.77 | 3407<br>3352           | 185<br>182            | 4.47<br>1.70         | 22.9<br>31.10                          | clear<br>cloudy | 13.41<br>16.30  |
| 9:10                                    | 5.0        |                                                  | 12.00                      | 6.80         | 3325                   | 179                   | 1.57                 | 25.80                                  |                 | 17.60           |
| 9:15                                    | 6.5        | 5                                                | 12.47                      | 6.80         | 3345                   | 177                   | 1.47                 | 22.20                                  | clear           | 17.98           |
| 9:20                                    | 7.0        |                                                  | 12.93                      | 6.79         | 3380                   | 175                   | 1.27                 | 17.40                                  | clear           | 18.40           |
| 9:25<br>9:30                            | 7.5        |                                                  | 13.36                      | 6.81<br>6.79 | 3420<br>3444           | 173<br>172            | 0.88                 | 15.90<br>14.90                         | clear           | 18.00<br>18.32  |
| 9:35                                    | 8.0<br>8.5 |                                                  | 13.11<br>12.74             | 6.76         | 3476                   | 172                   | 1.06                 | 11.80                                  | clear<br>clear  | 18.70           |
| 9:42                                    | 9.7        |                                                  | 13.39                      | 6.77         | 3530                   | 168                   | 1.12                 | 11.60                                  | clear           | 19.12           |
| 9:45                                    | 10.2       | 25                                               | 12.76                      | 6.76         | 3529                   | 166                   | 1.07                 | 8.38                                   | clear           | 19.50           |
| 9:50                                    | 11.5       |                                                  | 12.51                      | 6.77         | 3520                   | 165                   | 1.03                 | 8.80                                   | clear           | 20.00           |
| 9:55                                    | 12.7       |                                                  | 12.20                      | 6.78         | 3500                   | 164                   | 1.00                 | 8.58                                   | clear           | 20.43           |
| 10:00                                   |            |                                                  | 11.96                      | 6.78         | 3502                   | 163                   | 1.03                 | 7.67                                   | clear           | 21.27           |
|                                         |            |                                                  |                            |              |                        |                       |                      |                                        |                 |                 |
|                                         |            |                                                  |                            |              |                        |                       |                      |                                        |                 |                 |
|                                         |            |                                                  |                            |              |                        |                       |                      |                                        |                 |                 |
|                                         |            |                                                  |                            | /£_:1        | Var                    | N-                    | NI/A                 |                                        |                 |                 |
|                                         |            |                                                  | criteria pass<br>Iume been |              | Yes                    | No                    | N/A                  |                                        |                 |                 |
|                                         |            |                                                  | turbidity be               |              | _                      |                       |                      |                                        |                 |                 |
|                                         |            |                                                  | eters stabili              |              |                        |                       |                      |                                        |                 |                 |
|                                         | lf         |                                                  | I/A - Explair              |              | hilina aftar 1 h       |                       |                      |                                        |                 |                 |
|                                         |            | remp                                             | and Divv d                 | iid not sta  | bilize after 1 h       | our.                  |                      |                                        |                 |                 |
|                                         |            |                                                  |                            |              |                        |                       |                      |                                        |                 |                 |
| SAMPLE C                                | OLLECT     | ION:                                             |                            | Method:      | low flow blade         | der pump              |                      |                                        |                 |                 |
| Sample                                  | e ID       | Contai                                           | ner Type                   | No. of       | Containers             | Preservation          |                      | Analysis                               |                 | Time            |
| BAT-03-C                                |            |                                                  | e CoC                      |              | 7                      | see CoC               |                      | see CoC                                |                 | 10:05           |
| BAT-03-                                 |            |                                                  | e CoC                      |              | 5                      | see CoC               |                      | see CoC                                |                 | 10:05           |
| ERB-02-                                 |            |                                                  | e CoC                      |              | 5                      | see CoC               |                      | see CoC                                |                 | 10:20           |
| ERB-02-C                                | DLHF       | Se                                               | e CoC                      |              | 7                      | see CoC               | 1                    | see CoC                                |                 | 10:20           |
|                                         |            | <del>                                     </del> |                            |              |                        |                       | +                    |                                        |                 |                 |
| <u> </u>                                |            | 1                                                |                            | <u> </u>     |                        | ı                     | 1                    |                                        |                 |                 |
| Comments:                               | ERB-02-    | CCR ar                                           | nd -CDPHE                  | collected    | l here at 10:20        | using lab provide     | ed DI water          | with deconne                           | d FL water o    | dipped in.      |
| Signature                               |            | Mack                                             | ensie Swift                |              | _                      |                       | Date                 | 5/13/24_                               |                 |                 |



| Well/Piezo ID: | BAT-04R |
|----------------|---------|
|                | _,      |

| Client:<br>Project No: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60731                         | River Powe<br>455/607313                                      | 303                         | •                      |                       |                 |                                        |                |                 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|-----------------------------|------------------------|-----------------------|-----------------|----------------------------------------|----------------|-----------------|
| Site Location          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rawhi                         | de Generat                                                    |                             |                        |                       | <u> </u>        | Finish _                               | 14:15          |                 |
| Weather Con            | nds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | sunny, win                                                    | dy                          | Collector(s)           | M. Swift, O. Heli     | nski            |                                        |                |                 |
| WATER LEV              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A: (mea                       | sured fron                                                    | •                           | •                      |                       | Well            | •                                      | Piezomete      |                 |
| a. Total Well          | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                             | -                                                             | c. Ca                       | sing Material          | PVC                   | e. Lengtl       | n of Water Colu                        | ımn <u></u>    | (a-b)           |
| b. Water Tal           | ole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١ .                           | 15.88'                                                        | d. Ca                       | sing Diameter          | <u>2"</u>             | f. Calcula      | ated Well Volur                        | ne (see ba     | ck) <del></del> |
| WELL PURG              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | d <u>low flov</u>                                             | v samplir                   | g with bladder         | pump_                 |                 |                                        | _              |                 |
|                        | b. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Testing                       | Equipment                                                     | Used:                       | Make<br>YSI<br>LaMotte | Model<br>556<br>2020t |                 | Serial Number<br>U11116IX<br>2214-3721 |                | -<br>-          |
|                        | c. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Testing                       | Equipment                                                     | Calibrat                    | on Documenta           | tion Found on De      | esignated (     | Calibration Log                        |                |                 |
| T.                     | Volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | Tº (O)                                                        |                             | Spec. Cond             | 000                   | DO              | Turbidity                              | 0.1            | DTW             |
| Time<br>Stabilization  | Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . ,                           | T° (C)<br>+/- 3%                                              | pH<br>+/- 0.1               | (µs/cm)<br>+/- 3%      | ORP<br>+/- 10 MV      | mg/L<br>+/- 10% | (NTU)<br>5 NTU, 10%                    | Color          | (ft)<br>0.3 ft  |
| 12:20                  | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 11.99                                                         | 6.79                        | 2838                   | 177.5                 | 0.84            | 22.2                                   | clear          | 16.80           |
| 12:25                  | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                             | 11.92                                                         | 6.77                        | 2824                   | 175.9                 | 0.71            | 24.1                                   | clear          | 16.98           |
| 12:30                  | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 11.86                                                         | 6.74                        | 2854                   | 172.7                 | 0.54            | 13.5                                   | clear          | 17.19           |
| 12:35<br>12:40         | 6.7<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 12.03<br>11.99                                                | 6.71                        | 2899<br>2906           | 168.7<br>165.6        | 0.45            | 8.78<br>8.55                           | clear          | 17.30           |
| 12:45                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 12.01                                                         | 6.70<br>6.70                | 2949                   | 160.7                 | 0.35            | 6.95                                   | clear<br>clear | 17.49<br>17.58  |
| .2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | .2.0                                                          | 00                          |                        |                       |                 | 0.00                                   | 0.04.          |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
|                        | Has requested Has represented Has requested Has represented Has requested Has requeste | uired vo<br>equired<br>parame | criteria pass<br>lume been<br>l turbidity be<br>eters stabili | removed<br>een reach<br>zed | Yes<br>□<br>ned ■      | N∘<br>□<br>□          | N/A             |                                        |                |                 |
|                        | lf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no or N                       | I/A - Explair                                                 | n below.                    |                        |                       |                 |                                        |                |                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
| SAMPLE C               | OLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION:                          |                                                               | Method:                     | low flow blade         | der pump              |                 |                                        |                |                 |
| Sample                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ner Type                                                      | No. of                      | Containers             | Preservation          |                 | Analysis                               |                | Time            |
| BAT-04R                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ee CoC                                                        |                             | 5                      | see CoC               |                 | see CoC                                |                | 12:50           |
| BAT-04R-0              | DPHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                            | ee CoC                                                        |                             | 10                     | see CoC               |                 | see CoC                                |                | 12:50           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                               |                             |                        |                       |                 |                                        |                |                 |
| Commonts               | MeMer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) collect                     | ted boro                                                      |                             |                        |                       |                 |                                        |                |                 |
| Comments:              | IVIO/IVIOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Collect                       | led nere                                                      |                             |                        |                       |                 |                                        |                |                 |
| Signature              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mack                          | ensie Swift                                                   |                             | _                      |                       | Date            | 5/7/24                                 |                |                 |



| Well/Piezo ID: | BAT-05 |
|----------------|--------|

| Client:<br>Project No:<br>Site Location<br>Weather Con | : _              | 607314<br>Rawhio | River Powe<br>455/607313<br>de Generat<br>nny, windy,      | 303<br>ing Statio | n                               | M. Swift, C. Ahre                     | -<br>-<br>endt        | Date:<br>Time: Start<br>Finish         |                           |                       |
|--------------------------------------------------------|------------------|------------------|------------------------------------------------------------|-------------------|---------------------------------|---------------------------------------|-----------------------|----------------------------------------|---------------------------|-----------------------|
| <b>WATER LEV</b><br>a. Total Well                      |                  | •                | sured fron                                                 | •                 | Casing)<br>sing Material        | PVC                                   | Well e. Length        | า of Water Colเ                        | Piezometei<br>umn <u></u> | _                     |
| b. Water Tal                                           | ole Depth        | -                | 20.37'                                                     | d. Ca             | sing Diameter                   | <u>2"</u>                             | f. Calcula            | ated Well Volur                        | ne (see bac               | :k) <u></u>           |
| WELL PURG                                              |                  |                  | d <u>low flov</u>                                          | w samplin         | g with bladder                  | pump_                                 |                       | <del> </del>                           | _                         |                       |
|                                                        | b. Field T       | esting           | Equipment                                                  | Used:             | Make<br>YSI<br>LaMotte          | Model<br>556<br>2020t                 |                       | Serial Number<br>U11116IX<br>2214-3721 |                           |                       |
|                                                        | c. Field T       | esting           | Equipment                                                  | t Calibrati       | on Documenta                    | tion Found on De                      | esignated C           | Calibration Log                        |                           |                       |
| Time<br>Stabilization                                  | Volun<br>Removed |                  | T° (C)<br>+/- 3%                                           | pH<br>+/- 0.1     | Spec. Cond<br>(µs/cm)<br>+/- 3% | ORP<br>+/- 10 MV                      | DO<br>mg/L<br>+/- 10% | Turbidity<br>(NTU)<br>5 NTU, 10%       | Color                     | DTW<br>(ft)<br>0.3 ft |
| 9:08                                                   | 0.25             | 5                | 11.03                                                      | 7.18              | 3672                            | 189.1                                 | 7.48                  | 108.8                                  | cloudy                    | 20.32                 |
| 9:13                                                   | 0.5              |                  | 10.98                                                      | 7.33              | 3561                            | 174.9                                 | 12.34                 | overrange                              | cloudy                    | 22.30                 |
| 9:18                                                   | 1.00             |                  | 10.93                                                      | 7.52              | 3423                            | 169.6                                 | 12.64                 | overrange                              | cloudy                    | 22.94                 |
| 9:23<br>9:28                                           | 1.25<br>1.50     |                  | 10.98                                                      | 7.53<br>7.54      | 3416<br>3417                    | 171.4<br>172.5                        | 12.64                 | overrange                              | cloudy                    | 23.05<br>23.25        |
| 9:33                                                   | 1.75             |                  | 11.07<br>10.97                                             | 7.50              | 3430                            | 172.5                                 | 12.53<br>12.18        | overrange<br>overrange                 | cloudy<br>cloudy          | 23.48                 |
| 9:38                                                   | 1.85             |                  | 11.99                                                      | 7.47              | 3445                            | 177.8                                 | 11.92                 | overrange                              | cloudy                    | 23.67                 |
| 9:42                                                   | 1.95             |                  | 10.91                                                      | 7.44              | 3463                            | 179.7                                 | 11.79                 | overrange                              | clear                     | 24.04                 |
| 9:48                                                   | 2.25             |                  | 10.93                                                      | 7.42              | 3484                            | 181.6                                 | 11.60                 | overrange                              | clear                     | 24.22                 |
| 9:53<br>9:58                                           | 2.30             |                  | 11.20<br>11.10                                             | 7.39<br>7.38      | 3502<br>3510                    | 183.0<br>183.6                        | 11.50<br>11.41        | 102.2<br>96.4                          | clear<br>clear            | 24.52<br>24.68        |
| 10:03                                                  | 2.50             |                  | 11.12                                                      | 7.38              | 3522                            | 184.6                                 | 11.35                 | 88.4                                   | clear                     | 24.84                 |
| 10:08                                                  | 2.60             |                  | 11.21                                                      | 7.37              | 3534                            | 185.7                                 | 11.25                 | 75.9                                   | clear                     | 25.26                 |
| 10:15                                                  | 2.65             | 5                | 11.6                                                       | 7.35              | 3554                            | 187.3                                 | 11.13                 | 77.9                                   | clear                     | 25.20                 |
|                                                        |                  |                  |                                                            |                   |                                 |                                       |                       |                                        |                           |                       |
|                                                        |                  |                  |                                                            |                   |                                 |                                       |                       |                                        |                           |                       |
|                                                        |                  |                  |                                                            |                   |                                 |                                       |                       |                                        |                           |                       |
|                                                        |                  |                  | criteria pass                                              |                   | Yes                             | No                                    | N/A                   |                                        |                           |                       |
|                                                        | Has re<br>Have p | quired<br>parame | lume been<br>turbidity be<br>eters stabili<br>/A - Explair | een reach<br>zed  | ed 🔲                            |                                       |                       |                                        |                           |                       |
|                                                        |                  | DO wa            | ıs calibrate                                               | d on 5/7/2        |                                 | cked turbidity met<br>easonable amour |                       | ourging; second                        | l calibration             | okay.                 |
| SAMPLE C                                               | OLLECTI          | ON:              |                                                            | Method:           | low flow blade                  | der pump                              |                       |                                        |                           |                       |
| Sample                                                 |                  | Contai           | ner Type                                                   | No. of            | Containers                      | Preservation                          |                       | Analysis                               |                           | Time                  |
| BAT-05-C                                               |                  |                  | e CoC                                                      |                   | 10                              | see CoC                               |                       | see CoC                                |                           | 10:15                 |
| BAT-05-                                                | CCR              | Se               | e CoC                                                      |                   | 5                               | see CoC                               |                       | see CoC                                |                           | 10:15                 |
|                                                        |                  |                  |                                                            |                   |                                 |                                       | 1                     |                                        |                           |                       |
|                                                        |                  |                  |                                                            |                   |                                 |                                       |                       |                                        |                           |                       |
| Comments:                                              |                  |                  |                                                            |                   |                                 |                                       |                       |                                        |                           |                       |
| Signature                                              |                  | _Mack            | ensie Swift                                                |                   | _                               |                                       | Date                  | 5/8/24                                 |                           |                       |



| Well/Piezo ID: |        |
|----------------|--------|
| Well/Plezo ID. | BAT-06 |

| Client:<br>Project No:<br>Site Location<br>Weather Con |                            | 60731<br>Rawhi                | River Powe<br>455/607313<br>de Generat<br>rcast, 50 F,                       | 303<br>ing Statio           |                            | O. Helinski           | -<br>-<br>-     | Time: Start                            | 5 <u>/7/24</u><br>14:39<br>15:40 | k               |
|--------------------------------------------------------|----------------------------|-------------------------------|------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------|-----------------|----------------------------------------|----------------------------------|-----------------|
| WATER LEV                                              |                            | •                             |                                                                              | •                           | C.                         | D) (0                 | Well            |                                        | Piezomete                        |                 |
| a. Total Well                                          | Length                     | •                             |                                                                              | c. Ca                       | sing Material <sub>_</sub> | <u>PVC</u>            | e. Lengtl       | n of Water Colu                        | ımn <u></u>                      | (a-b)           |
| b. Water Tab                                           | ole Depth                  |                               | 15.29                                                                        | d. Ca                       | sing Diameter              | <u>2"</u>             | f. Calcula      | ated Well Volur                        | ne (see bad                      | ck) <del></del> |
| WELL PURG                                              |                            |                               | d <u>low flov</u>                                                            | v samplin                   | g with bladder             | pump                  |                 |                                        | _                                |                 |
|                                                        |                            | J                             | Equipment                                                                    |                             | Make<br>YSI<br>LaMotte     | Model<br>556<br>2020t |                 | Serial Number<br>U11116IX<br>2214-3721 | -                                |                 |
|                                                        | c. Field                   | Testing                       | Equipment                                                                    | t Calibrati                 | on Documenta               | tion Found on De      | esignated (     | Calibration Log                        |                                  |                 |
| Time                                                   | Volui<br>Remove            | ed (L)                        | T° (C)                                                                       | pH                          | Spec. Cond<br>(µs/cm)      | ORP                   | DO<br>mg/L      | Turbidity<br>(NTU)                     | Color                            | DTW<br>(ft)     |
| Stabilization<br>14:39                                 | 0.0                        |                               | +/- 3%<br>11.16                                                              | +/- 0.1<br>7.49             | +/- 3%<br>2958             | +/- 10 MV<br>172.4    | +/- 10%<br>2.57 | 5 NTU, 10%<br>6.17                     | clear                            | 0.3 ft<br>15.68 |
| 14:44                                                  | 2.2                        |                               | 10.80                                                                        | 7.49                        | 3008                       | 167.5                 | 0.59            | 14.5                                   | clear                            | 17.85           |
| 14:49                                                  | 4.5                        |                               | 10.77                                                                        | 7.38                        | 3026                       | 165.3                 | 0.46            | 7.84                                   | clear                            | 20.20           |
| 14:52                                                  | 5.2                        |                               | 10.70                                                                        | 7.38                        | 3033                       | 163.5                 | 1.23            | 14.6                                   | clear                            | 21.21           |
| 14:55                                                  | 5.5                        |                               | 10.77                                                                        | 7.36                        | 3038                       | 162.5                 | 1.71            |                                        | clear                            |                 |
| 14:58<br>15:01                                         | 5.9<br>6.4                 |                               | 10.68<br>10.91                                                               | 7.41<br>7.37                | 3039<br>3049               | 159.4<br>156.9        | 1.78<br>1.92    | 8.01<br>5.13                           | clear<br>clear                   | 21.89<br>22.24  |
| 15:04                                                  | 6.8                        |                               | 11.28                                                                        | 7.35                        | 3058                       | 154.5                 | 2.31            | 5.13                                   | clear                            | 22.58           |
| 15:07                                                  | 7.1                        |                               | 12.12                                                                        | 7.33                        | 3079                       | 150.9                 | 1.94            | 9.07                                   | clear                            | 22.72           |
| 15:10                                                  | 7.4                        | ļ                             | 12.55                                                                        | 7.34                        | 3086                       | 148.1                 | 1.73            | 6.71                                   | clear                            | 22.86           |
| 15:13                                                  | 7.7                        |                               | 12.58                                                                        | 7.33                        | 3081                       | 146.2                 | 1.66            | 9.73                                   | clear                            | 23.03           |
| 15:15                                                  | 8.0                        | )                             | 12.76                                                                        | 7.32                        | 3089                       | 143.2                 | 1.95            | 5.83                                   | clear                            | 23.19           |
|                                                        |                            |                               |                                                                              |                             |                            |                       |                 |                                        |                                  |                 |
|                                                        |                            |                               |                                                                              |                             |                            |                       |                 |                                        |                                  |                 |
|                                                        |                            |                               |                                                                              |                             |                            |                       |                 |                                        |                                  |                 |
|                                                        |                            |                               |                                                                              |                             |                            |                       |                 |                                        |                                  |                 |
|                                                        |                            |                               | ., .                                                                         | <i>(</i> 2 · · ·            |                            |                       |                 |                                        |                                  |                 |
|                                                        | Has requ<br>Has re<br>Have | iired vo<br>equired<br>parame | criteria pass<br>lume been<br>turbidity be<br>eters stabili<br>I/A - Explair | removed<br>een reach<br>zed | Yes<br>□<br>ed <b>■</b>    | No<br>                | N/A             |                                        |                                  |                 |
| SAMPLE C                                               | OLLECT                     | ION:                          |                                                                              | Method:                     | low flow blade             | ler pump              |                 |                                        |                                  |                 |
| Sample                                                 |                            |                               | ner Type                                                                     | No. of                      | Containers                 | Preservation          |                 | Analysis                               |                                  | Time            |
| BAT-06-C<br>BAT-06-C                                   |                            |                               | e CoC<br>e CoC                                                               |                             | 5<br>10                    | see CoC<br>see CoC    |                 | see CoC<br>see CoC                     |                                  | 15:20<br>15:20  |
| BA1-00-1                                               | OOK                        | 00                            |                                                                              |                             | 10                         | 300 000               |                 | 300 000                                |                                  | 13.20           |
|                                                        |                            |                               |                                                                              |                             |                            |                       |                 |                                        |                                  |                 |
| Comments:                                              |                            |                               |                                                                              |                             |                            |                       |                 |                                        |                                  |                 |
| Signature                                              |                            | _Olivia                       | Helinski_                                                                    | <del> </del>                |                            |                       | Date            | 5/7/24                                 |                                  |                 |



| Well/Piezo ID:   |         |
|------------------|---------|
| VVCII/I ICZO ID. | BAT-09  |
|                  | DA 1-09 |
|                  |         |

| Client:<br>Project No:<br>Site Location<br>Weather Con | :              | 60731             | 455/607313<br>de Generat                                    | Date: 5/7/24 Time: Start 10:12 Finish 11:50  unny, windy Collector(s) O. Helinski  ured from Top of Casing) c. Casing Material PVC  18.38 d. Casing Diameter 2" f. Calculated Well Volume (see back) |                |                      |              |                           |                                       |                 |
|--------------------------------------------------------|----------------|-------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|--------------|---------------------------|---------------------------------------|-----------------|
| WATERIEV                                               | FI DATA        | ۰ (mea            | sured fron                                                  | Top of                                                                                                                                                                                               | Casing)        |                      | Well         |                           | Piezomete                             | r 🗆             |
| a. Total Well                                          |                | (                 |                                                             | •                                                                                                                                                                                                    | σ,             | PVC                  |              |                           |                                       |                 |
| b. Water Tab                                           | Ū              | •                 |                                                             |                                                                                                                                                                                                      | -              |                      | •            |                           |                                       | . ,             |
|                                                        | ·              |                   | 10.00                                                       | u. Oa                                                                                                                                                                                                | sing Diameter  | <u></u>              | i. Galcula   | ated vveli volui          | ne (see ba                            | GK) <u></u>     |
| WELL PURG                                              |                |                   | d <u>low flov</u>                                           | v samplin                                                                                                                                                                                            | g with bladder | pump                 |              |                           | _                                     |                 |
|                                                        | b. Field T     | esting            | Equipment                                                   | Used:                                                                                                                                                                                                | Make<br>YSI    | Model<br>556         |              | Serial Number<br>U11116IX |                                       |                 |
|                                                        |                |                   |                                                             |                                                                                                                                                                                                      | LaMotte        | 2020t                |              | 2214-3721                 |                                       | -<br>-          |
|                                                        | c. Field       | Testing           | Equipment                                                   | Calibrati                                                                                                                                                                                            | on Documenta   | tion Found on De     | esignated C  | Calibration Log           |                                       |                 |
|                                                        | Volur          | ne                |                                                             |                                                                                                                                                                                                      | Spec. Cond     |                      | DO           | Turbidity                 |                                       | DTW             |
| Time                                                   | Remove         | · /               | T° (C)                                                      | pH                                                                                                                                                                                                   | (µs/cm)        | ORP                  | mg/L         | (NTU)                     | Color                                 | (ft)            |
| Stabilization                                          |                |                   | +/- 3%                                                      | +/- 0.1                                                                                                                                                                                              | +/- 3%         | +/- 10 MV            | +/- 10%      |                           | alaan                                 | 0.3 ft<br>18.51 |
| 10:12<br>10:17                                         | 0.0<br>3.0     |                   | 11.64<br>11.27                                              | 7.15<br>7.08                                                                                                                                                                                         | 3085<br>3281   | 145.4<br>148.6       | 6.12<br>5.18 | 8.88<br>7.65              | clear<br>clear                        | 21.85           |
| 10:17                                                  | 4.0            |                   | 11.21                                                       | 7.10                                                                                                                                                                                                 | 3325           | 148.5                | 5.28         | 6.92                      | clear                                 | 22.50           |
| 10:23                                                  | 5.0            |                   | 11.31                                                       | 7.07                                                                                                                                                                                                 | 3356           | 148.2                | 4.85         | 6.17                      | clear                                 | 23.65           |
| 10:26                                                  | 6.0            | )                 | 11.38                                                       | 7.05                                                                                                                                                                                                 | 3380           | 147.9                | 4.77         | 6.07                      | clear                                 | 24.30           |
| 10:29                                                  | 6.9            |                   | 11.34                                                       | 7.01                                                                                                                                                                                                 | 3396           | 147.5                | 4.49         | 6.19                      | clear                                 | 25.13           |
| 10:32                                                  | 7.9            |                   | 11.37                                                       | 6.99                                                                                                                                                                                                 | 3410           | 146.8                | 4.12         | 6.45                      | clear                                 | 25.45           |
| 10:35                                                  | 8.5<br>9.0     |                   | 11.41                                                       | 6.97                                                                                                                                                                                                 | 3429           | 146.0                | 3.37         | 8.19                      | clear                                 | 26.35           |
| 10:38<br>10:43                                         | 9.8            |                   | 11.45<br>11.43                                              | 6.92<br>6.91                                                                                                                                                                                         | 3443<br>3450   | 145.0<br>141.9       | 2.77         | 17.50<br>16.80            | clear<br>clear                        | 26.75<br>27.32  |
| 10:46                                                  | 10.8           |                   | 11.46                                                       | 6.92                                                                                                                                                                                                 | 3455           | 140.5                | 2.70         | 10.13                     | clear                                 | 27.59           |
| 10:49                                                  | 11.4           |                   | 11.50                                                       | 6.90                                                                                                                                                                                                 | 3441           | 138.2                | 1.45         | 8.06                      | clear                                 | 27.81           |
| 10:52                                                  | 11.9           |                   | 11.55                                                       | 6.91                                                                                                                                                                                                 | 3445           | 135.0                | 1.00         | 7.19                      | clear                                 | 28.11           |
| 10:55                                                  | 12.2           | 2                 | 11.82                                                       | 6.89                                                                                                                                                                                                 | 3455           | 132.3                | 0.86         | 5.63                      | clear                                 | 28.20<br>28.27  |
| 10:58                                                  | 12.8           | 8                 | 11.95                                                       | 6.85                                                                                                                                                                                                 | 3467           | 129.8                | 0.81         | 4.32                      | clear                                 |                 |
| 11:01                                                  | -              |                   | 12.00                                                       | 6.89                                                                                                                                                                                                 | 3472           | 122.4                | 0.75         | 4.61                      | clear                                 | 28.39           |
|                                                        |                |                   |                                                             |                                                                                                                                                                                                      |                |                      |              |                           |                                       |                 |
|                                                        | e. Accep       | tance o           | criteria pass                                               | /fail                                                                                                                                                                                                | Yes            | No                   | N/A          |                           |                                       |                 |
|                                                        | Has re<br>Have | equired<br>parame | lume been<br>turbidity be<br>eters stabili<br>//A - Explair | en reach<br>zed                                                                                                                                                                                      | ed <b>=</b>    |                      |              |                           |                                       |                 |
| SAMPLE C                                               | OLLECTI        | ON:               |                                                             | Method:                                                                                                                                                                                              | low flow blade | ler pump             |              |                           |                                       |                 |
|                                                        |                |                   | ner Type                                                    |                                                                                                                                                                                                      | Containers     | ' '                  |              | Analysis                  |                                       | Time            |
| Sample<br>BAT-09-C                                     |                |                   | e CoC                                                       | NO. OI                                                                                                                                                                                               | 10             | Preservation see CoC |              | see CoC                   |                                       | 11:05           |
| BAT-09-                                                |                |                   | e CoC                                                       |                                                                                                                                                                                                      | 5              | see CoC              |              | see CoC                   |                                       | 11:05           |
|                                                        |                |                   |                                                             |                                                                                                                                                                                                      | -              |                      |              |                           |                                       | 11.00           |
|                                                        |                |                   |                                                             |                                                                                                                                                                                                      |                |                      |              |                           |                                       |                 |
|                                                        |                |                   |                                                             |                                                                                                                                                                                                      |                |                      |              |                           |                                       |                 |
| Comments:                                              |                |                   |                                                             |                                                                                                                                                                                                      |                |                      |              |                           |                                       |                 |
| Signature                                              |                | _Olivia           | Helinski                                                    |                                                                                                                                                                                                      |                |                      | Date         | 5/7/24                    | · · · · · · · · · · · · · · · · · · · |                 |



| Well/Piezo ID: | BAT-10 |
|----------------|--------|
|                |        |

| Project No:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60731                         | River Powe<br>455/607313                                    | 303                         |                                 | _<br>_                | Time: Start _         |                                        | <u>1</u>       |                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------|-----------------------|----------------------------------------|----------------|-----------------------|
| Site Location<br>Weather Cor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rawhi                         | de Generat<br>sunny, win                                    |                             |                                 | M. Swift, J. Hurs     | _<br>hman             | Finish                                 | 13:00          |                       |
| vvcaulei COI                 | iuo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                             | Julily, Will                                                | чу                          | _Collector(s)                   | IVI. OWIIL, J. FIUIS  | iiiiaii               |                                        |                |                       |
| WATER LEV                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                             |                                                             | •                           | O,                              | DVC                   | Well                  | _                                      | Piezomete      |                       |
| a. Total Well                | Lengin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                             |                                                             |                             |                                 | PVC                   | e. Lengu              | h of Water Colւ                        | ımn <u></u>    | <u>-</u> (a-b)        |
| b. Water Tal                 | ole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١ .                           | 11.85                                                       | d. Ca                       | sing Diameter                   | <u>2"</u>             | f. Calcula            | ated Well Volur                        | ne (see ba     | ck) <u></u>           |
| WELL PURG                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | d <u>low flov</u>                                           | v samplin                   | g with bladder                  | pump                  |                       |                                        | _              |                       |
|                              | b. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Testing                       | Equipment                                                   | Used:                       | Make<br>YSI<br>LaMotte          | Model<br>556<br>2020t |                       | Serial Number<br>U11116IX<br>2214-3721 |                | <u>.</u>              |
|                              | c. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Testing                       | Equipment                                                   | Calibrati                   | on Documenta                    | tion Found on De      | esignated (           | Calibration Log                        |                |                       |
| Time<br>Stabilization        | Volu<br>Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed (L)                        | T° (C)<br>+/- 3%                                            | pH<br>+/- 0.1               | Spec. Cond<br>(µs/cm)<br>+/- 3% | ORP<br>+/- 10 MV      | DO<br>mg/L<br>+/- 10% | Turbidity<br>(NTU)<br>5 NTU, 10%       | Color          | DTW<br>(ft)<br>0.3 ft |
| 10:45                        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 10.14                                                       | 7.26                        | 3299                            | 175.2                 | 4.90                  | 5.79                                   | clear          | 12.76                 |
| 10:50                        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 10.81                                                       | 7.11                        | 3206                            | 176.8                 | 4.43                  | 4.80                                   | clear          | 13.25                 |
| 10:55                        | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 10.62                                                       | 7.05                        | 3401                            | 177                   | 4.48                  | 4.04                                   | clear          | 13.77                 |
| 11:00<br>11:05               | 2.2<br>3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 10.51<br>10.60                                              | 7.01<br>6.96                | 3432<br>3452                    | 177<br>176            | 4.22                  | 4.13<br>4.21                           | clear<br>clear | 14.36<br>14.52        |
| 11:10                        | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 10.77                                                       | 6.94                        | 3467                            | 175                   | 4.53                  | 3.90                                   | clear          | 14.65                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -                                                           |                             |                                 | -                     |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              | 0 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntanco                        | criteria pass                                               | s/fail                      | Yes                             | No                    | N/A                   |                                        |                |                       |
|                              | Has requested Has represented Has requested Has represented Has requested Has requeste | uired vo<br>equired<br>parame | lume been<br>turbidity be<br>eters stabili<br>I/A - Explair | removed<br>een reach<br>zed |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
| SAMPLE C                     | OLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION:                          |                                                             | Method:                     | low flow blade                  | der pump              |                       |                                        |                |                       |
| Sample                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ner Type                                                    | No. of                      | Containers                      | Preservation          |                       | Analysis                               |                | Time                  |
| BAT-10-C                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | e CoC                                                       |                             | 10                              | see CoC               |                       | see CoC                                |                | 11:15                 |
| BAT-10-                      | CCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Se                            | ee CoC                                                      |                             | 5                               | see CoC               |                       | see CoC                                |                | 11:15                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
| Comments:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                             |                             |                                 |                       |                       |                                        |                |                       |
| Signature                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mack                          | ensie Swift                                                 |                             | _                               |                       | Date                  | 5/9/24_                                |                |                       |



| Well/Piezo ID: |         |
|----------------|---------|
| WOM/I TOZO ID. | BAT-11  |
|                | D/\1-11 |

| Client:<br>Project No:<br>Site Location<br>Weather Con       |                           | 60731                         | River Powe<br>455/607313<br>de Generat<br>cloudy, 50                          | 303<br>ing Statio           |                                        | Date: 5/9/24 Time: Start 8:37 Finish 10:15 Swift |             |                                                           |       |             |
|--------------------------------------------------------------|---------------------------|-------------------------------|-------------------------------------------------------------------------------|-----------------------------|----------------------------------------|--------------------------------------------------|-------------|-----------------------------------------------------------|-------|-------------|
| WATER LEVEL DATA: (measured from Top of a. Total Well Length |                           |                               |                                                                               |                             | sing Material                          |                                                  | _           | n of Water Colu                                           |       | (a-b)       |
| WELL PURG                                                    |                           |                               | d <u>low flov</u>                                                             | v samplin                   | g with bladder                         | pump                                             |             |                                                           | _     |             |
|                                                              |                           |                               | Equipment<br>Equipment                                                        |                             | Make<br>YSI<br>LaMotte<br>on Documenta | Model<br>556<br>2020t<br>ation Found on De       | esignated ( | Serial Number<br>U11116IX<br>2214-3721<br>Calibration Log |       |             |
| Time                                                         | Volu<br>Remov             |                               | T° (C)                                                                        | pН                          | Spec. Cond<br>(µs/cm)                  | ORP                                              | DO<br>mg/L  | Turbidity<br>(NTU)                                        | Color | DTW<br>(ft) |
| Stabilization                                                | Kelliovi                  | eu (L)                        | +/- 3%                                                                        | +/- 0.1                     | +/- 3%                                 | +/- 10 MV                                        | +/- 10%     | 5 NTU, 10%                                                | COIOI | 0.3 ft      |
| 8:43                                                         | initia                    | al                            | 10.25                                                                         | 7.11                        | 1003                                   | 147.4                                            | 7.14        | 6.73                                                      | clear | 28.22       |
| 8:45                                                         | 1.8                       |                               | 10.08                                                                         | 7.73                        | 988                                    | 144.8                                            | 7.76        | 8.37                                                      | clear | 28.40       |
| 8:48                                                         | 2.3                       | 3                             | 10.03                                                                         | 7.05                        | 971                                    | 142.1                                            | 8.04        | 8.03                                                      | clear | 28.70       |
| 8:54                                                         | 3.1                       | 0                             | 10.03                                                                         | 7.06                        | 957                                    | 140.4                                            | 8.18        | 8.19                                                      | clear | 29.01       |
| 8:57                                                         | 4.0                       | )                             | 10.01                                                                         | 7.06                        | 949                                    | 139.1                                            | 8.22        | 7.90                                                      | clear | 29.15       |
| 9:01                                                         | 4.6                       | 3                             | 10.00                                                                         | 7.09                        | 949                                    | 138.5                                            | 8.26        | 8.37                                                      | clear | 29.35       |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              | Has requ<br>Has r<br>Have | uired vo<br>equired<br>parame | criteria pass<br>lume been<br>turbidity be<br>eters stabili:<br>I/A - Explair | removed<br>een reach<br>zed | Yes<br>□<br>ed ■                       | No                                               | N/A         |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
| SAMPLE C                                                     | OLLECT                    | ION:                          |                                                                               | Method:                     | low flow blade                         | der pump                                         |             |                                                           |       |             |
| Sample                                                       | e ID                      | Contai                        | ner Type                                                                      | No. of                      | Containers                             | Preservation                                     |             | Analysis                                                  |       | Time        |
| BAT-11-C                                                     |                           |                               | e CoC                                                                         |                             | 10                                     | see CoC                                          |             | see CoC                                                   |       | 9:05        |
| BAT-11-                                                      | CCR                       | Se                            | e CoC                                                                         |                             | 5                                      | see CoC                                          |             | see CoC                                                   |       | 9:05        |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
|                                                              |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
| Comments:                                                    |                           |                               |                                                                               |                             |                                        |                                                  |             |                                                           |       |             |
| Signature                                                    |                           | Jeren                         | ny Hurshma                                                                    | an                          |                                        |                                                  | Date        | 5/9/24                                                    |       |             |



| Well/Piezo ID: | DAT 40 |
|----------------|--------|
|                | BAT-12 |

| Client:         Platte River Power Authority           Project No:         60731455/60731303           Site Location:         Rawhide Generating Station |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                               |                             |                                 |                       | -<br>-                | Time: Start _                          | 5 <u>/8/24</u><br>12:15<br>14:00 |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------|-----------------------|----------------------------------------|----------------------------------|-----------------------|
| Weather Con                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | oudy, windy                                                                   | M. Swift, C. Ahre           | endt                            | _                     |                       |                                        |                                  |                       |
| WATER LEV                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A: (mea                       |                                                                               | •                           | •                               | DVO                   | Well                  |                                        | Piezomete                        |                       |
| a. Total Well                                                                                                                                            | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                               | c. Ca                       | ising Material                  | <u>PVC</u>            | e. Lengti             | n of Water Colu                        | ımn <u></u>                      | (a-b)                 |
| b. Water Tal                                                                                                                                             | ole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١ .                           | 30.86                                                                         | d. Ca                       | sing Diameter                   | 2"                    | f. Calcula            | ated Well Volur                        | ne (see bad                      | ck) <del></del>       |
| WELL PURG                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | d <u>low flov</u>                                                             | v samplin                   | g with bladder                  | pump_                 |                       |                                        | _                                |                       |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Equipment                                                                     |                             | Make<br>YSI<br>LaMotte          | Model<br>556<br>2020t |                       | Serial Number<br>U11116IX<br>2214-3721 | -                                |                       |
|                                                                                                                                                          | c. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I esting                      | Equipment                                                                     | Calibrati                   | on Documenta                    | ition Found on De     | esignated (           | Calibration Log                        |                                  |                       |
| Time<br>Stabilization                                                                                                                                    | Volu<br>Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed (L)                        | T° (C)<br>+/- 3%                                                              | pH<br>+/- 0.1               | Spec. Cond<br>(µs/cm)<br>+/- 3% | ORP<br>+/- 10 MV      | DO<br>mg/L<br>+/- 10% | Turbidity<br>(NTU)<br>5 NTU, 10%       | Color                            | DTW<br>(ft)<br>0.3 ft |
| 12:20                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                             | 11.75                                                                         | 7.70                        | 1291                            | 477.0                 | 4.42                  | 19.4                                   | clear                            | 31.42                 |
| 12:25                                                                                                                                                    | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 11.82                                                                         | 7.66                        | 1283                            | 174.4                 | 4.30                  | 16.3                                   | clear                            | 31.42                 |
| 12:30<br>12:35                                                                                                                                           | 4.2<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 11.90<br>11.77                                                                | 7.61<br>7.58                | 1273<br>1261                    | 172.2<br>169.6        | 3.58                  | 19.5<br>14.6                           | clear<br>clear                   | 31.52<br>31.60        |
|                                                                                                                                                          | Has requested Has represented Has represented Has represented Has requested Has reques | uired vo<br>equired<br>parame | criteria pass<br>lume been<br>turbidity be<br>eters stabili.<br>//A - Explair | removed<br>een reach<br>zed | Yes                             | No                    | N/A                   |                                        |                                  |                       |
| SAMPLE C                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                               |                             | low flow blade                  | der pump              |                       |                                        |                                  |                       |
| Sample                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ner Type                                                                      | No. of                      | Containers                      | Preservation          | 1                     | Analysis                               |                                  | Time                  |
| BAT-12-C<br>BAT-12-                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | e CoC<br>e CoC                                                                |                             | 10<br>5                         | see CoC<br>see CoC    | +                     | see CoC                                |                                  | 12:40<br>12:40        |
| DUP-02-C                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | e CoC                                                                         |                             | 10                              | see CoC               | see CoC<br>see CoC    |                                        |                                  | 12.40                 |
| DUP-02-                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | e CoC                                                                         |                             | 5                               | see CoC               |                       | see CoC                                |                                  |                       |
| Comments:                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                               |                             |                                 |                       | Date                  | 5/8/24                                 |                                  |                       |



| Well/Piezo ID | BAT-13 |
|---------------|--------|
|               |        |

| Client:              |                                   |                                         | River Powe          |                                          | ty                     |                                        | _               |                                         | 5/8/ <u>24</u> |                                    |
|----------------------|-----------------------------------|-----------------------------------------|---------------------|------------------------------------------|------------------------|----------------------------------------|-----------------|-----------------------------------------|----------------|------------------------------------|
| Project No:          |                                   |                                         | 455 / 6073          |                                          |                        |                                        | _               | Time: Start _                           |                |                                    |
| Site Location        |                                   |                                         | de Genera           |                                          |                        |                                        |                 |                                         | 14:00 on       | 5/14                               |
| Weather Co           | nds:                              | sunny                                   | , windy, 43         | <u> </u>                                 | Collector(s)           | M. Swift, C. Ahre                      | endt, K. Ho     | oppes                                   |                |                                    |
| WATER LE\            |                                   | A: (me                                  | asured fro<br>38.48 | •                                        | •                      | PVC                                    | Well            | l<br>h of Water Col                     | Piezomete      | <del></del>                        |
|                      | · ·                               |                                         |                     |                                          |                        |                                        | Ū               |                                         |                |                                    |
| o. Water Ta          | ble Depth                         | l                                       | 35.12               | d. Ca                                    | sing Diamete           | r <u>2"</u>                            | f. Calcul       | ated Well Volu                          | me (see ba     | ack)0.55                           |
| VELL PUR             |                                   |                                         | d <u>dispos</u>     | able baile                               | <u>r</u>               |                                        |                 |                                         |                |                                    |
|                      | b. Field 1                        | Testing                                 | Equipmen            | t Used:                                  | Make<br>YSI<br>LaMotte | Model<br>ProSeries<br>2020t            |                 | Serial Numbe<br>15M100687<br>22 14-3721 | r              |                                    |
|                      | c. Field                          | Testing                                 | g Equipmer          | t Calibrat                               | ion Documen            | tation Found on D                      |                 | l Calibration Lo                        | ΟĆ             |                                    |
| Time                 | Volur                             |                                         | T° (C)              | n⊔                                       | Spec. Cond             |                                        | DO<br>mg/l      | Turbidity                               | Color          | DTW<br>(ft)                        |
| Time<br>tabilization | Remove                            | su (L)                                  | T° (C)              | pH<br>+/- 0.1                            | (us/cm)<br>+/- 3%      | ORP<br>+/- 10 MV                       | mg/L<br>+/- 10% | (NTU)<br>5 NTU, 10%                     | Color          | (ft)<br>0.3 ft                     |
| 8:34                 | 0.8                               | 5                                       | 10.75               | 7.57                                     | 2631                   | 188.3                                  | 346             | overrange                               | brown          |                                    |
| 8:37                 | 1.7                               |                                         | 11.16               | 7.53                                     | 3671                   | 187.5                                  | 7.71            | overrange                               | brown          |                                    |
| 8:45                 | 1.8                               | }                                       | 10.72               | 7.54                                     | 3677                   | 188.5                                  | 3.75            | overrange                               | brown          |                                    |
| 8:48                 | 2.2                               | 4                                       | 10.34               | 7.55                                     | 3671                   | 188.7                                  | 3.75            | overrange                               | brown          |                                    |
| 8:50                 | 2.6                               | 0                                       | 10.39               | 7.55                                     | 3671                   | 188.6                                  | 3.55            | overrange                               | brown          |                                    |
| 8:56                 | 3.0                               | 0                                       | 10.20               | 7.54                                     | 3669                   | 188.9                                  |                 | overrange                               | brown          |                                    |
|                      |                                   |                                         |                     |                                          | VE MEASUF              | REMENTS TAKEN                          | N ON 5/8        |                                         |                |                                    |
| 9:10                 | Initia                            |                                         |                     | -                                        |                        |                                        |                 |                                         | -              |                                    |
| 9:30                 | 1.2                               | 5                                       |                     |                                          | DOVE INFO              |                                        | ED DRY          |                                         |                |                                    |
| 13:25                | Initia                            | al                                      |                     |                                          | ABOVE INFO             | RMATION FROM<br>I                      | 15/13           |                                         |                |                                    |
| 13.23                | HILL                              | aı                                      |                     |                                          | NEORMATIO              | N FROM 5/14 - P                        | URGED D         |                                         |                |                                    |
|                      |                                   |                                         |                     | ABO VE I                                 | VI OTAWITATIO          | 1411(0)(10)14 1                        | T               | 71(1                                    |                |                                    |
|                      |                                   |                                         |                     |                                          |                        |                                        |                 |                                         |                |                                    |
|                      |                                   |                                         |                     |                                          |                        |                                        |                 |                                         |                |                                    |
|                      |                                   |                                         |                     |                                          |                        |                                        |                 |                                         |                |                                    |
|                      |                                   |                                         |                     |                                          |                        |                                        |                 |                                         |                |                                    |
|                      |                                   |                                         |                     |                                          |                        |                                        |                 |                                         |                |                                    |
|                      | Has requi<br>Has re<br>Have<br>If | iired vo<br>equireo<br>param<br>no or N |                     | removed<br>een reacl<br>ized<br>n below. | ned 🗌                  | No □ ■ ■ ■ the bailer. Sand            | N/A             | ed into casing.                         | Purged dry     | before well coul                   |
| SAMPLE C             |                                   |                                         |                     | Method:                                  |                        |                                        |                 |                                         |                |                                    |
| Sample               |                                   |                                         | iner Type           |                                          | Containers             | Preservation                           | ļ .             | Analysis                                | -1-            | Time                               |
| BAT-13-              |                                   |                                         | e CoC<br>. HDPE     | se                                       | e CoC                  | see CoC<br>HNO3                        |                 | nions and met                           |                | 5/10/2024 14:20                    |
| BAT-13-C             |                                   |                                         | MI HDPE             |                                          | 2                      | see CoC                                |                 | ons and phosp                           |                | 5/10/2024 14:20<br>5/14/2024 13:40 |
| 2, 11 10 0           |                                   | 2001                                    |                     |                                          | _                      | 300 000                                | Aill            | ono ana pnosp                           | 110140         | 5, 17,2527 15.40                   |
|                      |                                   |                                         |                     |                                          |                        |                                        |                 |                                         |                |                                    |
| omments:             |                                   |                                         |                     |                                          |                        | r both CCR and C<br>e collected from 5 |                 |                                         |                | olume for both. W                  |
| ianatı               | 1/-                               | ro Us:-                                 |                     |                                          |                        |                                        | Dets            | E140104                                 |                |                                    |
| gnature              | na                                | ra Hop                                  | hes                 |                                          |                        |                                        | Dale            | 5/13/24                                 |                |                                    |

AECOM Environment

September/October 2024

Event: MP:

Top of Casing

Date: 9/30/14

Recorder: 0/10/14 Helinski + Machensie Swift

| Location | Group      | DTW    | TD    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|----------|------------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| *PZ-3    | Piezometer | 23-70  | 43.37 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| *PZ-4    | Piezometer | 33.01  | 43.20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| *PZ-5    | Piezometer | 37-13  | 41.56 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-01   | ASH        | 13.98  | 31.34 | Buffalo Area - Need Escort ⊁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| ASH-02   | ASH        | 4:72   | 51.81 | * filled with Manuer webs + dead Flies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| ASH-03   | ASH        | 40,02  | 51.80 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-04   | ASH        | 15.09  | 32.10 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-05   | ASH        | 22.15  | 31,33 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-06   | ASH        | 62.63  | 70.13 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-07   | ASH        | 16.45  | 30.10 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-08   | ASH        | 10.66  | 29,93 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ASH-09   | ASH        | 5,22   | 26.97 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-01   | BAT        | 11.78  | 30.85 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-02   | BAT        | 19.44  | 33.40 | * In the state of |        |
| BAT-03   | BAT        | 13.54  | 35.23 | * missing bolt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| BAT-04R  | BAT        | 110.42 | 36.00 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-05   | BAT        | 20,48  | 36.94 | * dead mice in flush mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| BAT-06   | BAT        | 16.93  | 37.58 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-09   | BAT        | 19.30  | 34.71 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-10   | BAT        | 12.90  | 31.28 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-11   | BAT        | 28.09  | 38.95 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-12   | BAT        | 31,48  | 45,06 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| BAT-13   | BAT        | 36.70  | 38.53 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| PRS-01   | PRS        | 28,10  | 44,59 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| PRS-02   | PRS        | 25.70  | 36.30 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| PRS-03   | PRS        | 48.46  | 61.81 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| PRS-04   | PRS        | 28.27  | 36.94 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| PRS-05   | PRS        | 29.40  | 37.69 | <del>*</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| PRS-06   | PRS        | 21,74  | 35,34 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| PRS-07   | PRS        | 25.29  | 42.45 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| MW-3     | Sitewide   | 24.96  | 37.45 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| MW-4     | Sitewide   | 19.9)  | 36.50 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| MW-5     | Sitewide   | 22.17  | 75.15 | Buffalo Area - Need Escort Spidersing lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| MW-6     | Sitewide   | 3.08   | 30.05 | Cross Barbed Wire Fence and Access by Foot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1120 - |
| MW-7     | Sitewide   | 4.97   | 23.14 | Cross Barbed Wire Fence and Access by Foot WASP5+ 9 pickr5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4190 7 |
| MW-8     | Sitewide   | 11.02  | 38,02 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| FTP-1    | FTP        | 29.94  | 35,98 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| FTP-2    | FTP        | 9.58   | 39.60 | *No lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| FTP-3    | FTP        | 26.08  | 34.78 | NO LOCK X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| FTP-4    | FTP        | 18.21  | 24.95 | + NO lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| TP-5     | FTP        | 12.27  | 21.94 | *NO 10CK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |

Acronyms:

DTW - Depth to Water MP - Measuring Point TD - Total Depth

\* Fluid levels only, no sample \* (NOKS) = 9000 (Ondition



| Well/Piezo ID: | BAT-01 |
|----------------|--------|
|----------------|--------|

| Client:<br>Project No:       | Project No: 60731455/60731303 |                                          |                                                                                              |                                         |                       |                                 | <b>-</b>     | Time: Start _                          | 10/14/<br>13:00 | /24            |
|------------------------------|-------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------|--------------|----------------------------------------|-----------------|----------------|
| Site Location<br>Weather Con |                               |                                          | de Generat<br>(~10 mph)                                                                      | ırıy Statio                             | n<br>Collector(s)     | O. Helinski                     | _            | Finish                                 | <u>15:00</u>    |                |
| _                            |                               |                                          | 1 /                                                                                          |                                         |                       |                                 |              |                                        |                 |                |
| WATER LEV                    |                               | A: (mea                                  |                                                                                              | -                                       | •                     | DVC                             | Well         |                                        | Piezomete       |                |
| a. Total Well                | Length                        | •                                        | 30.85                                                                                        | c. Ca                                   | sing Material         | <u>PVC</u>                      | e. Lengt     | h of Water Colւ                        | ımn <u></u>     | · (a-b)        |
| b. Water Tab                 | ole Depth                     |                                          | 11.78                                                                                        | d. Ca                                   | sing Diameter         | <u>2"</u>                       | f. Calcula   | ated Well Volur                        | me (see bad     | ck) <u></u>    |
| WELL PURG                    |                               |                                          | d <u>low flov</u>                                                                            | v (100-50                               | 0 ml/min) blade       | der pump                        |              |                                        |                 |                |
|                              |                               |                                          | Equipment                                                                                    |                                         |                       | Model ProSeries 2100Q Turbidime |              | Serial Number<br>041769<br>16030C04822 |                 |                |
|                              |                               |                                          | Ечарион                                                                                      | Calibrati                               |                       | don't dana di Be                |              |                                        |                 |                |
| Time                         | Volui<br>Remove               |                                          | T° (C)                                                                                       | рН                                      | Spec. Cond<br>(µs/cm) | ORP                             | DO<br>mg/L   | Turbidity<br>(NTU)                     | Color           | DTW<br>(ft)    |
| Stabilization                |                               | ,                                        | +/- 3%                                                                                       | +/- 0.1                                 | (μs/cm)<br>+/- 3%     | +/- 10 MV                       | +/- 10%      |                                        | Coloi           | 0.3 ft         |
| 13:16                        | 0.0                           | )                                        | 14.2                                                                                         | 7.53                                    | 2845                  | -91.0                           | 0.67         | 27.1                                   | clear           | 12.38          |
| 13:21                        | 1.9                           |                                          | 13.8                                                                                         | 7.64                                    | 2828                  | -115.9                          | 0.29         | 25.0                                   | clear           | 13.88          |
| 13:24                        | 2.3                           |                                          | 13.8                                                                                         | 7.74                                    | 2821                  | -122.4                          | 0.23         | 19.6                                   | clear           | 14.62          |
| 13:27                        | 3.0                           |                                          | 13.7                                                                                         | 7.72                                    | 2820                  | -127.6                          | 0.19         | 18.3                                   | clear           | 15.31          |
| 13:30<br>13:33               | 3.5<br>4.0                    |                                          | 15.4<br>14.5                                                                                 | 7.68<br>7.54                            | 2739<br>2828          | -130.4<br>-132.4                | 0.15<br>0.18 | 18.2<br>14.5                           | clear<br>clear  | 15.42<br>15.98 |
| 13:38                        | 4.8                           |                                          | 14.8                                                                                         | 7.62                                    | 2799                  | -134.1                          | 0.15         | 15.5                                   | clear           | 16.83          |
| 13:43                        | 5.8                           |                                          | 14.1                                                                                         | 7.60                                    | 2792                  | -134.8                          | 0.11         | 9.70                                   | clear           | 17.76          |
| 13:48                        | 6.8                           | 3                                        | 14.0                                                                                         | 7.55                                    | 2780                  | -134.7                          | 0.11         | 7.62                                   | clear           | 18.88          |
| 13:53                        | 7.8                           |                                          | 13.8                                                                                         | 7.53                                    | 2806                  | -134.7                          | 0.12         | 8.49                                   | clear           | 19.52          |
| 13:59                        | 8.4                           |                                          | 13.9                                                                                         | 7.56                                    | 2750                  | -133.5                          | 0.16         | 11.3                                   | clear           | 20.48          |
| 14:04                        | 9.2                           |                                          | 14.2                                                                                         | 7.54                                    | 2732                  | -132.3                          | 0.13         | 11.5                                   | clear           | 21.36          |
| 14:09                        | 10.                           | 1                                        | 14.0                                                                                         | 7.54                                    | 2729                  | -129.9                          | 0.15         | 11.7                                   | clear           | 21.53          |
|                              |                               |                                          |                                                                                              |                                         |                       |                                 |              |                                        |                 |                |
|                              |                               |                                          |                                                                                              |                                         |                       |                                 |              |                                        |                 |                |
|                              |                               |                                          |                                                                                              |                                         |                       |                                 |              |                                        |                 |                |
|                              |                               |                                          |                                                                                              |                                         |                       |                                 |              |                                        |                 |                |
|                              | Has requ<br>Has re<br>Have    | iired vo<br>equired<br>parame<br>no or N | criteria pass<br>lume been<br>turbidity be<br>eters stabili:<br>/A - Explair<br>lid not stab | removed<br>een reach<br>zed<br>n below. |                       | amount of time                  | N/A          |                                        |                 |                |
| SAMPLE C                     | OLLECT                        |                                          |                                                                                              | Method:                                 | low flow (100-        | -500 ml/min) blad               | der pump     |                                        |                 |                |
| Sample                       |                               |                                          | ner Type                                                                                     | No. of                                  | Containers            | Preservation                    |              | Analysis                               |                 | Time           |
|                              |                               |                                          | ee CoC                                                                                       |                                         | 9                     | see CoC                         | 1            | see CoC                                |                 | 14:15          |
| DA1-U1-                      | CUK                           | 56                                       | ee CoC                                                                                       |                                         | 5                     | see CoC                         |              | see CoC                                |                 | 14:15          |
|                              |                               |                                          |                                                                                              |                                         |                       |                                 |              |                                        |                 |                |
| Comments:                    |                               | l                                        |                                                                                              |                                         |                       |                                 |              |                                        |                 |                |
| Signature                    |                               | _Olivia                                  | Helinski_                                                                                    |                                         |                       |                                 | Date         | 10/14/2                                | 24              |                |



| Well/Piezo ID: | BAT-02 |
|----------------|--------|
|----------------|--------|

| Client:<br>Project No:<br>Site Location<br>Weather Con |                            | 607314<br>Rawhie              | River Powe<br>455/607313<br>de Generat<br>y (~10mph)                        | 303<br>ing Statio           | •                | O. Helinski                           | <del>-</del><br>-<br>- | Date:<br>Time: Start<br>Finish                            |                   | 24<br><br>     |
|--------------------------------------------------------|----------------------------|-------------------------------|-----------------------------------------------------------------------------|-----------------------------|------------------|---------------------------------------|------------------------|-----------------------------------------------------------|-------------------|----------------|
| <b>WATER LEV</b><br>a. Total Well                      |                            | A: (mea                       | sured from<br>33.40                                                         | <u>PVC</u>                  | Well<br>e. Lengt | h of Water Colu                       | Piezometei             |                                                           |                   |                |
| b. Water Tal                                           | ole Depth                  |                               | 19.44                                                                       | d. Ca                       | sing Diameter    | <u>2"</u>                             | f. Calcul              | ated Well Volur                                           | ne (see bad       | ck) <u></u>    |
| WELL PURG                                              |                            |                               | d <u>low flov</u>                                                           | v (100-50                   | 0 ml/min) blade  | der pump                              |                        |                                                           |                   |                |
|                                                        |                            |                               | Equipment<br>Equipment                                                      |                             |                  | Model<br>ProSeries<br>2100Q Turbidime |                        | Serial Number<br>212547<br>16030C04822<br>Calibration Log |                   |                |
|                                                        | Volui                      | ne                            |                                                                             |                             | Spec. Cond       |                                       | DO                     | Turbidity                                                 |                   | DTW            |
| Time                                                   | Remove                     | d (gal)                       | T° (C)                                                                      | рН                          | ·(µs/cm)         | ORP                                   | mg/L                   | (NTU)                                                     | Color             | (ft)           |
| Stabilization                                          |                            |                               | +/- 3%                                                                      | +/- 0.1                     | +/- 3%           | +/- 10 MV                             | +/- 10%                |                                                           |                   | 0.3 ft         |
| 10:25                                                  | 0.0                        |                               | 14.4                                                                        | 7.56                        | 3644             | -106.2                                | 2.45                   | 60.9                                                      | clearish          | 20.46          |
| 10:30<br>10:35                                         | 1.0<br>2.0                 |                               | 12.7<br>12.7                                                                | 7.19<br>7.08                | 3937<br>3821     | -130.5<br>-114.4                      | 1.72<br>1.96           | 30.2<br>20.1                                              | clearish<br>clear | 21.38<br>22.46 |
| 10:38                                                  | 3.0                        |                               | 12.7                                                                        | 7.00                        | 3693             | -95.9                                 | 1.69                   | 16.3                                                      | clear             | 22.77          |
| 10:41                                                  | 3.3                        |                               | 12.9                                                                        | 6.99                        | 3658             | -88.2                                 | 1.54                   | 11.7                                                      | clear             | 23.00          |
| 10:44                                                  | 4.0                        |                               | 12.9                                                                        | 6.96                        | 3621             | -81.3                                 | 1.20                   | 9.64                                                      | clear             | 23.25          |
| 10:47                                                  | 4.4                        | ļ                             | 13.0                                                                        | 6.96                        | 3580             | -76.6                                 | 0.91                   | 9.63                                                      | clear             | 23.44          |
| 10:50                                                  | 5.0                        | )                             | 13.0                                                                        | 6.97                        | 3538             | -72.7                                 | 0.78                   | 9.79                                                      | clear             | 23.53          |
|                                                        |                            |                               |                                                                             |                             |                  |                                       |                        |                                                           |                   |                |
|                                                        | Has requ<br>Has re<br>Have | iired vo<br>equired<br>parame | criteria pass<br>lume been<br>turbidity be<br>eters stabili<br>/A - Explair | removed<br>een reach<br>zed | Yes              | No                                    | N/A                    |                                                           |                   |                |
| SAMPLE C                                               | OLLECT                     | ION:                          |                                                                             | Method:                     | low flow (100-   | -500 ml/min) blad                     | der pump               |                                                           |                   |                |
|                                                        |                            | ner Type                      | No. of                                                                      | Containers                  | Preservation     |                                       | Analysis               |                                                           | Time              |                |
|                                                        | BAT-02-CDPHE See           |                               | e CoC                                                                       |                             | 9                | see CoC                               | 1                      | see CoC                                                   |                   | 10:55          |
| DA1-U2-                                                | CUR                        | 36                            | e CoC                                                                       |                             | 5                | see CoC                               |                        | see CoC                                                   |                   | 10:55          |
| Comments:                                              |                            |                               |                                                                             |                             |                  |                                       |                        |                                                           |                   |                |
| Signature                                              |                            | _Olivia                       | Helinski                                                                    |                             |                  |                                       | Date                   | 10/15/24                                                  |                   | _              |



| Well/Piezo ID: | BAT-03 |
|----------------|--------|
|----------------|--------|

| Client:<br>Project No:       |                        | 60731                          | River Powe<br>455/607313                                                                | 303                         | •                   | ,<br>,                                          | Time: Start _   |                                        | 24             |                |
|------------------------------|------------------------|--------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|---------------------|-------------------------------------------------|-----------------|----------------------------------------|----------------|----------------|
| Site Location<br>Weather Con |                        |                                | de Generat<br>cast; slight                                                              |                             | Collector(s)        | D Rubl                                          | _               | Finish _                               | 13:40          | _              |
| vveauler Con                 | ius.                   | over                           | casi, siignt                                                                            | bi eeze                     | _Collector(s)       | D. DUIII                                        |                 |                                        |                |                |
| WATER LEV                    | EL DAT                 | A: (mea                        | sured fron                                                                              | •                           | •                   |                                                 | Well            |                                        | Piezomete      |                |
| a. Total Well                | Length                 |                                | 35.23                                                                                   | c. Ca                       | sing Material       | PVC                                             | e. Lengtl       | n of Water Colu                        | ımn <u></u>    | (a-b)          |
| b. Water Tal                 | ole Depth              | ו                              | 13.54                                                                                   | d. Ca                       | asing Diameter      | 2"                                              | f. Calcula      | ated Well Volu                         | me (see bad    | ck) <u></u> _  |
| WELL PURG                    |                        |                                | d <u>low flov</u>                                                                       | v (100-50                   | 0 ml/min) blad      | der pump_                                       |                 |                                        |                |                |
|                              |                        | Ū                              | Equipment                                                                               |                             | Make<br>YSI<br>HACH | Model ProSeries 2100Q Turbidimenton Found on De |                 | Serial Number<br>212547<br>16030C04822 |                |                |
|                              | c. riciu               | resuring                       | Ечирпсп                                                                                 | Calibrati                   |                     | tion i ound on De                               |                 | Jaiibration Log                        |                |                |
| Time                         | Volu<br>Remov          |                                | T° (C)                                                                                  | ъЦ                          | Spec. Cond          | ORP                                             | DO<br>mg/l      | Turbidity                              | Color          | DTW<br>(ft)    |
| Stabilization                | Remov                  | . ,                            | +/- 3%                                                                                  | pH<br>+/- 0.1               | (µs/cm)<br>+/- 3%   | +/- 10 MV                                       | mg/L<br>+/- 10% | (NTU)<br>5 NTU, 10%                    | Color          | (ft)<br>0.3 ft |
| 12:10                        | 0.                     | 5                              | 15.9                                                                                    | 6.83                        | 4848                | -73.3                                           | 1.86            | 200.0                                  | tan tint       | 14.86          |
| 12:15                        | 1.                     |                                | 15.9                                                                                    | 6.81                        | 4793                | -45.9                                           | 1.24            | 96.3                                   | clear          | 15.32          |
| 12:20                        | 2.                     |                                | 15.7                                                                                    | 6.81                        | 4761                | -34.7                                           | 0.70            | 119.0                                  | tan tint       | 15.95          |
| 12:25<br>12:30               | 3.<br>4.               |                                | 15.7<br>15.5                                                                            | 6.81<br>6.96                | 4755<br>4700        | -27.4<br>-4.1                                   | 0.51            | 81.0<br>88.6                           | clear<br>clear | 16.43<br>17.08 |
| 12:35                        | 4.                     |                                | 15.7                                                                                    | 6.81                        | 4676                | 5.6                                             | 0.40            | 74.4                                   | clear          | 17.50          |
| 12:40                        | 5.                     |                                | 15.6                                                                                    | 6.82                        | 4645                | 16.8                                            | 0.36            | 45.6                                   | clear          | 17.90          |
| 12:45                        | 6.                     | 5                              | 15.5                                                                                    | 6.82                        | 4632                | 17.3                                            | 0.35            | 46.5                                   | clear          | 18.30          |
| 12:50                        | 7.                     |                                | 15.6                                                                                    | 6.82                        | 4629                | 19.0                                            | 0.33            | 38.7                                   | clear          | 18.70          |
| 12:55                        | 8.                     |                                | 15.6                                                                                    | 6.81                        | 4637                | 12.9                                            | 0.31            | 37.4                                   | clear          | 19.10          |
| 13:00<br>13:05               | 9.<br>9.               |                                | 15.7<br>15.5                                                                            | 6.81<br>6.81                | 4642<br>4654        | -7.5<br>1.7                                     | 0.30            | 30.5<br>28.7                           | clear<br>clear | 19.50<br>19.81 |
| 13:10                        | 10                     |                                | 15.5                                                                                    | 6.82                        | 4658                | -20.3                                           | 0.29            | 27.9                                   | clear          | 20.21          |
|                              |                        |                                |                                                                                         |                             |                     |                                                 |                 | -                                      |                |                |
|                              |                        |                                |                                                                                         |                             |                     |                                                 |                 |                                        |                |                |
|                              |                        |                                |                                                                                         |                             |                     |                                                 |                 |                                        |                |                |
|                              |                        |                                |                                                                                         |                             |                     |                                                 |                 |                                        |                |                |
|                              | Has req<br>Has<br>Have | uired vo<br>required<br>parame | criteria pass<br>lume been<br>I turbidity be<br>eters stabili<br>I/A - Explair<br>Irift | removed<br>een reach<br>zed | Yes<br>ned          | No                                              | N/A             |                                        |                |                |
| SAMPLE C                     | OLLEC1                 | TION:                          |                                                                                         | Method:                     | low flow (100-      | -500 ml/min) blad                               | lder pump       |                                        |                |                |
| Sample                       |                        |                                | ner Type                                                                                | No. of                      | Containers          | Preservation                                    |                 | Analysis                               |                | Time           |
| BAT-03-C                     |                        |                                | e CoC                                                                                   |                             | 9                   | see CoC                                         |                 | see CoC                                |                | 13:15          |
| BAT-03-                      | CCR                    | Se                             | ee CoC                                                                                  |                             | 5                   | see CoC                                         |                 | see CoC                                |                | 13:15          |
|                              |                        |                                |                                                                                         |                             |                     |                                                 |                 |                                        |                |                |
| Comments:                    |                        |                                |                                                                                         |                             |                     |                                                 |                 |                                        |                |                |
| Signature                    |                        | David                          | d Buhl                                                                                  |                             |                     |                                                 | Date            | 10/15/24                               | ļ              | -              |



| Well/Piezo ID: | BAT-04R |
|----------------|---------|

| Client:<br>Project No:         |                                       | 60731                         | River Powe<br>455/607313                                        | 303                         | •              | _<br>_             | Time: Start     |                         | /24            |                 |
|--------------------------------|---------------------------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------|----------------|--------------------|-----------------|-------------------------|----------------|-----------------|
| Site Location                  |                                       |                               | de Generat                                                      |                             |                |                    | _               | Finish _                | 10:15          |                 |
| Weather Con                    | ıds:                                  | sun                           | ny, cool (in                                                    | shade)                      | Collector(s)   | O. Helinski        |                 |                         |                |                 |
| WATER LEV                      | EL DAT                                | A: (mea                       | asured fron                                                     | n Top of                    | Casing)        |                    | Well            |                         | Piezomete      | r 🔲             |
| a. Total Well                  | Length                                | -                             | 36.00                                                           | c. Ca                       | sing Material  | PVC                | e. Lengt        | h of Water Colu         | ımn <u></u>    | (a-b)           |
| b. Water Tab                   | ole Depth                             | 1                             | 16.42                                                           | d. Ca                       | ısing Diameter | <u>2"</u>          | f. Calcula      | ated Well Volur         | me (see ba     | ck) <u></u> _   |
| WELL PURG                      |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                | a. Purge                              | Metho                         | d <u>low flov</u>                                               | v (100-50                   | 0 ml/min) blad | der pump           |                 |                         |                |                 |
| b. Field Testing Equipment Use |                                       |                               |                                                                 |                             | Make<br>YSI    | Model<br>ProSeries |                 | Serial Number<br>212547 | -              |                 |
|                                |                                       |                               |                                                                 |                             |                | 2100Q Turbidim     | eter            | 16030C04822             | 8              | -<br>-          |
|                                | c. Field                              | Testing                       | Equipment                                                       | Calibrati                   | on Documenta   | tion Found on De   | esignated (     | Calibration Log         |                |                 |
|                                | Volu                                  |                               |                                                                 |                             | Spec. Cond     |                    | DO              | Turbidity               |                | DTW             |
| Time<br>Stabilization          | Remov                                 | ed (L)                        | T° (C)                                                          | pH                          | (µs/cm)        | ORP                | mg/L            | (NTU)                   | Color          | (ft)            |
| 8:40                           | 0.0                                   | ∩                             | +/- 3%<br>13.0                                                  | +/- 0.1<br>7.00             | +/- 3%<br>2872 | +/- 10 MV<br>17.1  | +/- 10%<br>1.88 | 5 NTU, 10%<br>17.6      | clear          | 0.3 ft<br>16.65 |
| 8:40<br>8:45                   | 1.0                                   |                               | 12.5                                                            | 6.98                        | 3519           | 40.4               | 1.88            | 27.0                    | clear<br>clear | 17.00           |
| 8:50                           | 3.0                                   |                               | 12.3                                                            | 6.88                        | 3520           | 62.5               | 3.21            | 26.7                    | clear          | 17.53           |
| 8:53                           | 4.0                                   | _                             | 12.4                                                            | 6.90                        | 3524           | 70.8               | 3.03            | 23.7                    | clear          | 17.60           |
| 8:56                           | 5.9                                   |                               | 12.4                                                            | 6.90                        | 3530           | 78.5               | 2.90            | 17.8                    | clear          | 17.80           |
| 8:59                           | 6.9                                   |                               | 12.4                                                            | 6.99                        | 3538           | 79.3               | 2.79            | 15.6                    | clear          | 17.92           |
| 9:02                           | 7.9                                   |                               | 12.4                                                            | 6.98                        | 3541           | 83.3               | 2.73            | 13.1                    | clear          | 17.98           |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       | -                             |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       | ·—                            |                                                                 |                             | $\perp$        |                    | 1               |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    | 1               |                         |                | <u> </u>        |
|                                |                                       |                               |                                                                 |                             | 1              |                    |                 |                         |                |                 |
|                                | e. Acce                               | ptance :                      | criteria pass                                                   | s/fail                      | Yes            | No                 | N/A             | I                       |                | <u>I</u>        |
|                                | Has requ<br>Has r<br>Have             | uired vo<br>equired<br>parame | ollume been<br>I turbidity be<br>eters stabili<br>I/A - Explair | removed<br>een reach<br>zed |                |                    |                 |                         |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 | <del></del>             |                |                 |
| SAMPLE C                       | OLLECT                                | ION:                          |                                                                 | Method:                     | low flow (100- | -500 ml/min) blad  | lder pump       |                         |                |                 |
| Sample                         |                                       | Contai                        | iner Type                                                       | No. of                      | Containers     | Preservation       |                 | Analysis                |                | Time            |
| BAT-04R                        |                                       |                               | ee CoC                                                          |                             | 5              | see CoC            |                 | see CoC                 |                | 9:05            |
| BAT-04R-0                      |                                       |                               | ee CoC                                                          |                             | 9              | see CoC            |                 | see CoC                 |                | 9:05            |
| DUP-02-                        |                                       |                               | ee CoC                                                          |                             | 5              | see CoC            |                 | see CoC                 |                |                 |
| DUP-02-C                       | DPHE                                  | Se                            | ee CoC                                                          |                             | 9              | see CoC            |                 | see CoC                 |                |                 |
|                                |                                       |                               |                                                                 |                             |                |                    |                 |                         |                |                 |
| 0                              |                                       |                               |                                                                 |                             |                |                    |                 |                         |                | <u> </u>        |
| Comments:                      |                                       |                               |                                                                 |                             |                |                    |                 |                         | _              | _               |
| Signature                      | · · · · · · · · · · · · · · · · · · · | Olivia                        | a Helinski                                                      |                             |                |                    | Date            | 10/16/24                |                | _               |



| Well/Piezo ID:  |        |
|-----------------|--------|
| Well/I lezo ib. |        |
|                 | BAT-05 |
| I               |        |

| Client:<br>Project No: |                       |                              | River Powe<br>455/607313                                                     |                              | ty              | <b>-</b>           | Date:<br>Time: Start _ | 10/14/2<br>8:25   | 24             |                 |
|------------------------|-----------------------|------------------------------|------------------------------------------------------------------------------|------------------------------|-----------------|--------------------|------------------------|-------------------|----------------|-----------------|
| Site Location          |                       |                              | de Generat                                                                   |                              |                 | 0.11.11.11         | _                      | Finish _          | 10:20          |                 |
| Weather Con            | ids:                  | su                           | nny, light bi                                                                | reeze                        | _Collector(s)   | U. Helinski        |                        |                   |                |                 |
| WATER LEV              | EL DAT                | A: (mea                      | sured fron                                                                   | n Top of                     | Casing)         |                    | Well                   |                   | Piezometer     | · []            |
| a. Total Well          | Length                |                              | 36.94                                                                        | c. Ca                        | sing Material   | PVC                | e. Lengtl              | h of Water Colւ   | . <u></u> nmu  | (a-b)           |
| b. Water Tab           | ole Depth             | l .                          | 20.48                                                                        | d. Ca                        | ısing Diameter  | 2"                 | f. Calcula             | ated Well Volu    | me (see bac    | ;k) <u></u>     |
| WELL PURG              |                       |                              | d low flow                                                                   | v (100-50                    | 0 ml/min) blado | der numn           |                        |                   |                |                 |
|                        | a. i uige             | . 1416(110(                  | <u>IOW IIOV</u>                                                              | <u>, (100-00</u>             | o minimi) biad( | aor pullip         |                        |                   |                |                 |
|                        | b. Field <sup>-</sup> | Testing                      | Equipment                                                                    | Used:                        | Make<br>YSI     | Model<br>ProSeries | ate:                   | Serial Number     |                |                 |
|                        |                       |                              |                                                                              |                              | •               | 2100Q Turbidime    |                        | 16030C04822       |                |                 |
|                        | c. Field              | Testing                      | Equipment                                                                    | t Calibrati                  | on Documenta    | tion Found on De   | esignated (            | Calibration Log   |                |                 |
|                        | Volu                  |                              |                                                                              |                              | Spec. Cond      |                    | DO                     | Turbidity         |                | DTW             |
| Time<br>Stabilization  | Remov                 | ed (L)                       | T° (C)                                                                       | pH<br>+/- 0.1                | (µs/cm)         | ORP<br>+/- 10 MV   | mg/L                   | (NTU)             | Color          | (ft)            |
| Stabilization<br>8:34  | 0.0                   | ·                            | +/- 3%<br>12.7                                                               | +/- 0.1<br>7.17              | +/- 3%<br>4073  | +/- 10 MV<br>9.0   | +/- 10%                | 5 NTU, 10%<br>157 | cloudy         | 0.3 ft<br>20.91 |
| 8:34                   | 0.0                   |                              | 12.7                                                                         | 7.17                         | 4073            | -51.0              | 0.02                   | 77.5              | sl. cloudy     | 20.91           |
| 8:44                   | 1.8                   |                              | 12.6                                                                         | 7.09                         | 4108            | -47.6              | 0.02                   | 45.1              | sl. cloudy     | 21.90           |
| 8:49                   | 2.3                   |                              | 13.1                                                                         | 7.07                         | 4083            | -44.4              | 0.01                   | 34.1              | sl. cloudy     | 22.14           |
| 8:54                   | 2.9                   | _                            | 12.7                                                                         | 7.07                         | 4095            | -42.4              | 0.02                   | 45.7              | sl. cloudy     | 22.59           |
| 8:59                   | 4.0                   |                              | 12.5                                                                         | 7.07                         | 4090            | -37.6              | 0.01                   | 19.7              | clear          | 22.80           |
| 9:04                   | 4.8                   |                              | 12.6                                                                         | 7.06                         | 4079            | -33.6              | 0.02                   | 20.4              | clear          | 23.01           |
| 9:07<br>9:10           | 5.4<br>6.0            |                              | 12.6<br>12.6                                                                 | 7.06<br>7.05                 | 4067<br>4056    | -31.1<br>-28.0     | 0.01                   | 23.1<br>26.1      | clear<br>clear | 23.16<br>23.40  |
| 9:10<br>9:13           | 6.4                   |                              | 12.6<br>12.8                                                                 | 7.05                         | 4056            | -28.0<br>-22.1     | 0.01                   | 26.1              | clear          | 23.40           |
| 9:16                   | 6.7                   |                              | 12.9                                                                         | 7.16                         | 4015            | -13.5              | 0.01                   | 20.3              | clear          | 23.83           |
| 9:21                   | 7.4                   |                              | 13.0                                                                         | 7.10                         | 4010            | -0.2               | 0.01                   | 21.7              | clear          | 23.22           |
| 9:26                   | 8.                    |                              | 13.2                                                                         | 7.04                         | 4015            | -6.0               | 0.01                   | 24.9              | clear          | 24.52           |
| 9:31                   | 8.8                   | 8                            | 13.2                                                                         | 7.04                         | 4020            | 10.4               | 0.01                   | 21.2              | clear          | 24.85           |
|                        |                       |                              |                                                                              |                              |                 |                    |                        |                   |                |                 |
|                        |                       |                              |                                                                              |                              |                 |                    | +                      |                   |                |                 |
|                        |                       |                              |                                                                              |                              |                 |                    | <u></u>                |                   |                |                 |
|                        |                       |                              | criteria pass                                                                |                              | Yes             | No                 | N/A                    |                   |                |                 |
|                        | Has r<br>Have         | equired<br>parame<br>no or N | olume been<br>I turbidity be<br>eters stabili<br>I/A - Explair<br>adings may | een reach<br>zed<br>n below. | ned             | d DTW did not sta  | abilize with           | in reasonable a   | amount of ti   | me              |
|                        |                       |                              |                                                                              |                              |                 |                    |                        |                   |                |                 |
| SAMPLE C               | OLLECT                | ION:                         |                                                                              | Method:                      | low flow (100-  | -500 ml/min) blad  | der pump               |                   |                |                 |
| Sample                 |                       |                              | iner Type                                                                    | No. of                       | Containers      | Preservation       |                        | Analysis          |                | Time            |
| BAT-05-CI              |                       |                              | ee CoC                                                                       |                              | 9               | see CoC            |                        | see Coc           |                | 9:35            |
| BAT-05-0               | CCR                   | Se                           | ee CoC                                                                       | _                            | 5               | see CoC            | + -                    | see Coc           |                | 9:35            |
|                        |                       |                              |                                                                              |                              |                 |                    |                        |                   |                |                 |
|                        |                       | <u> </u>                     |                                                                              |                              |                 |                    | <del></del>            |                   |                |                 |
| Comments:              |                       |                              |                                                                              |                              |                 |                    |                        |                   |                |                 |
| -                      |                       |                              |                                                                              |                              |                 |                    |                        |                   |                |                 |
| Signature              |                       | Olivia                       | a Helinski                                                                   |                              |                 |                    | Date                   | 10/14/24          | l              | -               |



| Well/Piezo ID: | BAT-06 |
|----------------|--------|
|----------------|--------|

| Client:<br>Project No:<br>Site Location |                            | 60731                        | River Powe<br>455/607313<br>de Generat                       | 303                         |                       | -<br>-                                | Time: Start                            | 10/14/<br>10:55<br>12:40               |                |                 |
|-----------------------------------------|----------------------------|------------------------------|--------------------------------------------------------------|-----------------------------|-----------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------|-----------------|
| Weather Con                             |                            |                              |                                                              |                             |                       | O. Helinski and D                     | D. Buhl                                | FIIIISII                               | 12.40          |                 |
| WATER LEY                               | /FI BAT:                   |                              |                                                              |                             | 0!                    |                                       | \A/-U                                  |                                        | D: '           |                 |
| WATER LEV<br>a. Total Well              |                            | \: (mea                      | sured fron<br>37.58                                          | •                           | •                     | PVC                                   | Well<br>e Length                       | n of Water Colu                        | Piezomete      |                 |
|                                         | Ü                          | •                            |                                                              |                             |                       |                                       | _                                      |                                        |                |                 |
| b. Water Tal                            | •                          | •                            | 16.93                                                        | u. Ca                       | sing Diameter         | <u>2"</u>                             | i. Calcula                             | ated Well Volur                        | ne (see bac    | JK) <del></del> |
| WELL PURG                               |                            |                              | d <u>low flov</u>                                            | v (100-50                   | 0 ml/min) blade       | der pump_                             | ······································ |                                        |                |                 |
|                                         | b. Field T                 | esting                       | Equipment                                                    | Used:                       | Make<br>YSI<br>HACH   | Model<br>ProSeries<br>2100Q Turbidime | eter                                   | Serial Number<br>041769<br>16030C04822 |                |                 |
|                                         | c. Field                   | Гesting                      | Equipment                                                    | Calibration                 | on Documenta          | tion Found on De                      | signated C                             | Calibration Log                        |                |                 |
| Time                                    | Volur<br>Remove            |                              | T° (C)                                                       | pH                          | Spec. Cond<br>(µs/cm) | ORP                                   | DO<br>mg/L<br>+/- 10%                  | Turbidity<br>(NTU)<br>5 NTU, 10%       | Color          | DTW<br>(ft)     |
| Stabilization<br>10:55                  | 0.0                        | )                            | +/- 3%<br>14.8                                               | +/- 0.1<br>7.54             | +/- 3%<br>3134        | +/- 10 MV<br>-102.8                   | 2.60                                   | 41.7                                   | clear          | 0.3 ft<br>16.33 |
| 11:00                                   | 1.5                        |                              | 13.1                                                         | 7.73                        | 3037                  | -136.6                                | 0.36                                   | 13.4                                   | clear          | 18.54           |
| 11:05                                   | 2.2                        |                              | 13.3                                                         | 7.72                        | 2985                  | -148.2                                | 0.20                                   | 5.61                                   | clear          | 18.83           |
| 11:10                                   | 2.9                        |                              | 13.9                                                         | 7.72                        | 3033                  | -152.6                                | 0.21                                   | 4.62                                   | clear          | 19.59           |
| 11:15<br>11:20                          | 3.5<br>4.2                 |                              | 14.1<br>14.0                                                 | 7.71<br>7.71                | 3040<br>3011          | -156.8<br>-161.0                      | 0.17                                   | 3.54<br>7.20                           | clear<br>clear | 20.27<br>21.13  |
| 11:25                                   | 4.9                        |                              | 14.9                                                         | 7.70                        | 2999                  | -166.7                                | 0.13                                   | 8.37                                   | clear          | 21.71           |
| 11:30                                   | 5.5                        |                              | 15.2                                                         | 7.69                        | 3009                  | -171.6                                | 0.11                                   | 3.22                                   | clear          | 22.25           |
| 11:33                                   | 6.0                        |                              | 15.2                                                         | 7.69                        | 3007                  | -173.6                                | 0.10                                   | 3.90                                   | clear          | 22.60           |
| 11:36                                   | 6.2                        |                              | 15.4                                                         | 7.69                        | 3008                  | -175.5                                | 0.09                                   | 3.49                                   | clear          | 22.88           |
| 11:39                                   | 6.5                        |                              | 15.5                                                         | 7.69                        | 3010                  | -177.2                                | 0.09                                   | 3.97                                   | clear          | 23.18           |
| 11:42                                   | 6.8                        | )                            | 15.4                                                         | 7.69                        | 3015                  | -178.4                                | 0.08                                   | 4.45                                   | clear          | 23.48           |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
|                                         | e Accen                    | tance (                      | criteria pass                                                | :/fail                      | Yes                   | No                                    | N/A                                    |                                        |                |                 |
|                                         | Has requ<br>Has re<br>Have | ired vo<br>equired<br>parame | lume been<br>turbidity be<br>eters stabili:<br>I/A - Explair | removed<br>een reach<br>zed |                       |                                       |                                        |                                        |                |                 |
|                                         | •                          |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
| SAMPLE C                                | OLLECTI                    | ON:                          |                                                              | Method:                     | low flow (100-        | 500 ml/min) blade                     | der pump                               |                                        |                |                 |
| Sample                                  | e ID                       | Contai                       | ner Type                                                     | No. of                      | Containers            | Preservation                          |                                        | Analysis                               |                | Time            |
| BAT-06-C                                |                            |                              | e CoC                                                        |                             | 9                     | see CoC                               |                                        | see CoC                                |                | 11:45           |
| BAT-06-                                 | CCR                        | Se                           | e CoC                                                        |                             | 5                     | see CoC                               |                                        | see CoC                                |                | 11:45           |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
|                                         |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
| Comments:                               |                            |                              |                                                              |                             |                       |                                       |                                        |                                        |                |                 |
| Signature                               |                            | David                        | d Buhl                                                       |                             |                       |                                       | Date                                   | 10/14/24_                              |                |                 |



| Well/Piezo ID: | BAT-09 |
|----------------|--------|
|----------------|--------|

| Client:<br>Project No:<br>Site Location | 60731<br>Rawhi             | River Powe<br>455/607313<br>de Generat | 303<br>ing Statio                                             | n                           | Date:10/10/24<br>Time: Start10:30<br>Finish12:50 |                                 |            |                                        |                |                 |
|-----------------------------------------|----------------------------|----------------------------------------|---------------------------------------------------------------|-----------------------------|--------------------------------------------------|---------------------------------|------------|----------------------------------------|----------------|-----------------|
| Weather Con                             | nds:                       | su                                     | nny, light b                                                  | reeze                       | Collector(s)                                     | O. Helinski                     |            |                                        |                |                 |
| WATER LEV                               |                            | A: (mea                                |                                                               | •                           | O,                                               | DVO                             | Well       | <del></del>                            | Piezomete      |                 |
| a. Total Well                           | Length                     |                                        | 34.71                                                         | c. Ca                       | sing Material <sub>.</sub>                       | PVC                             | e. Lengt   | h of Water Colւ                        | ımn <u></u>    | (a-b)           |
| b. Water Tab                            | ole Depth                  |                                        | 19.30                                                         | d. Ca                       | sing Diameter                                    | <u>2"</u>                       | f. Calcul  | ated Well Volur                        | me (see ba     | ck) <del></del> |
| WELL PURG                               |                            |                                        | d <u>low flov</u>                                             | <u>v (100-50</u>            | 0 ml/min) blade                                  | der pump_                       |            |                                        |                |                 |
|                                         |                            |                                        | Equipment                                                     |                             |                                                  | Model ProSeries 2100Q Turbidime |            | Serial Number<br>041769<br>16030C04822 |                |                 |
|                                         |                            |                                        | Equipmon                                                      | Cambran                     |                                                  | aon i cana on Be                | <u> </u>   |                                        |                |                 |
| Time                                    | Volui<br>Remove            |                                        | T° (C)                                                        | pН                          | Spec. Cond<br>(µs/cm)                            | ORP                             | DO<br>mg/L | Turbidity<br>(NTU)                     | Color          | DTW<br>(ft)     |
| Stabilization                           | Remove                     | · /                                    | +/- 3%                                                        | +/- 0.1                     | +/- 3%                                           | +/- 10 MV                       | +/- 10%    |                                        | Coloi          | 0.3 ft          |
| 10:35                                   | 0.0                        |                                        | 14.4                                                          | 7.30                        | 3750                                             | 103.1                           | 2.19       | 10.10                                  | clear          | 19.14           |
| 10:40                                   | 2.0                        | )                                      | 12.8                                                          | 7.27                        | 3681                                             | 32.5                            | 0.95       | 6.86                                   | clear          | 22.22           |
| 10:43                                   | 2.9                        |                                        | 14.1                                                          | 7.31                        | 3631                                             | 22.1                            | 1.27       | 6.57                                   | clear          | 22.76           |
| 10:46                                   | 3.1                        |                                        | 15.9                                                          | 7.29                        | 3620                                             | 17.5                            | 1.38       | 5.87                                   | clear          | 23.10           |
| 10:49                                   | 3.4                        |                                        | 14.9                                                          | 7.27                        | 3681                                             | 15.6                            | 1.41       | 4.81                                   | clear          | 23.41           |
| 10:52<br>10:55                          | 3.9<br>4.2                 |                                        | 14.4<br>15.5                                                  | 7.26<br>7.26                | 3690<br>3635                                     | 15.1<br>15.6                    | 2.53       | 5.30<br>4.43                           | clear          | 23.83<br>24.28  |
| 11:00                                   | 4.2                        |                                        | 15.7                                                          | 7.18                        | 3664                                             | 17.4                            | 2.43       | 5.48                                   | clear<br>clear | 24.20           |
| 11:05                                   | 5.1                        |                                        | 15.8                                                          | 7.16                        | 3666                                             | 18.9                            | 2.27       | 4.07                                   | clear          | 25.10           |
| 11:08                                   | 5.8                        |                                        | 15.8                                                          | 7.24                        | 3679                                             | 19.6                            | 2.26       | 3.46                                   | clear          | 25.22           |
| 11:11                                   | 6.1                        | 1                                      | 15.8                                                          | 7.25                        | 3679                                             | 19.9                            | 2.21       | 3.45                                   | clear          | 25.33           |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
|                                         | e. Accer                   | otance o                               | criteria pass                                                 | s/fail                      | Yes                                              | No                              | N/A        | l .                                    |                |                 |
|                                         | Has requ<br>Has re<br>Have | uired vo<br>equired<br>parame          | lume been<br>I turbidity be<br>eters stabili<br>I/A - Explair | removed<br>een reach<br>zed | ed <b>T</b>                                      |                                 |            |                                        |                |                 |
| SAMPLE C                                | OLLECT                     | ION:                                   |                                                               | Method:                     | low flow (100-                                   | -500 ml/min) blad               | der pump   |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
| Sample                                  |                            |                                        | ner Type                                                      | No. of                      | Containers                                       | Preservation                    |            | Analysis                               |                | Time            |
| BAT-09-C<br>BAT-09-                     |                            |                                        | ee CoC<br>ee CoC                                              |                             | 9<br>5                                           | see CoC<br>see CoC              |            | see CoC<br>see CoC                     |                | 11:20<br>11:20  |
| DV1-09-                                 | JUIN                       | 36                                     | ,. 000                                                        |                             | J                                                | 366 000                         |            | 366 000                                |                | 11.20           |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 | 1          |                                        |                |                 |
|                                         |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
| Comments:                               |                            |                                        |                                                               |                             |                                                  |                                 |            |                                        |                |                 |
| Signature                               |                            | Olivia                                 | a Helinski_                                                   |                             |                                                  |                                 | Date       | 10/10/24                               |                |                 |



| Well/Piezo ID:   |        |
|------------------|--------|
| VVCII/T ICZO ID. | BAT-10 |
|                  | DA1-10 |

| Client:<br>Project No:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | River Powe<br>455/607313                                                        |                             | ty                  | <del>-</del>                          | Date:<br>Time: Start _ | 10/15/<br>14:00                        |                |        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|-----------------------------|---------------------|---------------------------------------|------------------------|----------------------------------------|----------------|--------|
| Site Location              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rawhi                          | de Generat                                                                      | ing Statio                  | <u>n</u>            |                                       | _                      | Finish                                 | 15:40          |        |
| Weather Con                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | rm (~70's);                                                                     |                             |                     | O. Helinski                           |                        |                                        |                | ·<br>  |
| WATER LEV                  | EL DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A: (mea                        | asured fron                                                                     | n Top of                    | Casing)             |                                       | Well                   |                                        | Piezometer     | r      |
| a. Total Well              | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | 31.28                                                                           | c. Ca                       | sing Material       | PVC                                   | e. Lengt               | h of Water Colu                        | umn <u></u>    | (a-b)  |
| b. Water Table Depth 12.90 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | d. Ca                                                                           | sing Diameter               | <u>2"</u>           | f. Calcula                            | ated Well Volui        | me (see bac                            | ck) <u></u> _  |        |
| WELL PURG                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | d low-flo                                                                       | v (100 50                   | 0 ml/min) blad      | der numn                              |                        |                                        |                |        |
|                            | a. ruige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , INICII IO                    | u <u>10W 110V</u>                                                               | <u>v (100-50</u>            | o miimi) biadi      | uci pullip                            |                        |                                        |                |        |
|                            | b. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Testing                        | Equipment                                                                       | Used:                       | Make<br>YSI<br>HACH | Model<br>ProSeries<br>2100Q Turbidime | eter                   | Serial Number<br>212547<br>16030C04822 |                |        |
|                            | c. Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Testing                        | Equipmen                                                                        | : Calibrati                 |                     | tion Found on De                      |                        |                                        | . <del>-</del> |        |
|                            | Volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ime                            |                                                                                 |                             | Spec. Cond          |                                       | DO                     | Turbidity                              |                | DTW    |
| Time                       | Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | T° (C)                                                                          | pН                          | ·(µs/cm)            | ORP                                   | mg/L                   | (NTU)                                  | Color          | (ft)   |
| Stabilization              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | +/- 3%                                                                          | +/- 0.1                     | +/- 3%              | +/- 10 MV                             | +/- 10%                | 5 NTU, 10%                             |                | 0.3 ft |
| 14:12                      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                              | 14.3                                                                            | 6.96                        | 4544                | 97.6                                  | 3.46                   | 136                                    | sl. cloudy     | 13.48  |
| 14:17                      | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                              | 13.5                                                                            | 7.33                        | 4507                | 78.6                                  | 2.26                   | 31.7                                   | clear          | 13.62  |
| 14:22                      | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 13.5                                                                            | 7.25                        | 4493                | 70.0                                  | 1.97                   | 14.4                                   | clear          | 15.20  |
| 14:25                      | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 13.7                                                                            | 7.25                        | 4476                | 66.5                                  | 1.92                   | 10.9                                   | clear          | 15.52  |
| 14:28                      | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 14.1                                                                            | 7.21                        | 4474                | 64.7                                  | 1.99                   | 10.2                                   | clear          | 15.64  |
| 14:31                      | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 13.8                                                                            | 7.28                        | 4478                | 66.2                                  | 2.19                   | 8.36                                   | clear          | 15.92  |
| 14:34                      | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 13.9                                                                            | 7.28                        | 4457                | 68.7                                  | 2.49                   | 7.37                                   | clear          | 16.16  |
| 14:37                      | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 14.2                                                                            | 7.34                        | 4405                | 71.7                                  | 2.77                   | 7.46                                   | clear          | 16.43  |
| 14:40                      | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 14.5                                                                            | 7.32                        | 4402                | 74.1                                  | 2.99                   | 7.43                                   | clear          | 16.61  |
| 14:43                      | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                              | 14.5                                                                            | 7.31                        | 4388                | 75.5                                  | 3.15                   | 6.98                                   | clear          | 16.75  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                              |                                                                                 | <i>(c</i>                   |                     | .,                                    |                        |                                        |                |        |
|                            | Has requested Has represented Has represented Has represented Has represented Has requested Has requ | uired vo<br>required<br>parame | criteria pass<br>olume been<br>I turbidity be<br>eters stabili<br>I/A - Explair | removed<br>een reach<br>zed | Yes<br>ed           | No                                    | N/A                    |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
| SAMPLE C                   | OLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION:                           |                                                                                 | Method:                     | low flow (100-      | -500 ml/min) blad                     | lder pump              |                                        |                |        |
| Sample                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | iner Type                                                                       | No. of                      | Containers          | Preservation                          |                        | Analysis                               |                | Time   |
| BAT-10-C                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ee CoC                                                                          |                             | 9                   | see CoC                               |                        | see CoC                                |                | 14:45  |
| BAT-10-                    | CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Se                             | ee CoC                                                                          |                             | 5                   | see CoC                               |                        | see CoC                                |                | 14:45  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
| Comments:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                             |                     |                                       |                        |                                        |                |        |
| Signature                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Olivia                         | a Helinski_                                                                     |                             |                     |                                       | Date                   | 10/15/24                               | l              |        |



| Project No: 6073                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Platte River Power Authority<br>60731455/60731303                                            |                             |                                     |                                 |            | Date:<br>Time: Start _                                    | 10/10/<br>8:25 |                 |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|---------------------------------|------------|-----------------------------------------------------------|----------------|-----------------|
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rawhi                                    | whide Generating Station                                                                     |                             |                                     |                                 | _          | Finish _                                                  | _10:20         |                 |
| Weather Conds: smc                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | smoke, co                                                                                    | ol                          | Collector(s)                        | D. Buhl and O. H                | lelinski   |                                                           |                |                 |
| WATER LEV                                | EL DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A: (mea                                  | asured fron                                                                                  | n Top of                    | Casing)                             |                                 | Well       |                                                           | Piezomete      | r $\square$     |
| a. Total Well                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                        | 38.95                                                                                        | •                           | C,                                  | PVC                             | e. Lengt   | n of Water Colu                                           | ımn <u></u>    | (a-b)           |
| b. Water Tab                             | ole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı                                        | 28.09                                                                                        | d. Ca                       | sing Diameter                       | <u>2"</u>                       | f. Calcula | ated Well Volu                                            | ne (see ba     | ck) <del></del> |
| WELL PURG                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | d <u>low flov</u>                                                                            | v(100-500                   | ) ml/min) blado                     | der pump                        |            | · · · · · · · · · · · · · · · · · · ·                     |                |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                        | Equipment                                                                                    |                             | Make<br>YSI<br>HACH<br>on Documenta | Model ProSeries 2100Q Turbidime |            | Serial Number<br>041769<br>16030C04822<br>Calibration Log |                | -               |
|                                          | Volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | me                                       |                                                                                              |                             | Spec. Cond                          |                                 | DO         | Turbidity                                                 |                | I DTW           |
| Time                                     | Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | T° (C)                                                                                       | pН                          | (µs/cm)                             | ORP                             | mg/L       | (NTU)                                                     | Color          | (ft)            |
| Stabilization                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | +/- 3%                                                                                       | +/- 0.1                     | +/- 3%                              | +/- 10 MV                       | +/- 10%    | 5 NTU, 10%                                                |                | 0.3 ft          |
| 8:25                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                        | 13.7                                                                                         | 7.84                        | 1077                                | 30.1                            | 0.01       | 5.73                                                      | clear          | 27.95           |
| 8:30                                     | 0.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                        | 12.5                                                                                         | 7.50                        | 1049                                | -53.8                           | 0.02       | 5.67                                                      | clear          | 28.30           |
| 8:35                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                        | 12.4                                                                                         | 7.48                        | 1037                                | -74.4                           | 0.02       | 5.15                                                      | clear          | 28.48           |
| 8:40                                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                        | 12.3                                                                                         | 7.46                        | 1022                                | -67.0                           | 0.01       | 6.13                                                      | clear          | 28.70           |
| 8:45                                     | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                        | 12.3                                                                                         | 7.46                        | 998                                 | -50.7                           | 0.02       | 7.44                                                      | clear          | 28.91           |
| 8:50                                     | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                        | 12.4                                                                                         | 7.50                        | 968                                 | -32.1                           | 0.02       | 8.89                                                      | clear          | 29.14           |
| 8:55                                     | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                        | 12.4                                                                                         | 7.57                        | 936                                 | -14.1                           | 0.01       | 6.19                                                      | clear          | 29.36           |
| 9:00                                     | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                        | 12.4                                                                                         | 7.66                        | 903                                 | 5.6                             | 0.02       | 3.74                                                      | clear          | 29.57           |
| 9:05                                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                        | 12.5                                                                                         | 7.65                        | 900                                 | 24.5                            | 0.02       | 3.08                                                      | clear          | 29.79           |
| 9:10                                     | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                        | 12.5                                                                                         | 7.62                        | 906                                 | 35.9                            | 0.01       | 2.75                                                      | clear          | 29.96           |
| 9:15                                     | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                        | 12.5                                                                                         | 7.60                        | 918                                 | 43.0                            | 0.02       | 3.01                                                      | clear          | 30.29           |
| 9:20                                     | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                        | 12.6                                                                                         | 7.58                        | 922                                 | 48.9                            | 0.01       | 2.58                                                      | clear          | 30.42           |
| 9:25                                     | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                        | 12.7                                                                                         | 7.56                        | 931                                 | 53.3                            | 0.01       | 2.56                                                      | clear          | 30.65           |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                             |                                     |                                 |            |                                                           |                |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                             |                                     |                                 |            |                                                           |                |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                             |                                     |                                 |            |                                                           |                |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                             |                                     |                                 |            |                                                           |                |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                             |                                     |                                 |            |                                                           |                |                 |
|                                          | Has requested Has represented Has represented Has represented Has represented Has requested Has requ | uired vo<br>equired<br>parame<br>no or N | criteria pass<br>lume been<br>I turbidity be<br>eters stabili:<br>I/A - Explair<br>ering ORP | removed<br>een reach<br>zed | Yes<br>ed <b>T</b>                  | No                              | N/A        |                                                           |                |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                        |                                                                                              |                             |                                     |                                 |            |                                                           |                |                 |
| SAMPLE C                                 | OLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION:                                     |                                                                                              | Method:                     | low flow(100-                       | 500 ml/min) blado               | der pump   |                                                           |                |                 |
| Sample ID Containe                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iner Type                                | No. of                                                                                       | Containers                  | Preservation                        |                                 | Analysis   |                                                           | Time           |                 |
| BAT-11-CDPHE                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | e CoC                                                                                        |                             | 9                                   | see CoC                         |            | see CoC                                                   |                | 9:30            |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se                                       | ee CoC                                                                                       |                             | 5                                   | see CoC                         |            | see CoC                                                   |                | 9:30            |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ee CoC                                                                                       |                             | 9                                   | see CoC                         | see CoC    |                                                           |                | 9:40            |
| ERB-02-CDPHE See CoC  ERB-02-CCR See CoC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              | 5                           | see CoC                             |                                 | see CoC    |                                                           | 9:40           |                 |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                             |                                     |                                 |            |                                                           |                | 0.10            |
| Comments:                                | DO may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | be artif                                 | ically low du                                                                                | ue to a fai                 | ulty sensor; EF                     | RB                              | 1          |                                                           |                | ı               |
| Signatura                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Devid                                    | d Dubl                                                                                       |                             |                                     |                                 | Data       | 10/10/24                                                  |                |                 |
| Signature                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | David                                    | d Buhl                                                                                       |                             |                                     |                                 | Date       | 10/10/24                                                  | ·              | _               |



| Well/Piezo ID: | BAT-12 |
|----------------|--------|
|----------------|--------|

| Client:<br>Project No:<br>Site Location:<br>Weather Conds: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Platte River Power Authority<br>60731455/60731303 |                                                                                 |                                                  |                       |                                 |            | Time: Start _                          |             |               |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|---------------------------------|------------|----------------------------------------|-------------|---------------|
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rawhide Generating Station                        |                                                                                 |                                                  |                       |                                 | _          |                                        | 15:30       |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI                                                | unny, clear,                                                                    | 74F                                              | Collector(s)          | D. Buhl and O. H                | lelinski   |                                        |             |               |
| WATER LEV                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                 |                                                                                 | •                                                | O,                    |                                 | Well       |                                        | Piezomete   |               |
| a. Total Well                                              | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                 | 45.06                                                                           | c. Ca                                            | sing Material         | PVC                             | e. Lengt   | h of Water Colւ                        | ımn <u></u> | (a-b)         |
| b. Water Tal                                               | ole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١ .                                               | 31.48                                                                           | d. Ca                                            | ısing Diameter        | <u>2"</u>                       | f. Calcula | ated Well Volur                        | ne (see bad | ck) <u></u> _ |
| WELL PURG                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | voll wolt                                                                       | <u>v(100-500</u>                                 | 0 ml/min) bladd       | ler pump_                       |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | Equipment                                                                       |                                                  |                       | Model ProSeries 2100Q Turbidime |            | Serial Number<br>041769<br>16030C04822 |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ⊏quipment                                                                       | ı Calibrati                                      |                       | tion Found on De                |            |                                        |             | F. T          |
| Time                                                       | Volu<br>Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | T° (C)                                                                          | pН                                               | Spec. Cond<br>(µs/cm) | ORP                             | DO<br>mg/L | Turbidity<br>(NTU)                     | Color       | DTW<br>(ft)   |
| Stabilization                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                                               | +/- 3%                                                                          | +/- 0.1                                          | +/- 3%                | +/- 10 MV                       | +/- 10%    |                                        |             | 0.3 ft        |
| 13:15                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                                                 | 17.5                                                                            | 7.85                                             | 1330                  | 42.4                            | 0.01       | 51.3                                   | clear       | 31.40         |
| 13:20                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 15.0                                                                            | 7.80                                             | 1291                  | 39.3                            | 0.01       | 33.7                                   | clear       | 31.86         |
| 13:25                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 14.8                                                                            | 7.72                                             | 1288                  | 47.1                            | 0.01       | 32.7                                   | clear       | 32.04         |
| 13:30                                                      | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 15.8                                                                            | 7.70                                             | 1284                  | 54.9                            | 0.00       | 22.3                                   | clear       | 32.10         |
| 13:35                                                      | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 15.9<br>15.7                                                                    | 7.68                                             | 1283                  | 58.9<br>63.2                    | 0.01       | 24.0                                   | clear       | 32.08         |
| 13:40                                                      | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | υ                                                 | 15.7                                                                            | 7.68                                             | 1278                  | 63.2                            | 0.01       | 23.9                                   | clear       | 32.10         |
|                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | <del>                                     </del>                                | <del> </del>                                     | +                     |                                 |            |                                        |             |               |
|                                                            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | <del>                                     </del>                                | <del>                                     </del> | +                     |                                 |            | <del> </del>                           |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | <del>                                     </del>                                | <del> </del>                                     |                       |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | <del>                                     </del>                                | <del>                                     </del> |                       |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  | 1                     |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             | _ <del></del> |
|                                                            | 0 ^ = :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ators                                             | oritoria :-                                                                     | /foil                                            | Yes                   | NI-                             | NI/A       | <u> </u>                               |             |               |
|                                                            | Has requested Has represented Has represented Has represented Has represented Has requested Has requ | uired vo<br>equired<br>parame                     | criteria pass<br>lume been<br>I turbidity be<br>eters stabiliz<br>I/A - Explair | removed<br>een reach<br>zed                      |                       | No                              | N/A        |                                        |             |               |
| SAMPLE C                                                   | OLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION:                                              |                                                                                 | Method:                                          | low flow(100-         | 500 ml/min) blado               | der pump   |                                        |             |               |
| Sample ID Contain                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iner Type                                         | No. of                                                                          | Containers                                       | Preservation          | L                               | Analysis   |                                        | Time        |               |
| BAT-12-CDPHE                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See CoC                                           |                                                                                 |                                                  | 17                    | see CoC                         |            | see CoC                                |             | 13:45         |
| BAT-12-                                                    | CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Se                                                | ee CoC                                                                          |                                                  | 13                    | see CoC                         |            | see CoC                                |             | 13:45         |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>                                      |                                                                                 | ļ                                                |                       |                                 | -          |                                        |             |               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             |               |
| Comments:                                                  | MS/MSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u><br>)                                     |                                                                                 | <u> </u>                                         |                       |                                 |            |                                        |             |               |
| Je.mnomo.                                                  | O, IVIOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                                                 |                                                  |                       |                                 |            |                                        |             |               |
| Signature                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | David                                             | d Buhl                                                                          |                                                  |                       |                                 | Date       | 10/10/24                               |             | _             |



|--|

| Client: Platte River Power Author Project No: 60731455 /60731303 Site Location: Rawhide Generating Stati |                           |                                          |                                                                                                       |                                         | Time: Start <u>7:50 on 10/14</u> |                    |                                     |                         |             | /14            |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|--------------------|-------------------------------------|-------------------------|-------------|----------------|--|--|
|                                                                                                          |                           |                                          | Rawhide Generating Station Finish 9:00 on 10/16 sunny, no breeze Collector(s) O. Helinski and D. Buhl |                                         |                                  |                    |                                     |                         |             |                |  |  |
| vveatrier Cor                                                                                            | ius.                      | Suriny,                                  | TIO DIEEZE                                                                                            |                                         | Collector(s)                     | O. Heiliski aliu L | J. Dulli                            |                         |             |                |  |  |
| <b>WATER LEV</b><br>a. Total Well                                                                        |                           | A: (mea                                  | sured fron<br>38.53                                                                                   |                                         |                                  | <u>PVC</u>         | Well<br>e. Lengtl                   | n of Water Colu         | Piezometer  |                |  |  |
| b. Water Tal                                                                                             | ble Depth                 |                                          | 36.70                                                                                                 | d. Ca                                   | sing Diameter                    | <u>2"</u>          | f. Calcula                          | ated Well Volur         | me (see bad | ck)            |  |  |
|                                                                                                          |                           |                                          | 000                                                                                                   |                                         | .eg 2                            | <del></del>        | • • • • • • • • • • • • • • • • • • |                         | (000 241    | ,              |  |  |
| WELL PURC                                                                                                |                           |                                          | d <u>bailer</u>                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          | b. Field                  | Testing                                  | Equipment                                                                                             | Used:                                   | Make<br>YSI                      | Model<br>ProSeries | atar.                               | Serial Number<br>041769 |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         | HACH                             | 2100Q Turbidime    | eter                                | 16030C04822             | 8           |                |  |  |
|                                                                                                          | c. Field                  | Testing                                  | Equipment                                                                                             | t Calibrati                             | on Documenta                     | ition Found on De  | esignated (                         | Calibration Log         |             |                |  |  |
|                                                                                                          | Volu                      | me                                       |                                                                                                       |                                         | Spec. Cond                       |                    | DO                                  | Turbidity               |             | DTW            |  |  |
| Time                                                                                                     | Remov                     | , ,                                      | T° (C)                                                                                                | pН                                      | (us/cm)                          | ORP                | mg/L                                | (NTU)                   | Color       | (ft)           |  |  |
| Stabilization                                                                                            |                           |                                          | 10.0                                                                                                  | +/- 0.1                                 | +/- 3%                           | +/- 10 MV          | +/- 10%                             | 5 NTU, 10%              | 4           | 0.3 ft         |  |  |
| 8:05<br>8:20                                                                                             | 0.0<br>2.0                |                                          | 13.0<br>11.9                                                                                          | 7.81<br>7.79                            | 4383<br>4406                     | 186.5<br>195.2     | 2.08<br>0.02                        | 731                     | tan         | 36.52<br>37.90 |  |  |
| 0.20                                                                                                     | 2.0                       | J                                        | 11.9                                                                                                  | 1.19                                    | 4400                             | 195.2              | 0.02                                | TTTT                    | tan         | 37.90          |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          | Has requ<br>Has r<br>Have | uired vo<br>equired<br>parame<br>no or N | criteria pass<br>lume been<br>l turbidity be<br>eters stabili<br>l/A - Explair<br>dry on 10/          | removed<br>een reach<br>zed<br>n below. |                                  | No                 | N/A                                 | d ~1L on 10/16          | i.          |                |  |  |
| SAMPLE C                                                                                                 | OLLECT                    |                                          |                                                                                                       | Method:                                 |                                  |                    |                                     |                         |             |                |  |  |
| Sample                                                                                                   |                           |                                          | ner Type                                                                                              | No. of                                  | Containers                       | Preservation       |                                     | Analysis                |             | Time           |  |  |
| BAT-13-CCR                                                                                               |                           |                                          | es. 250ml                                                                                             |                                         | 1                                |                    |                                     | CI, F, SO4              |             | 10/14 at 8:40  |  |  |
| BAT-13-CCR                                                                                               |                           | 1L                                       | HDPE                                                                                                  |                                         | 1                                | HNO3               |                                     | Total Metals            |             | 10/16 at 9:40  |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           | ļ                                        |                                                                                                       |                                         |                                  |                    | ļ                                   |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
| Comments:                                                                                                |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
|                                                                                                          |                           |                                          |                                                                                                       |                                         |                                  |                    |                                     |                         |             |                |  |  |
| 0: 1                                                                                                     |                           |                                          | 18                                                                                                    |                                         |                                  |                    | Date                                | 40/44 12                | 140104      |                |  |  |
| Signature                                                                                                | 0                         | ии Не                                    | iinski                                                                                                |                                         |                                  |                    | ⊔ate                                | 10/14-10                | וו 16/24    | <del> </del>   |  |  |

AECOM Environment

## Appendix B

Laboratory Analytical and Data Validation Reports

AECOM Environment

# April/May 2024





June 13, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60431303 PRPA CCR

Pace Project No.: 60452426

#### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 08, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Databa m. Wilson

Enclosures

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM







#### **CERTIFICATIONS**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



### **SAMPLE SUMMARY**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

| Lab ID      | Sample ID       | Matrix | Date Collected | Date Received  |
|-------------|-----------------|--------|----------------|----------------|
| 60452426001 | BAT-09-CCR      | Water  | 05/07/24 11:05 | 05/08/24 09:35 |
| 60452426003 | BAT-04R-CCR     | Water  | 05/07/24 12:50 | 05/08/24 09:35 |
| 60452426004 | BAT-04R-CCR MS  | Water  | 05/07/24 12:50 | 05/08/24 09:35 |
| 60452426005 | BAT-04R-CCR MSD | Water  | 05/07/24 12:50 | 05/08/24 09:35 |
| 60452426006 | BAT-06-CCR      | Water  | 05/07/24 15:20 | 05/08/24 09:35 |



### **SAMPLE ANALYTE COUNT**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

| Lab ID      | Sample ID       | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------------|--------------------------|----------|----------------------|------------|
| 60452426001 | BAT-09-CCR      | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |                 | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60452426003 | BAT-04R-CCR     | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |                 | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60452426004 | BAT-04R-CCR MS  | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |                 | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
| 60452426005 | BAT-04R-CCR MSD | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |                 | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
| 60452426006 | BAT-06-CCR      | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |                 | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: 60431303 PRPA CCR

Pace Project No.: 60452426

| Sample: BAT-09-CCR<br>PWS: | <b>Lab ID: 60452</b><br>Site ID: | 2426001 Collected: 05/07/24 11:05<br>Sample Type: | Received: | 05/08/24 09:35 | Matrix: Water |      |
|----------------------------|----------------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                           | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical S                | Services - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                        | 0.000 ± 0.322 (0.669)<br>C:NA T:93%               | pCi/L     | 05/27/24 14:10 | 0 13982-63-3  |      |
|                            | Pace Analytical S                | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                        | 0.274 ± 0.341 (0.719)<br>C:80% T:83%              | pCi/L     | 05/21/24 14:28 | 8 15262-20-1  |      |
|                            | Pace Analytical S                | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium Calculation         | 0.274 ± 0.663 (1.39)                              | pCi/L     | 05/28/24 14:0  | 5 7440-14-4   |      |



Project: 60431303 PRPA CCR

Pace Project No.: 60452426

| Sample: BAT-04R-CCR<br>PWS: | <b>Lab ID: 60452</b> 4<br>Site ID: | 426003 Collected: 05/07/24 12:50 Sample Type: | Received: | 05/08/24 09:35 | Matrix: Water |      |
|-----------------------------|------------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                             | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                             | Pace Analytical S                  | ervices - Greensburg                          |           |                |               |      |
| Radium-226                  | EPA 903.1                          | 0.455 ± 0.457 (0.721)<br>C:NA T:87%           | pCi/L     | 05/27/24 14:10 | 13982-63-3    |      |
|                             | Pace Analytical S                  | ervices - Greensburg                          |           |                |               |      |
| Radium-228                  | EPA 904.0                          | 0.859 ± 0.443 (0.771)<br>C:77% T:81%          | pCi/L     | 05/21/24 14:29 | 9 15262-20-1  |      |
|                             | Pace Analytical S                  | ervices - Greensburg                          |           |                |               |      |
| Total Radium                | Total Radium<br>Calculation        | 1.31 ± 0.900 (1.49)                           | pCi/L     | 05/28/24 14:05 | 5 7440-14-4   |      |



Project: 60431303 PRPA CCR

Pace Project No.: 60452426

Sample: BAT-04R-CCR MS Lab ID: 60452426004 Collected: 05/07/24 12:50 Received: 05/08/24 09:35 Matrix: Water

C:NA T:NA

PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Analyzed Qual Pace Analytical Services - Greensburg EPA 903.1 83.76 %REC ± NA (NA) Radium-226 pCi/L 05/27/24 14:10 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 68.58 %REC ± NA (NA) EPA 904.0 Radium-228 pCi/L 05/21/24 14:30 15262-20-1



Radium-228

### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

Sample: BAT-04R-CCR MSD Lab ID: 60452426005 Collected: 05/07/24 12:50 Received: 05/08/24 09:35 Matrix: Water

PWS: Site ID: Sample Type:

EPA 904.0

Method Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Analyzed Qual Pace Analytical Services - Greensburg EPA 903.1 83.06 %REC 0.84RPD ± NA Radium-226 pCi/L 05/27/24 14:10 13982-63-3 (NA) C:NA T:NA Pace Analytical Services - Greensburg

74.64 %REC 8.46RPD ± NA

pCi/L

05/21/24 14:30 15262-20-1

(NA) C:NA T:NA



Project: 60431303 PRPA CCR

Pace Project No.: 60452426

| Sample: BAT-06-CCR<br>PWS: | <b>Lab ID: 6045242</b> 0<br>Site ID: | 6006 Collected: 05/07/24 15:20 Sample Type: | Received: | 05/08/24 09:35 | Matrix: Water |      |
|----------------------------|--------------------------------------|---------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                               | Act ± Unc (MDC) Carr Trac                   | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Ser                  | vices - Greensburg                          |           |                |               |      |
| Radium-226                 | EPA 903.1                            | 0.738 ± 0.383 (0.133)<br>C:NA T:92%         | pCi/L     | 05/27/24 14:21 | 13982-63-3    |      |
|                            | Pace Analytical Serv                 | vices - Greensburg                          |           |                |               |      |
| Radium-228                 | EPA 904.0                            | 0.358 ± 0.412 (0.866)<br>C:77% T:76%        | pCi/L     | 05/21/24 14:30 | 15262-20-1    |      |
|                            | Pace Analytical Serv                 | vices - Greensburg                          |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation          | 1.10 ± 0.795 (0.999)                        | pCi/L     | 05/28/24 14:05 | 7440-14-4     |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

QC Batch: 667548 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452426001, 60452426003, 60452426004, 60452426005, 60452426006

METHOD BLANK: 3250435 Matrix: Water

Associated Lab Samples: 60452426001, 60452426003, 60452426004, 60452426005, 60452426006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.237 (0.501) C:NA T:94%
 pCi/L
 05/27/24 13:56

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

QC Batch: 667549 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452426001, 60452426003, 60452426004, 60452426005, 60452426006

METHOD BLANK: 3250436 Matrix: Water

Associated Lab Samples: 60452426001, 60452426003, 60452426004, 60452426005, 60452426006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0842 ± 0.330 (0.751) C:75% T:85%
 pCi/L
 05/21/24 14:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 06/13/2024 06:25 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60431303 PRPA CCR

Pace Project No.: 60452426

Date: 06/13/2024 06:25 PM

| Lab ID      | Sample ID       | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------------|--------------------------|----------|-------------------|---------------------|
| 60452426001 | BAT-09-CCR      | EPA 903.1                | 667548   |                   |                     |
| 60452426003 | BAT-04R-CCR     | EPA 903.1                | 667548   |                   |                     |
| 60452426004 | BAT-04R-CCR MS  | EPA 903.1                | 667548   |                   |                     |
| 60452426005 | BAT-04R-CCR MSD | EPA 903.1                | 667548   |                   |                     |
| 60452426006 | BAT-06-CCR      | EPA 903.1                | 667548   |                   |                     |
| 60452426001 | BAT-09-CCR      | EPA 904.0                | 667549   |                   |                     |
| 60452426003 | BAT-04R-CCR     | EPA 904.0                | 667549   |                   |                     |
| 60452426004 | BAT-04R-CCR MS  | EPA 904.0                | 667549   |                   |                     |
| 60452426005 | BAT-04R-CCR MSD | EPA 904.0                | 667549   |                   |                     |
| 60452426006 | BAT-06-CCR      | EPA 904.0                | 667549   |                   |                     |
| 60452426001 | BAT-09-CCR      | Total Radium Calculation | 671703   |                   |                     |
| 60452426003 | BAT-04R-CCR     | Total Radium Calculation | 671703   |                   |                     |
| 60452426006 | BAT-06-CCR      | Total Radium Calculation | 671703   |                   |                     |

Face Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

COOLEY If hold RA IPA

Pace Project No./ Lab I.D. (N/A) DRINKING WATER OTHER SAMPLE CONDITIONS Cooler (Y/N) o Custody Sealed Ice (Y/N) Received on GROUND WATER Page: Residual Chlorine (Y/N) O" ni qmeT REGULATORY AGENCY 00 RCRA 935 TIME Requested Analysis Filtered (Y/N) STATE: Site Location NPDES DATE 18/18 UST ACCEPTED BY / AFFILIATION マス ス Total Radium 822-muibes 322-muibes ↑Analysis Test N/A PRINT Name OF SAMPLER: MOLL FINS R ( IMIT Same as Section A Other Accounts Payable Methanol Heather Wilson Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Company Name: AECOM Reference:
Pace Project Heather Wi Manager:
Pace Profile #: 11033, 3 HOBN SIGNATURE OF SAMPLER: MONORAL 42700 HCI Invoice Information: HNO3 9 <sup>5</sup>OS<sup>2</sup>H Section C TIME Unpreserved Pace Quote Attention: Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION DATE TIME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION 250 60709371 PRPA CCR TIME 500 COMPOSITE Purchase Order No.: NEED PO # 5/6/24 G 510/24 MOUKENIIP DATE Report To: Vasanta Kalluri Copy To: Jamie Herman Project Number: 60709371 Required Project Information 5 SAMPLE TYPE (G=GRAB C=COMP) 5 5 (see valid codes to left) **AMATRIX CODE** Project Name: Section B Service Services Valid Matrix Codes ₩ ¥ ¥ FATT-OUR DRINKING WATER V
WASTE WATER V
PRODUCT
SOIUSOLID Greenwood Village, CO 80111 jamie.herman@aecom.com ADDITIONAL COMMENTS Standar 0 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 6200 South Quebec St SAMPLE ID Fax: Section D Required Client Information (303) 740-2614 Requested Due Date/TAT: Section A Required Client Information: AECOM MSIMSD Company: Email To: Address: Page 14 of 16 Phone 10 Ŧ 12 2 9 1 æ 6 # WELL

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev.08, 12-Oct-2007

DATE Signed ()

# **Quality Control Sample Performance Assessment**

CLM 5/10/2024

Analyst: Date: Batch ID: Matrix:

Test:

Pace Analytical

79113 DW

3250435 0.000

MB Sample ID

Method Blank Assessmen

MB concentration:

M/B Counting Uncertainty: MB MDC:

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

0.237 0.501 0.00 N/A Pass

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Sample Description Date:  Sample MS 1.D.  Sample MS 1.D.  Sample MS 1.D.  Sample MS 1.D.  Spike 1.D.  Spike 1.D.  Spike 1.D.  MS Aliquot (L. g. F):  get Conc. (pCi/L. g. F):  Sample Result:  cortainty (pCi/L. g. F):  Remainty (pCi/L. g. F):  Performance Indicator:  Roreant Recovery:  So Numerical Indicator:  As Numerical Indicator:  As Status vs Recovery:  So Status vs Recovery: | MS/MSD 1 MS/MSD 2<br>5/7/2024 5/7/2024 | 60452436002 60452426003<br>60452436003 60452426004 | 60452436004 60452426005 | 23-063 23-063 | 32.300 32.300                                        | 0.20 0.20                     | _                              | 0.655 0.654           | 9.868 9.874                   | 0.654 0.653            |                                 | 0.464 0.464                        | 0.464 0.465                         | 0.041 0.455    | 0.548 0.454                                       | 10.655 8.726                | 1,376 1,360                                             | 11.467 8.674                          | 1.335 1.223                                                       | 0.942 -2.085                        | 2.008 -2.373                         | 107.56% 83.76%       | 115.72% 83.06%        | N/A N/A                           | N/A N/A                            | Pass                   | Pass Pass               | 136% 136%                       | 71% 71%                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------|---------------|------------------------------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------------|------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------------------|------------------------------------|------------------------|-------------------------|---------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                    | _                       | Spike I.D.:   | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F): | MSD Aliquot (L, g, F): | MSD Target Conc. (pCl/L, g, F): | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery: | MSD Percent Recovery: | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery: | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MS/MSD Lower % Recovery Limits: |

| MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery: | MSD Percent Recovery: | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery: | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MS/MSD Lower % Recovery Limits: |
|------------------------------------|-------------------------------------|----------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------------------|------------------------------------|------------------------|-------------------------|---------------------------------|---------------------------------|
|                                    | z                                   | LCSD79113      |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                 |

LCS79113 5/27/2024 23-063 32.300 0.10 0.654 4.941 0.232 5.226 0.978

Spike I.D.: Spike Lourentration (pCi/mL): Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Count Date:

0.56 105.76%

Percent Recovery: Status vs Numerical Indicator:

Numerical Performance Indicator:

Upper % Recovery Limits: Lower % Recovery Limits:

Status vs Recovery:

Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Uncertainty (Calculated):

CSD (Y or N)?

Laboratory Control Sample Assessment

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Result Spike Duplicate Result: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit: |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Enter Duplicate sample IDs if other than LCS/LCSD in the space below.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | See Below ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Duplicate Sample Assessment                           | Sample I.D.  Sample Result (pci/l., g, F): Sample Result (pci/l., g, F): Sample Duplicate Result (pci/l., g, F): Sample Duplicate Result (pci/l., g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:  RRPD Limit:                                                                                                    |

60452426003 60452426004 60452426005 8.726 1.360 8.674 1.223 0.056 0.056 0.84% NA NA NA Pass 32%

60452436002 60452436003 60452436004 10.655 1.376 1.335 -0.831 7.31% N/A Pass 32%

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

UM STrailly HZ 82 SO 77

Ra-226 NELAC QC Printed: 5/27/2024 2:45 PM

**Quality Control Sample Performance Assessment** 

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Pace Analytical"

|                     | LCSD79114 | LCS79114       |                                     |                                      |
|---------------------|-----------|----------------|-------------------------------------|--------------------------------------|
|                     | z         | LCSD (Y or N)? | mple Assessment                     | Laboratory Control Sample Assessment |
|                     | -         | 0000           | MD Status vs. MDC.                  |                                      |
|                     |           | Pass           | MB Status vs Numerical Indicator:   |                                      |
|                     |           | 0.50           | MB Numerical Performance Indicator: |                                      |
|                     |           | 0.751          | MB MDC:                             |                                      |
|                     |           | 0.330          | M/B 2 Sigma CSU:                    |                                      |
|                     |           | 0.084          | MB concentration:                   |                                      |
| MS/MSD Dec          |           | 3250436        | MB Sample ID                        |                                      |
|                     |           |                | nent                                | Method Blank Assessment              |
|                     |           | TW             | Matrix:                             |                                      |
|                     |           | 79114          | Worklist                            |                                      |
|                     |           | 5/14/2024      | Date:                               |                                      |
| Sample Matrix Spike |           | JJS1           | Analyst:                            |                                      |
|                     |           | Ra-228         | Test:                               | www.pacelabs.com                     |
|                     |           |                |                                     |                                      |

| ample Collection Date:  Sample MS 1.D. Spike 1.D.: 23-043 Soncentration (pCi/mL): me Used in MS (mL): me U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Comple Matrix Caite Control Accomment                    | MCARCH 4    | MCMCD 2     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------|-------------|-------------|
| 60452436004<br>60452436004<br>23-043<br>32.843<br>0.20<br>0.20<br>0.20<br>0.810<br>9.105<br>0.446<br>0.446<br>0.446<br>0.588<br>0.426<br>8.191<br>1.691<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Califord Islands Opine Collect Assessment                | CONTON      | MOUNION     |
| 60452436002<br>60452436004<br>60452436004<br>23-043<br>36.843<br>0.20<br>0.20<br>0.810<br>9.105<br>0.446<br>0.446<br>0.446<br>0.446<br>1.599<br>1.691<br>1.691<br>1.599<br>-1.69<br>1.599<br>-1.691<br>7.58%<br>Pass<br>Pass<br>Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Sample Collection Date:                                  | 5/7/2024    | 5/7/2024    |
| 0.426<br>23-043<br>36.843<br>0.20<br>0.20<br>0.20<br>0.809<br>0.809<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>0.446<br>8.191<br>1.691<br>1.691<br>7.7.58%<br>Pass<br>Varming<br>Pass<br>Pass<br>Pass<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Sample I.D.                                              | 60452436002 | 60452426003 |
| 23-043 36.843 0.20 0.20 0.20 0.809 0.809 0.809 0.406 0.446 0.446 0.446 0.426 8.191 1.691 1.691 7.653 1.599 -1.629 -2.334 83.56% 77.58% Pass Naming Pass 135% 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Sample MSD I.D.                                          | 60452436004 | 60452426005 |
| 36.843 0.20 0.20 0.20 0.809 0.809 0.809 0.406 0.446 0.446 0.426 8.191 1.691 7.653 1.599 -1.629 -2.334 Pass Vanning Pass 135% 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Spike I.D.:                                              | 23-043      | 23-043      |
| 0.20<br>0.20<br>0.20<br>0.310<br>9.099<br>0.809<br>0.406<br>0.446<br>0.446<br>0.588<br>0.426<br>0.588<br>1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.629<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.599<br>-1.5 |   | MS/MSD Decay Corrected Spike Concentration (pCi/mL):     | 36.843      | 36.843      |
| 0.20<br>0.20<br>9.099<br>0.809<br>9.105<br>0.446<br>0.446<br>0.426<br>0.426<br>0.426<br>1.639<br>1.639<br>1.639<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.629<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.599<br>1.59                                                                                                                                                                                                                                                                                                           |   | Spike Volume Used in MS (mL):                            | 0.20        | 0.20        |
| 0.810<br>0.809<br>0.809<br>9.105<br>0.446<br>0.446<br>0.588<br>0.426<br>8.191<br>1.599<br>-1.599<br>-1.653<br>1.599<br>-7.758%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Spike Volume Used in MSD (mL):                           | 0.20        | 0.20        |
| 9.099 0.0809 0.105 0.446 0.446 0.426 8.191 1.691 7.653 1.599 -1.629 -2.334 83.56% 77.58% Pass Warning Pass 135% 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | MS Aliquot (L, g, F):                                    | 0.810       | 0.805       |
| 0.809<br>9.105<br>0.446<br>0.446<br>0.588<br>0.426<br>8.191<br>1.691<br>7.653<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Varming<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | MS Target Conc.(pCi/L, g, F):                            | 660'6       | 9.150       |
| 9.105<br>0.446<br>0.446<br>0.588<br>0.426<br>8.191<br>1.691<br>1.599<br>1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | MSD Aliquot (L, g, F):                                   | 608.0       | 0.807       |
| 0.446<br>0.588<br>0.588<br>0.426<br>8.191<br>1.691<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.68%<br>Pass<br>Varning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | MSD Target Conc. (pCi/L, g, F):                          | 9.105       | 9.134       |
| 0.446<br>0.588<br>0.426<br>8.191<br>1.691<br>7.653<br>1.599<br>-1.599<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 | MS Spike Uncertainty (calculated):                       | 0.446       | 0.448       |
| 0.588<br>0.426<br>8.191<br>1.691<br>7.653<br>1.599<br>-1.599<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | MSD Spike Uncertainty (calculated):                      | 0.446       | 0.448       |
| 0.426<br>8.191<br>1.691<br>7.653<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warming<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ | Sample Result:                                           | 0.588       | 0.859       |
| 8.191<br>7.653<br>7.653<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ | Sample Result 2 Sigma CSU (pCi/L, g, F):                 | 0.426       | 0.443       |
| 1.691<br>7.653<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ | Sample Matrix Spike Result:                              | 8.191       | 7.135       |
| 7.653<br>1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.691       | 1.556       |
| 1.599<br>-1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ | Sample Matrix Spike Duplicate Result:                    | 7.653       | 7.676       |
| -1.629<br>-2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 1.599       | 1.611       |
| -2.334<br>83.56%<br>77.58%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - | MS Numerical Performance Indicator:                      | -1.629      | -3.355      |
| 83.56%<br>77.758%<br>Pass<br>Warning<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ | MSD Numerical Performance Indicator:                     | -2.334      | -2.625      |
| 77.58% Pass Warning Pass Pass 135% 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ | MS Percent Recovery:                                     | 83.56%      | 68.58%      |
| Pass<br>Waming<br>Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ | MSD Percent Recovery:                                    | 77.58%      | 74.64%      |
| Warning<br>Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - | MS Status vs Numerical Indicator:                        | Pass        | Fail****    |
| Pass<br>Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ | MSD Status vs Numerical Indicator:                       | Waming      | Waming      |
| Pass<br>135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | MS Status vs Recovery:                                   | Pass        | Pass        |
| 135%<br>60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - | MSD Status vs Recovery:                                  | Pass        | Pass        |
| 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | MS/MSD Upper % Recovery Limits:                          | 135%        | 135%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ | MS/MSD Lower % Recovery Limits:                          | %09         | %09         |

5/21/2024 23-043 36.672

Count Date: Spike I.D.:

Decay Corrected Spike Concentration (pCi/mL):

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Result (pCi/L, g, F):

0.10 0.815 4.499 0.220 3.399 0.828 -2.52 75.54% N/A Pass 135%

LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Numerical Performance Indicator:

Percent Recovery: Status vs Recovery: Status vs Numerical Indicator:

Upper % Recovery Limits: Lower % Recovery Limits:

| Duplicate Sample Assessment                                                                                         |                       |                    | Matrix Spike/Matrix Spike Duplicate Sample Assessment    |
|---------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|----------------------------------------------------------|
| Sample I.D.:                                                                                                        |                       | Enter Duplicate    | Sample I.D.                                              |
| Duplicate Sample I.D.                                                                                               |                       | sample IDs if      | Sample MS I.D.                                           |
| Sample Result (pCi/L, g, F):                                                                                        |                       | other than         | Sample MSD I.D.                                          |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                                                                            |                       | LCS/LCSD in        | Sample Matrix Spike Result:                              |
| Sample Duplicate Result (pCI/L, g, F):                                                                              | <b>*</b>              | the space below.   | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):                                                                  |                       |                    | Sample Matrix Spike Duplicate Result:                    |
| Are sample and/or duplicate results below RL?                                                                       | See Below ##          |                    | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |
| Duplicate Numerical Performance Indicator:                                                                          |                       |                    | Duplicate Numerical Performance Indicator:               |
| Duplicate RPD:                                                                                                      |                       |                    | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: |
| Duplicate Status vs Numerical Indicator:                                                                            |                       |                    | MS/ MSD Duplicate Status vs Numerical Indicator:         |
| Duplicate Status vs RPD:                                                                                            |                       |                    | MS/ MSD Duplicate Status vs RPD:                         |
| % RPD Limit:                                                                                                        |                       |                    | % RPD Limit:                                             |
| ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. | ample or duplicate re | sults are below th | e MDC.                                                   |

60452426003 60452426004 60452426005 7.135 1.556 7.676 1.611 -0.474 8.46% Pass Pass 96%

8.191 7.653 1.599 0.454 7.41% Pass Pass 36%

60452436003 60452436004

60452436002

|  |  | . 2 | 3 |
|--|--|-----|---|

Comme

5/22/24

1 of 1

SLC 5/22/24





June 19, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452578

#### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 09, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Databa m. Wilson

Enclosures

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM





9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

#### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452578

## **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification Arkansas Certification #: 88-00679

Arkansas Certification #: 88-00679
Illinois Certification #: 2000302023-6
Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17

Utah Certification #: KS000212022-13



# **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452578

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |  |
|-------------|------------|--------|----------------|----------------|--|
| 60452578001 | BAT-05-CCR | Water  | 05/08/24 10:15 | 05/09/24 09:05 |  |
| 60452578002 | BAT-12-CCR | Water  | 05/08/24 12:40 | 05/09/24 09:05 |  |
| 60452578003 | DUP-02-CCR | Water  | 05/08/24 00:00 | 05/09/24 09:05 |  |
| 60452578004 | BAT-02-CCR | Water  | 05/08/24 15:05 | 05/09/24 09:05 |  |



# **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452578

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60452578001 | BAT-05-CCR | EPA 6010 | ARMN     | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |
| 60452578002 | BAT-12-CCR | EPA 6010 | ARMN     | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |
| 60452578003 | DUP-02-CCR | EPA 6010 | ARMN     | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |
| 60452578004 | BAT-02-CCR | EPA 6010 | ARMN     | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

| Sample: BAT-05-CCR          | Lab ID: 6045    | 2578001    | Collected: 05/08/2   | 24 10:15 | Received: 05   | i/09/24 09:05 N | Matrix: Water |     |
|-----------------------------|-----------------|------------|----------------------|----------|----------------|-----------------|---------------|-----|
| Parameters                  | Results         | Units      | Report Limit         | DF       | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                | Analytical Meth | od: EPA 60 | 010 Preparation Metl | nod: EP/ | A 3010         |                 |               |     |
|                             | Pace Analytical | Services - | Kansas City          |          |                |                 |               |     |
| Boron                       | 1150            | ug/L       | 100                  | 1        | 05/16/24 14:24 | 05/28/24 10:14  | 7440-42-8     |     |
| Calcium                     | 420000          | ug/L       | 200                  | 1        | 05/16/24 14:24 | 05/28/24 10:14  | 7440-70-2     |     |
| Lithium                     | 236             | ug/L       | 10.0                 | 1        | 05/16/24 14:24 | 05/28/24 10:14  | 7439-93-2     |     |
| 020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Met   | nod: EP/ | A 3010         |                 |               |     |
|                             | Pace Analytical | Services - | Kansas City          |          |                |                 |               |     |
| Antimony                    | ND              | ug/L       | 2.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7440-36-0     | D3  |
| Arsenic                     | 2.2             | ug/L       | 2.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7440-38-2     |     |
| Barium                      | 35.9            | ug/L       | 3.0                  | 3        | 05/17/24 07:40 | 06/18/24 14:54  | 7440-39-3     |     |
| Beryllium                   | ND              | ug/L       | 1.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7440-41-7     | D3  |
| admium                      | ND              | ug/L       | 1.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7440-43-9     | D3  |
| Chromium                    | 5.2             | ug/L       | 3.0                  | 3        | 05/17/24 07:40 | 06/18/24 14:54  | 7440-47-3     |     |
| Cobalt                      | 8.3             | ug/L       | 3.0                  | 3        | 05/17/24 07:40 | 06/18/24 14:54  | 7440-48-4     |     |
| .ead                        | 3.2             | ug/L       | 3.0                  | 3        | 05/17/24 07:40 | 06/18/24 14:54  | 7439-92-1     |     |
| Nolybdenum                  | 2.4             | ug/L       | 2.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7439-98-7     |     |
| Selenium                    | ND              | ug/L       | 2.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7782-49-2     | D3  |
| hallium                     | ND              | ug/L       | 2.0                  | 2        | 05/17/24 07:40 | 06/18/24 16:23  | 7440-28-0     | D3  |
| 470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Met   | nod: EP/ | A 7470         |                 |               |     |
| •                           | Pace Analytical | Services - | Kansas City          |          |                |                 |               |     |
| Mercury                     | ND              | ug/L       | 0.20                 | 1        | 05/20/24 12:41 | 05/21/24 12:58  | 7439-97-6     |     |
| 540C Total Dissolved Solids | Analytical Meth | od: SM 25  | 40C                  |          |                |                 |               |     |
|                             | Pace Analytical |            |                      |          |                |                 |               |     |
| Total Dissolved Solids      | 2540            | mg/L       | 100                  | 1        |                | 05/10/24 11:45  |               |     |
| 056 IC Anions               | Analytical Meth | od: EPA 90 | 056                  |          |                |                 |               |     |
|                             | Pace Analytical | Services - | Kansas City          |          |                |                 |               |     |
| Chloride                    | 66.7            | mg/L       | 10.0                 | 10       |                | 05/28/24 22:22  | 16887-00-6    |     |
| luoride                     | ND              | mg/L       | 0.20                 | 1        |                | 05/28/24 22:01  |               | N2  |
| Sulfate                     | 2930            | mg/L       | 400                  | 400      |                | 05/28/24 22:43  |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

| Sample: BAT-12-CCR           | Lab ID: 6045    | 52578002   | Collected: 05/08/2   | 4 12:40 | Received: 05   | 5/09/24 09:05 I | Matrix: Water |     |
|------------------------------|-----------------|------------|----------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit         | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 010 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Boron                        | 221             | ug/L       | 100                  | 1       | 05/16/24 14:24 | 05/28/24 10:16  | 7440-42-8     |     |
| Calcium                      | 101000          | ug/L       | 200                  | 1       | 05/16/24 14:24 | 05/28/24 10:16  | 7440-70-2     |     |
| Lithium                      | 88.1            | ug/L       | 10.0                 | 1       | 05/16/24 14:24 | 05/28/24 10:16  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth  | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-36-0     |     |
| Arsenic                      | 1.3             | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-38-2     |     |
| Barium                       | 27.6            | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 14:59  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-41-7     |     |
| Cadmium                      | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-43-9     |     |
| Chromium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-48-4     |     |
| Lead                         | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7439-92-1     |     |
| Molybdenum                   | 6.6             | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 14:59  | 7439-98-7     |     |
| Selenium                     | 2.9             | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 14:59  | 7782-49-2     |     |
| Thallium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:29  | 7440-28-0     |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Meth  | nod: EP | A 7470         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                 | 1       | 05/20/24 12:41 | 05/21/24 13:00  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 40C                  |         |                |                 |               |     |
|                              | Pace Analytical |            |                      |         |                |                 |               |     |
| Total Dissolved Solids       | 897             | mg/L       | 13.3                 | 1       |                | 05/10/24 11:45  |               |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 056                  |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Chloride                     | 180             | mg/L       | 20.0                 | 20      |                | 05/28/24 23:25  | 16887-00-6    |     |
| Fluoride                     | 0.96            | mg/L       | 0.20                 | 1       |                | 05/28/24 23:04  |               | N2  |
| Sulfate                      | 399             | mg/L       | 20.0                 | 20      |                | 05/28/24 23:25  |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

| Sample: DUP-02-CCR           | Lab ID: 6045    | 52578003   | Collected: 05/08/2  | 24 00:00 | Received: 05   | 5/09/24 09:05 N | Matrix: Water |     |
|------------------------------|-----------------|------------|---------------------|----------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 10 Preparation Meth | nod: EP  | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Boron                        | 229             | ug/L       | 100                 | 1        | 05/16/24 14:24 | 05/28/24 10:18  | 7440-42-8     |     |
| Calcium                      | 103000          | ug/L       | 200                 | 1        | 05/16/24 14:24 | 05/28/24 10:18  | 7440-70-2     |     |
| Lithium                      | 91.7            | ug/L       | 10.0                | 1        | 05/16/24 14:24 | 05/28/24 10:18  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth | nod: EP  | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 1.0                 | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-36-0     |     |
| Arsenic                      | 1.2             | ug/L       | 1.0                 | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-38-2     |     |
| Barium                       | 30.6            | ug/L       | 2.0                 | 2        | 05/17/24 07:40 | 06/18/24 15:06  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 0.50                | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-41-7     |     |
| Cadmium                      | ND              | ug/L       | 0.50                | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-43-9     |     |
| Chromium                     | 1.4             | ug/L       | 1.0                 | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L       | 1.0                 | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-48-4     |     |
| ₋ead                         | ND              | ug/L       | 1.0                 | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7439-92-1     |     |
| Molybdenum                   | 6.5             | ug/L       | 2.0                 | 2        | 05/17/24 07:40 | 06/18/24 15:06  | 7439-98-7     |     |
| Selenium                     | 3.1             | ug/L       | 2.0                 | 2        | 05/17/24 07:40 | 06/18/24 15:06  | 7782-49-2     |     |
| Γhallium                     | ND              | ug/L       | 1.0                 | 1        | 05/17/24 07:40 | 06/18/24 16:38  | 7440-28-0     |     |
| 470 Mercury                  | Analytical Meth | od: EPA 74 | 70 Preparation Meth | nod: EP  | A 7470         |                 |               |     |
| •                            | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                | 1        | 05/20/24 12:41 | 05/21/24 13:02  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 10C                 |          |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Total Dissolved Solids       | 947             | mg/L       | 13.3                | 1        |                | 05/10/24 11:45  |               |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 956                 |          |                |                 |               |     |
|                              | Pace Analytical |            |                     |          |                |                 |               |     |
| Chloride                     | 188             | mg/L       | 20.0                | 20       |                | 05/29/24 01:09  | 16887-00-6    |     |
| Fluoride                     | 1.0             | mg/L       | 0.20                | 1        |                | 05/29/24 00:48  |               | N2  |
| Sulfate                      | 397             | mg/L       | 100                 | 100      |                | 05/29/24 01:30  |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

| Sample: BAT-02-CCR           | Lab ID: 6045     | 2578004    | Collected: 05/08/2   | 4 15:05 | Received: 05   | 5/09/24 09:05 N | latrix: Water |     |
|------------------------------|------------------|------------|----------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results          | Units      | Report Limit         | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Metho | od: EPA 60 | 110 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical  | Services - | Kansas City          |         |                |                 |               |     |
| Boron                        | 1000             | ug/L       | 100                  | 1       | 05/16/24 14:24 | 05/28/24 10:25  | 7440-42-8     |     |
| Calcium                      | 342000           | ug/L       | 200                  | 1       | 05/16/24 14:24 | 05/28/24 10:25  | 7440-70-2     |     |
| _ithium                      | 211              | ug/L       | 10.0                 | 1       | 05/16/24 14:24 | 05/28/24 10:25  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Metho | od: EPA 60 | 20 Preparation Meth  | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical  | Services - | Kansas City          |         |                |                 |               |     |
| Antimony                     | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-36-0     | D3  |
| Arsenic                      | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-38-2     | D3  |
| Barium                       | 16.8             | ug/L       | 3.0                  | 3       | 05/17/24 07:40 | 06/18/24 15:11  | 7440-39-3     |     |
| Beryllium                    | ND               | ug/L       | 1.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-41-7     | D3  |
| Cadmium                      | ND               | ug/L       | 1.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-43-9     | D3  |
| Chromium                     | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-47-3     | D3  |
| Cobalt                       | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-48-4     | D3  |
| ₋ead                         | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7439-92-1     | D3  |
| Molybdenum                   | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7439-98-7     | D3  |
| Selenium                     | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7782-49-2     | D3  |
| Thallium                     | ND               | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 16:44  | 7440-28-0     | D3  |
| 470 Mercury                  | Analytical Metho | od: EPA 74 | 70 Preparation Meth  | nod: EP | A 7470         |                 |               |     |
|                              | Pace Analytical  | Services - | Kansas City          |         |                |                 |               |     |
| Mercury                      | ND               | ug/L       | 0.20                 | 1       | 05/20/24 12:41 | 05/21/24 13:05  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Metho | od: SM 254 | 40C                  |         |                |                 |               |     |
|                              | Pace Analytical  | Services - | Kansas City          |         |                |                 |               |     |
| Total Dissolved Solids       | 2310             | mg/L       | 66.7                 | 1       |                | 05/10/24 11:46  |               |     |
| 0056 IC Anions               | Analytical Metho | od: EPA 90 | 56                   |         |                |                 |               |     |
|                              | Pace Analytical  | Services - | Kansas City          |         |                |                 |               |     |
| Chloride                     | 259              | mg/L       | 50.0                 | 50      |                | 05/29/24 02:12  | 16887-00-6    |     |
| Fluoride                     | ND               | mg/L       | 0.20                 | 1       |                | 05/29/24 01:51  | 16984-48-8    | N2  |
| Sulfate                      | 1770             | mg/L       | 200                  | 200     |                | 05/29/24 02:32  | 14808-79-8    |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

QC Batch: 894580 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

METHOD BLANK: 3540364 Matrix: Water
Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 05/21/24 12:17

LABORATORY CONTROL SAMPLE: 3540365

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers Mercury 5 5.0 101 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540366 3540367

MS MSD

60452178001 Spike Spike MS MSD MS MSD % Rec Max Units Result Result **RPD** RPD Parameter Result Conc. Conc. % Rec % Rec Limits Qual ND 5 20 Mercury ug/L 5 4.9 4.8 97 97 75-125 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540368 3540369

MS MSD

60452636007 MS MSD MS MSD Spike Spike % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 5 5 20 Mercury ND 4.9 4.8 97 96 75-125 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540370 3540371

MS MSD

60452423002 Spike Spike MS MSD MS MSD % Rec Max Result Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Conc. Limits Qual Mercury ug/L ND 5 5 5.0 5.2 101 104 75-125 3 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

QC Batch: 894743 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

METHOD BLANK: 3541037 Matrix: Water
Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

ated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

Blank Reporting

Parameter Units Result Limit

| Parameter | Units | Result | Limit | Analyzed       | Qualifiers |
|-----------|-------|--------|-------|----------------|------------|
| Boron     | ug/L  | ND     | 100   | 05/28/24 09:41 |            |
| Calcium   | ug/L  | ND     | 200   | 05/28/24 09:41 |            |
| Lithium   | ug/L  | ND     | 10.0  | 05/28/24 09:41 |            |

LABORATORY CONTROL SAMPLE: 3541038

Date: 06/19/2024 12:47 PM

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Boron     | ug/L  | 1000           | 978           | 98           | 80-120          |            |
| Calcium   | ug/L  | 10000          | 10600         | 106          | 80-120          |            |
| Lithium   | ug/L  | 1000           | 1060          | 106          | 80-120          |            |

| MATRIX SPIKE & MATRIX SF | PIKE DUPLIC | CATE: 3541 | 039   |       | 3541040 |        |       |       |        |     |     |      |
|--------------------------|-------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |             |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          | 6           | 0452782024 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units       | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                    | ug/L        | 102        | 1000  | 1000  | 1030    | 1070   | 93    | 96    | 75-125 | 3   | 20  |      |
| Calcium                  | ug/L        | 72800      | 10000 | 10000 | 77500   | 82900  | 46    | 100   | 75-125 | 7   | 20  | M1   |
| Lithium                  | ug/L        | 69.9       | 1000  | 1000  | 1050    | 1110   | 98    | 104   | 75-125 | 5   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

QC Batch: 894799 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

METHOD BLANK: 3541350 Matrix: Water
Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

|            |       | Blank  | Reporting |                |            |
|------------|-------|--------|-----------|----------------|------------|
| Parameter  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Antimony   | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Arsenic    | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Barium     | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Beryllium  | ug/L  | ND     | 0.50      | 06/18/24 11:48 |            |
| Cadmium    | ug/L  | ND     | 0.50      | 06/18/24 11:48 |            |
| Chromium   | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Cobalt     | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Lead       | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Molybdenum | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Selenium   | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |
| Thallium   | ug/L  | ND     | 1.0       | 06/18/24 11:48 |            |

| LABORATORY CONTROL SAMPL | E: 3541351 |       |        |       |        |            |
|--------------------------|------------|-------|--------|-------|--------|------------|
|                          |            | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                | Units      | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                 | ug/L       | 40    | 40.1   | 100   | 80-120 |            |
| Arsenic                  | ug/L       | 40    | 41.9   | 105   | 80-120 |            |
| Barium                   | ug/L       | 40    | 39.7   | 99    | 80-120 |            |
| Beryllium                | ug/L       | 40    | 43.0   | 108   | 80-120 |            |
| Cadmium                  | ug/L       | 40    | 42.7   | 107   | 80-120 |            |
| Chromium                 | ug/L       | 40    | 41.3   | 103   | 80-120 |            |
| Cobalt                   | ug/L       | 40    | 41.7   | 104   | 80-120 |            |
| Lead                     | ug/L       | 40    | 39.4   | 98    | 80-120 |            |
| Molybdenum               | ug/L       | 40    | 41.4   | 103   | 80-120 |            |
| Selenium                 | ug/L       | 40    | 43.3   | 108   | 80-120 |            |
| Thallium                 | ug/L       | 40    | 37.6   | 94    | 80-120 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPLI | CATE: 3541       |       |       | 3541353 |        |       |       |        |     |     |      |
|-----------------------|-------------|------------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                       | ,           | CO 4E 0 40 20 00 | MS    | MSD   | MC      | MCD    | MC    | MCD   | 0/ Doo |     | May |      |
| _                     |             | 60452423002      | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units       | Result           | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony              | ug/L        | ND               | 40    | 40    | 37.8    | 38.2   | 94    | 95    | 75-125 | 1   | 20  |      |
| Arsenic               | ug/L        | ND               | 40    | 40    | 42.6    | 42.4   | 105   | 104   | 75-125 | 0   | 20  |      |
| Barium                | ug/L        | 25.1             | 40    | 40    | 63.1    | 61.6   | 95    | 91    | 75-125 | 2   | 20  |      |
| Beryllium             | ug/L        | ND               | 40    | 40    | 35.8    | 36.7   | 89    | 92    | 75-125 | 3   | 20  |      |
| Cadmium               | ug/L        | ND               | 40    | 40    | 35.2    | 34.9   | 88    | 87    | 75-125 | 1   | 20  |      |
| Chromium              | ug/L        | ND               | 40    | 40    | 39.4    | 39.7   | 97    | 97    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 3541 | 352         |              | 3541353 |        |       |       |        |     |     |      |
|-----------------------|------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |            | 60452423002 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units      | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cobalt                | ug/L       |             | 40          | 40           | 39.6    | 39.7   | 98    | 98    | 75-125 | 0   | 20  |      |
| Lead                  | ug/L       | ND          | 40          | 40           | 35.7    | 35.7   | 89    | 89    | 75-125 | 0   | 20  |      |
| Molybdenum            | ug/L       | 1.0         | 40          | 40           | 43.7    | 43.8   | 107   | 107   | 75-125 | 0   | 20  |      |
| Selenium              | ug/L       | 23.2        | 40          | 40           | 63.5    | 64.7   | 101   | 104   | 75-125 | 2   | 20  |      |
| Thallium              | ug/L       | ND          | 40          | 40           | 35.4    | 35.6   | 89    | 89    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452578

QC Batch: 893941 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

METHOD BLANK: 3537622 Matrix: Water

Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 05/10/24 11:44

LABORATORY CONTROL SAMPLE: 3537623

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1190 119 80-120

SAMPLE DUPLICATE: 3537624

60452537001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 3950 **Total Dissolved Solids** mg/L 3 3850 10

SAMPLE DUPLICATE: 3537625

Date: 06/19/2024 12:47 PM

60452591003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 4230 10 D6 mg/L 4800 13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Chloride Fluoride Sulfate

#### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452578

LABORATORY CONTROL SAMPLE:

Date: 06/19/2024 12:47 PM

QC Batch: 895864 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

METHOD BLANK: 3545640 Matrix: Water
Associated Lab Samples: 60452578001, 60452578002, 60452578003, 60452578004

3545641

| Parameter | Units | Blank<br>Result | Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|-------|----------------|------------|
|           | mg/L  | ND              | 1.0   | 05/28/24 14:52 |            |
|           | mg/L  | ND              | 0.20  | 05/28/24 14:52 | N2         |
|           | mg/L  | ND              | 1.0   | 05/28/24 14:52 |            |

Parameter Units Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers

Chloride mg/l 5 51 102 80-120

Chloride 5 5.1 102 80-120 mg/L Fluoride 2.5 2.5 100 80-120 N2 mg/L Sulfate mg/L 5.0 100 80-120 5

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3545642 3545643 MS MSD MSD 60452423002 Spike Spike MS MS MSD % Rec Max Qual Parameter Conc. % Rec % Rec **RPD** RPD Units Result Conc. Result Result Limits Chloride 15 M1 63.2 250 250 333 371 108 123 80-120 11 mg/L 15 M1, N2, Fluoride ND 2.5 2.5 0.98 39 50 80-120 mg/L 1.2 23 R1 15 M1,R1 Sulfate 794 2500 2500 7660 6020 275 209 80-120 mg/L 24

SAMPLE DUPLICATE: 3545644 60452423002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Chloride 63.2 15 D6 mg/L 76.7 19 Fluoride mg/L ND ND 15 N2 794 Sulfate mg/L 1620 68 15 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452578

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 06/19/2024 12:47 PM

| D3 | Sample was diluted due to the p | presence of high levels of non-targ | et analytes or other matrix interference. |
|----|---------------------------------|-------------------------------------|-------------------------------------------|
|    |                                 |                                     |                                           |

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A

complete list of accreditations/certifications is available upon request.

R1 RPD value was outside control limits.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452578

Date: 06/19/2024 12:47 PM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60452578001 | BAT-05-CCR | EPA 3010        | 894743   | EPA 6010          | 894820              |
| 60452578002 | BAT-12-CCR | EPA 3010        | 894743   | EPA 6010          | 894820              |
| 60452578003 | DUP-02-CCR | EPA 3010        | 894743   | EPA 6010          | 894820              |
| 60452578004 | BAT-02-CCR | EPA 3010        | 894743   | EPA 6010          | 894820              |
| 60452578001 | BAT-05-CCR | EPA 3010        | 894799   | EPA 6020          | 894981              |
| 60452578002 | BAT-12-CCR | EPA 3010        | 894799   | EPA 6020          | 894981              |
| 60452578003 | DUP-02-CCR | EPA 3010        | 894799   | EPA 6020          | 894981              |
| 60452578004 | BAT-02-CCR | EPA 3010        | 894799   | EPA 6020          | 894981              |
| 60452578001 | BAT-05-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452578002 | BAT-12-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452578003 | DUP-02-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452578004 | BAT-02-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452578001 | BAT-05-CCR | SM 2540C        | 893941   |                   |                     |
| 60452578002 | BAT-12-CCR | SM 2540C        | 893941   |                   |                     |
| 60452578003 | DUP-02-CCR | SM 2540C        | 893941   |                   |                     |
| 60452578004 | BAT-02-CCR | SM 2540C        | 893941   |                   |                     |
| 60452578001 | BAT-05-CCR | EPA 9056        | 895864   |                   |                     |
| 60452578002 | BAT-12-CCR | EPA 9056        | 895864   |                   |                     |
| 60452578003 | DUP-02-CCR | EPA 9056        | 895864   |                   |                     |
| 60452578004 | BAT-02-CCR | EPA 9056        | 895864   |                   |                     |



Pace ANALYTICAL SERVICES

DC#\_Title: ENV-FRM-LENE-0009\_Sample Co

| ANALYTICAL SERVICES Revision: 2                                                                                                          | ffective Date: 01/12/2022 | Issued By: Lenexa                                    |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------|
| Client Name: A eow                                                                                                                       |                           |                                                      |
| Courier: FedEx VIPS VIA Clay                                                                                                             | PEX □ ECI □ Pace          | 1.                                                   |
| Custody Seal on Cooler/Box Present: Yes D No D                                                                                           | Seals intact: Yes N       | No 🗆                                                 |
| Packing Material:  Bubble Wrap Bubble Bag  Thermometer Used:  Type                                                                       | of Ice: Web Blue None     | None □ Other □                                       |
| Cooler Temperature (°C): As-read S, Corr. Fa                                                                                             | actor 0.0 Corrected       | Date and initials of person examining contents:      |
| remperature should be above freezing to 6°C                                                                                              |                           | AF519                                                |
| Chain of Custody present:                                                                                                                | ØYes □No □N/A             | * · /                                                |
| Chain of Custody relinquished:                                                                                                           | De Pes □No □N/A           |                                                      |
| Samples arrived within holding time:                                                                                                     | Yes ONO ON/A              |                                                      |
| Short Hold Time analyses (<72hr):                                                                                                        | □Yes Mo □N/A              |                                                      |
| Rush Turn Around Time requested:                                                                                                         | □Yes □No □N/A             |                                                      |
| Sufficient volume:                                                                                                                       | Yes ONO ON/A              |                                                      |
| Correct containers used:                                                                                                                 | Ores □No □N/A             |                                                      |
| Pace containers used:                                                                                                                    | ©Yes □No □N/A             |                                                      |
| Containers intact:                                                                                                                       | Yes □No □N/A              |                                                      |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                                                   | □Yes □No □WA 7            |                                                      |
| Filtered volume received for dissolved tests?                                                                                            | □Yes □No □NA              |                                                      |
| Sample labels match COC: Date / time / ID / analyses                                                                                     | Dyes DNO DN/A             |                                                      |
| Samples contain multiple phases? Matrix: Matrix:                                                                                         | □Yes □No □N/A             |                                                      |
| Containers requiring pH preservation in compliance?                                                                                      |                           | sample IDs, volumes, lot #'s of preservative and the |
| HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) | T#: 6709010               | /time added.                                         |
| Cyanide water sample checks:                                                                                                             |                           |                                                      |
| ead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)                                    | □Yes □No                  | ž.                                                   |
| ·                                                                                                                                        | ☐Yes ☐No                  |                                                      |
| rip Blank present:                                                                                                                       | ☐Yes ☐No ☐N/A             |                                                      |
| leadspace in VOA vials ( >6mm):                                                                                                          | □Yes □No ♣N/A             |                                                      |
| Samples from USDA Regulated Area: State:                                                                                                 | □Yes □No ▶NA              |                                                      |
| additional labels attached to 5035A / TX1005 vials in the fie                                                                            |                           | Fild But Bernindo V / N                              |
|                                                                                                                                          |                           | Field Data Required? Y / N                           |
| Person Contacted: Date Comments/ Resolution:                                                                                             | e/Time:                   |                                                      |
| Onlinents/ Nesolution.                                                                                                                   |                           |                                                      |
|                                                                                                                                          |                           |                                                      |
| roject Manager Review:                                                                                                                   | Date:                     |                                                      |



# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

Pace Analytical

DRINKING WATER OTHER OTHER ō NPDES GROUND WATER Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) STATE: Site Location UST Same as Section A Reference:
Pace Project Heather Wilson Manager:
Pace Profile #: 11033, 3 Accounts Payable Company Name: AECOM 42700 Invoice Information: Attention: Acc Section C Pace Quote Address: Project Name: 60709371 PRPA CCR ourchase Order No: NEED PO # Report To: Vasanta Kalluri Sopy To: Jamie Herman Project Number: 60709371 Section B Required Project Information: Greenwood Village, CO 80111 standard jamie.herman@aecom.com 6200 South Quebec St энопе: (303) 740-2614 Requested Due Date/TAT: Section A Required Client Information: AECOM ompany. Email To: ddress;

|           |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             | 100                  |         |       |      | - |          |                                 |                            |
|-----------|---------------------------------------------------------------------|-------------------|------------|-------------------------------|------------|------------|----------------------------|----------|----------|-------------------------|--------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------------------|---------|-------|------|---|----------|---------------------------------|----------------------------|
|           | Section D Valid Matrix Codes Required Client Information MATRIX COD | code              |            |                               | COLLECTED  | ΉED        |                            |          | 7        | reser                   | Preservatives                                                |                           | <b>1</b> N /A               |             |                      | ^       |       |      |   |          |                                 |                            |
|           | DRINKING WATER WATER WASTE WASTE PRODUCT SOUUSOLID OIL              | See valid codes t | =6RAB C=CO | COMPOSITE                     | H H        | COMPOSITE  | OLLECTION                  |          |          |                         |                                                              |                           |                             | *SI         | +                    |         |       |      |   |          | 042                             | 325 RE1109                 |
|           | Sample ID WPE  (A-Z, 0-9 / -)  Sample IDS MUST BE UNIQUE TISSUE     | AR AR             |            |                               |            |            | TA 9M3                     | A∃NIATI  | pən      |                         |                                                              |                           |                             | al Meta     | al Merc              | SO      |       |      |   | Ohlorine |                                 |                            |
| # MƏTI    |                                                                     | ) XIATAM          | T 3J9MA2   | DATE                          | TIME       | DATE       | T 3JAMAS                   | # OE COV | Unpreser | HCI<br>HNO <sup>3</sup> | HO <sub>S</sub> O <sub>S</sub> S <sub>S</sub> O <sub>3</sub> | Methanol<br>Other         | <b>1 Analys</b><br>9056 CI, | 10T 0S08    | 10T 0108<br>10T 0747 | Z940C L |       |      |   | RubisaA  | Pace Projec                     | Pace Project No./ Lab I.D. |
| -         | 1 BOH- 05- CCR                                                      | W                 | 5          |                               | 1          | 1 121816   | 5101                       | 6        | 7        | Н                       | F                                                            |                           | >                           | 7           | 7                    | 5       |       |      |   |          |                                 |                            |
| 2         | Bat - 12 - CCR                                                      | 1                 |            | _                             | -          |            | 240                        | _        | _        |                         |                                                              |                           |                             | -           | -                    |         |       |      |   |          |                                 |                            |
| м         | DUP-UZ-CCR                                                          |                   |            |                               | -          |            | 1                          |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
| 4         | 1 Rat-02-CCR                                                        | >                 | >          | >                             | >          | >          | 1505                       | >        | >        | ,                       | -                                                            |                           | $\rightarrow$               | >           | 3                    | >       |       |      |   | >        |                                 |                            |
| 52        | <b>)</b>                                                            |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             | -                    |         |       |      |   |          |                                 |                            |
| 9         |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
| 7         |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
| 80        |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
| 0         |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
| 10        |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
| =         |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           | _                           |             |                      |         |       |      |   |          |                                 |                            |
| 12        |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      |   |          |                                 |                            |
|           | ADDITIONAL COMMENTS                                                 | RE                | LINQUIS    | RELINQUISHED BY / AFFILIATION | FFILIATION |            | DATE                       | F        | TIME     |                         | ACC                                                          | ACCEPTED BY / AFFILIATION | BY / Af                     | FILIAT      | NOI                  | _       | DATE  | TIME | ш |          | SAMPLE CONDITIONS               | DITIONS                    |
| Sb, As,   | Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TI                          | MOC               | (PM)       | 1                             | N1++       | ),0        | 18174                      |          | 2        |                         |                                                              | تق                        | O.A                         | SA PAG      | 21                   | 45      | 44612 | 5000 | 2 | 7        | 7                               |                            |
| B. Ca. Li | 3                                                                   | 2                 |            |                               |            |            |                            |          | }        |                         |                                                              |                           |                             |             |                      |         |       |      |   | -        |                                 |                            |
|           |                                                                     |                   |            |                               |            |            | -                          |          |          |                         |                                                              |                           |                             |             |                      |         |       |      | + |          |                                 |                            |
| F         |                                                                     |                   |            |                               |            |            |                            |          |          |                         |                                                              |                           |                             |             |                      |         |       |      | - | -        |                                 |                            |
| age       |                                                                     |                   |            |                               | SAMPLER    | NAME AN    | SAMPLER NAME AND SIGNATURE | R.       |          |                         |                                                              |                           |                             |             |                      |         |       |      |   | H        | pele                            |                            |
| 18 of     |                                                                     |                   |            |                               | A          | PRINT Name | of SAMPLER:                | 3        | 100      | BU                      | 4                                                            | N)                        | 世                           | 1 1         |                      | 0       | 0     |      |   | ni qme   | ce (Y/N<br>lody Se<br>loler (Yi | nples Ir                   |
| 19        |                                                                     |                   |            |                               | S          | SIGNATURE  | of SAMPLER:                | 5        | 8        | 3                       | b                                                            |                           |                             | (MM/DD/YY): | J. K.W.              | 5       | 2     | 7.   | - | =        | I                               |                            |
|           |                                                                     | 5 0               |            |                               |            |            |                            | >        | >        | 2                       | +                                                            |                           |                             |             |                      |         | -     | 1    |   |          |                                 |                            |

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

Pace Analytical Services, LLC

16oz unpresserved plstic

Qualtrax Document ID: 30422

Wipe/Swab 120mL Coliform Na Thiosulfate Other Non-aqueous Liquid SPLC Matrix **Drinking Water** Air Cassettes Terracore Kit Summa Can Ziploc Bag WPDU Air Filter Water Wipe Solid **BP3Z** 등 ВЬ3С ZPLC SP5T BP3S WP NA SP 2 ΑF Ole **BP3F** 250mL HNO3 plastic - field filtered 250mL HNO3 plastic **BP3N** 250mL unpreserved plastic 500mL unpreserved plastic 125mL unpreserved plastic 250mL NaOH, Zn Acetate 500mL NaOH, Zn Acetate BP1N 1L unpreserved plastic 125mL H2SO4 plastic 500mL H2SO4 plastic 1L NaOH, Zn Acetate 500mL NAOH plastic 500mL HNO3 plastic 250mL H2SO4 plastic 125mL HNO3 plastic 250mL NaOH plastic 1L H2SO4 plastic **BP3U** BP2U BP1U Medn BP2Z BP3C BP3F BP3N BP3U BP1Z BP2C **BP2N** BP1U BP2S BP2U BP3S BP3Z BP4U Mekn netn 1L Na Thiosulfate clear/amber glass **VG5U** 4oz unpreserved amber wide 500mL HNO3 amber glass 500mL H2SO4 amber glass 250mL H2SO4 amber glass 500mL unpres amber glass 100mL unores amber glass 250mL unpres amber glass 125mL unpres amber glass 100mL unpres amber glass 1liter unpres amber glass U49A 1L H2SO4 amber glass 1L HCl amber glass **YG32** 8oz clear soil jar 4oz clear soil jar 2oz clear soil jar **VG2U** UreA **HIDA** WGKU WG2U JGFU AG0U AG1H AG1S AG1T AG1U AG2N AG2S AG3S AG2U AG3U AG4U AG5U BG10 Glass DC98 DC9M 40mL unpreserved clear vial 250mL HCL Clear glass 250mL Unpres Clear glass 40mL amber unpreserved 40mL bisulfate clear vial 40mL HCl amber voa vial 40mL Na Thio amber vial 40mL Na Thio. clear vial 40mL H2SO4 amber vial 1liter H2SO4 clear glass DC90 40mL MeOH clear vial 40mL TSP amber vial 40mL HCI clear vial 1liter unpres glass 16oz clear soil jar **N69**/ DG90 DC9H H69A DG9M 0690 DG9S DG90 BG1S VG9H VG9U ВСЗН DG9T BG1U Container Codes VG9T Matrix COC ine Item 10 Ţ 12 4 S 9 00 ო 7 σ

Profile #

Notes

60709371PRPA

Site

DC#\_Title: ENV-FRM-LENE-0001\_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

Client:

Work Order Number:





June 13, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452588

#### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 09, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Databa m. Wilson

Enclosures

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



#### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA010

Louisiana DEQ/TNI Certification #: 04086 Maine Certification #: 2023021

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



# **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 60452588001 | BAT-05-CCR | Water  | 05/08/24 10:15 | 05/09/24 10:30 |
| 60452588002 | BAT-12-CCR | Water  | 05/08/24 12:40 | 05/09/24 10:30 |
| 60452588003 | DUP-02-CCR | Water  | 05/08/24 00:00 | 05/09/24 10:30 |
| 60452588004 | BAT-02-CCR | Water  | 05/08/24 15:05 | 05/09/24 10:30 |



# **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

| Lab ID      | Sample ID  | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|--------------------------|----------|----------------------|------------|
| 60452588001 | BAT-05-CCR | EPA 903.1                | <br>LL1  | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | LAL      | 1                    | PASI-PA    |
| 60452588002 | BAT-12-CCR | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | LAL      | 1                    | PASI-PA    |
| 60452588003 | DUP-02-CCR | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | LAL      | 1                    | PASI-PA    |
| 60452588004 | BAT-02-CCR | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | LAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: 60731303 PRPA CCR

Pace Project No.: 60452588

| Sample: BAT-05-CCR<br>PWS: | Lab ID: 60452<br>Site ID:   | 2588001 Collected: 05/08/24 10:15<br>Sample Type: | Received: | 05/09/24 10:30 | Matrix: Water |      |
|----------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.627 ± 0.626 (0.992)<br>C:NA T:86%               | pCi/L     | 05/29/24 15:26 | 6 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.456 ± 0.320 (0.608)<br>C:89% T:81%              | pCi/L     | 05/23/24 14:05 | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 1.08 ± 0.946 (1.60)                               | pCi/L     | 05/31/24 11:26 | 7440-14-4     |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60452588

| Sample: BAT-12-CCR<br>PWS: | <b>Lab ID: 6045258</b><br>Site ID: | 8002 Collected: 05/08/24 12:40 Sample Type: | Received: | 05/09/24 10:30 I | Matrix: Water |      |
|----------------------------|------------------------------------|---------------------------------------------|-----------|------------------|---------------|------|
| Parameters                 | Method                             | Act ± Unc (MDC) Carr Trac                   | Units     | Analyzed         | CAS No.       | Qual |
|                            | Pace Analytical Ser                | vices - Greensburg                          |           |                  |               |      |
| Radium-226                 | EPA 903.1                          | -0.628 ± 0.498 (1.22)<br>C:NA T:85%         | pCi/L     | 05/29/24 15:26   | 3 13982-63-3  |      |
|                            | Pace Analytical Serv               | vices - Greensburg                          |           |                  |               |      |
| Radium-228                 | EPA 904.0                          | 0.0693 ± 0.282 (0.643)<br>C:85% T:86%       | pCi/L     | 05/23/24 14:05   | 5 15262-20-1  |      |
|                            | Pace Analytical Serv               | vices - Greensburg                          |           |                  |               |      |
| Total Radium               | Total Radium<br>Calculation        | 0.0693 ± 0.780 (1.86)                       | pCi/L     | 05/31/24 11:26   | 7440-14-4     |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60452588

| Sample: DUP-02-CCR<br>PWS: | Lab ID: 6045<br>Site ID: | <b>2588003</b> Collected: 05/08/24 00:00 Sample Type: | Received: | 05/09/24 10:30 | Matrix: Water |      |
|----------------------------|--------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                   | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                | 0.000 ± 0.500 (0.973)<br>C:NA T:96%                   | pCi/L     | 05/29/24 15:20 | 6 13982-63-3  |      |
|                            | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                | 0.778 ± 0.399 (0.699)<br>C:84% T:79%                  | pCi/L     | 05/23/24 12:20 | 6 15262-20-1  |      |
|                            | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium Calculation | 0.778 ± 0.899 (1.67)                                  | pCi/L     | 05/31/24 11:26 | 6 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60452588

| Sample: BAT-02-CCR<br>PWS: | <b>Lab ID: 6045258</b><br>Site ID: | 8004 Collected: 05/08/24 15:05<br>Sample Type: | Received: | 05/09/24 10:30 | Matrix: Water |      |
|----------------------------|------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                             | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Serv               | vices - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                          | -0.326 ± 0.614 (1.31)<br>C:NA T:88%            | pCi/L     | 05/29/24 15:26 | 3 13982-63-3  |      |
|                            | Pace Analytical Serv               | vices - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                          | 0.739 ± 0.371 (0.652)<br>C:86% T:88%           | pCi/L     | 05/23/24 12:26 | 5 15262-20-1  |      |
|                            | Pace Analytical Serv               | vices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation        | 0.739 ± 0.985 (1.96)                           | pCi/L     | 05/31/24 11:26 | 7440-14-4     |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

QC Batch: 668073 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452588001, 60452588002, 60452588003, 60452588004

METHOD BLANK: 3252923 Matrix: Water

Associated Lab Samples: 60452588001, 60452588002, 60452588003, 60452588004

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.229 (0.496) C:NA T:94%
 pCi/L
 05/28/24 15:56

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

QC Batch: 668074 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452588001, 60452588002, 60452588003, 60452588004

METHOD BLANK: 3252928 Matrix: Water

Associated Lab Samples: 60452588001, 60452588002, 60452588003, 60452588004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.208 ± 0.306 (0.658) C:82% T:88% pCi/L 05/23/24 14:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 06/13/2024 06:34 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452588

Date: 06/13/2024 06:34 PM

| Lab ID      | Sample ID  | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|--------------------------|----------|-------------------|---------------------|
| 60452588001 | BAT-05-CCR | EPA 903.1                | 668073   |                   |                     |
| 60452588002 | BAT-12-CCR | EPA 903.1                | 668073   |                   |                     |
| 60452588003 | DUP-02-CCR | EPA 903.1                | 668073   |                   |                     |
| 60452588004 | BAT-02-CCR | EPA 903.1                | 668073   |                   |                     |
| 60452588001 | BAT-05-CCR | EPA 904.0                | 668074   |                   |                     |
| 60452588002 | BAT-12-CCR | EPA 904.0                | 668074   |                   |                     |
| 60452588003 | DUP-02-CCR | EPA 904.0                | 668074   |                   |                     |
| 60452588004 | BAT-02-CCR | EPA 904.0                | 668074   |                   |                     |
| 60452588001 | BAT-05-CCR | Total Radium Calculation | 672366   |                   |                     |
| 60452588002 | BAT-12-CCR | Total Radium Calculation | 672366   |                   |                     |
| 60452588003 | DUP-02-CCR | Total Radium Calculation | 672366   |                   |                     |
| 60452588004 | BAT-02-CCR | Total Radium Calculation | 672366   |                   |                     |



Зотрапу:

Address:

Email To:

Phone:

DRINKING WATER OTHER ☐ GROUND WATER Page: REGULATORY AGENCY RCRA L Site Location NPDES CHAIN-OF-CUSTODY / Analytical Request Document UST The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. Same as Section A Accounts Payable Heather Wilson Company Name: AECOM 42700 Invoice Information: Pace Quote Reference: Pace Project Manager: Section C Address: Attention: Project Name 60709371 PRPA CCR Purchase Order No.: NEED PO # Report To: Vasanta Kalluri Copy To: Jamie Herman Section B Required Project Information: Greenwood Village, CO 80111 jamie.herman@aecom.com 6200 South Quebec St (303) 740-2614 Section A Required Client Information: AECOM

| Preservatives  1033, 3  Preservatives  Na26203  Na16  And Preservatives  NacePTED BY AFFILIAN  Redium-226  Redium-228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                         |               |         |          |           | 91.00       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manager:   |                              |         |          |         |      |               |        |             | Site    | Site Location | uo    |       |         |                  |         |          |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------|---------------|---------|----------|-----------|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|---------|----------|---------|------|---------------|--------|-------------|---------|---------------|-------|-------|---------|------------------|---------|----------|----------------|
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enhau  |                                                         | Project Numbe | эг. 607 | 709371   |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pace Profi | ile #:                       | 1033    | က        |         |      |               |        |             |         | STAI          | įij   | ŭ     |         |                  |         |          |                |
| SAMPLE TO COLLECTED  AND THE COMPANY OF THE PARTY OF THE  |        |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          |         | -    | E             | edne   | sted        | Analy   | sis Fi        | tered | (N/X) |         | 4                |         |          |                |
| SAMPLE ID STANFILLE ID STANFILL |        |                                                         | 삥             |         |          | ŭ         | OLLECTE     | ۵                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | P                            | resen   | /ative   | S       | TN/A | 1             | Z      | -           |         |               |       |       |         |                  |         |          |                |
| SAMPLE NAME BY SERVICE OF SAMPLE NAME BY AND STOCKTURE  SOMPLER NAME BY AND STOCKTURE  SOMPLE |        | DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL |               |         |          | START     | Ω           | OMPOSITE<br>ND/GRAB | ОГГЕСТІОИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>   |                              |         |          |         | T    |               |        |             |         |               |       |       |         | (N/A)            |         |          |                |
| DOT - 02 - CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITEM # | WIPE<br>ARR<br>OTHER<br>TISSUE                          |               |         | L        |           |             |                     | A CONTRACTOR OF THE CONTRACTOR |            | <sup>†</sup> OS <sup>z</sup> | CI      |          | ethanol |      |               |        | mulpay leid |         |               |       |       |         | seidual Chlorine |         |          |                |
| ADD - 02 - CCR  ADD TO - CCR  AND TO - CCR  ADD TO - CCR   | -      | Bat - (15 - CCR                                         | × ×           | _       | 1        | +         |             | 1                   | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Н                            | Н       |          | N       | _    | _             |        | 1           | $\perp$ | 1             | +     |       | Ī       |                  | Pace Pr | oject No | / Lab I.D.     |
| ADDITIONAL COMMENTS  RELINGUISHED BY AFFILATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILATION  DATE  TIME  ACCRETED BY AFFILATION  AND THE TIME  AND  | 2      | BOH - 12 - CCR                                          |               |         |          |           |             | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7          | 1                            |         | -        | 1       | T    | ,  -          | -      |             |         |               |       |       |         | -                |         |          | 100            |
| ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  DATE TIME  ACCRETED BY AFFILLATION  ACCRETED BY AFFILLATION  DATE TIME  ACCRETED BY AFFILLATION  SAMPLER NAME AND SIGNATURE  FORM THE SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: WORK CAMPLER: WORK CAMPLER | 8      | 120-02-CCR                                              |               | =       |          | 1         |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          |         |      |               |        |             |         |               |       |       |         |                  |         |          | 200            |
| ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MOUNT HAVE SHOWN TO SAMPLE SHOWN TO SAMPLER: MOUNT HAVE SHOWN TO SAMPLER: MOUNT HAVE SHOW | 4      | カンナーシー COR                                              | >             | >       | >        | フ         | <i>&gt;</i> | 120                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >          | /                            | _       |          |         |      | $\rightarrow$ | $\geq$ | _           |         |               |       |       |         | >                |         |          | 400            |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE  TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  FINANT Name of SAMPLER: MORE PRINT NAM | 0 0    |                                                         |               |         |          | +         | +           | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +          |                              | $\perp$ |          |         | -    |               |        | +           |         |               |       |       |         |                  |         |          |                |
| ADDITIONAL COMMENTS  RELINQUISHED BY I AFFILLATION  ADDITIONAL COMMENTS  RELINQUISHED BY I AFFILLATION  DATE  TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER. MOLK PINT & TIME  SIGNATURE of SAMPLER. MOLK PINT & TIME  SIGNATURE of SAMPLER. MOLK PINT & TIME  ACCEPTED BY LAFFILLATION  DATE  TIME  SAMPLE CONDITIONS  SIGNATURE of SAMPLER. MOLK PINT & TIME  MINIMODIYY:  (1) 0 24  THE TIME  SAMPLE CONDITIONS  THE CONDITI | 7      |                                                         |               | -       |          |           |             |                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +          |                              | T       | +        |         | Т    |               |        | +           |         | 1             |       |       | İ       |                  |         |          |                |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY LAFFILIATION  DATE  TIME  ACCEPTED BY LAFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER. MOLKPAN & MATE Signed  SIGNATURE of SAMPLER. MOLKPAN & MATE Signed  SIGNATURE of SAMPLER. MOLKPAN & MATE Signed  The samples of SAMPLER. MOLKPAN & MATE Signed  SIGNATURE of SAMPLER. MOLKPAN & MATE Signed  SIGNATURE of SAMPLER. MOLKPAN & MATE Signed  The samples of SAMPLER. MOLKPAN & MATE Signed  SIGNATURE of SAMPLER. MOLKPAN & MATE Signed  The samples of SAMPLER. MOLKPAN & MATE SIGNATURE  THE SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  THE SAMPLER NAME AND SIGNATURE OF SAMPLER. MOLKPAN & MATE SIGNATURE  THE SAMPLER NAME AND SIGNATURE OF SAMPLER. MOLKPAN & MATE  SIGNATURE OF SAMPLER. MOLKPAN & MATER SAMPLER. MOLKPAN &  | 80     |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         | $\vdash$ |         | EA   | 1_            |        | -           |         | 1             |       |       | +       |                  |         |          |                |
| ADDITIONAL COMMENTS RELINDUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE FRINT NAME of SAMPLER: WOLLD WITH SIGNAD OF THE SIGNAD OF TH | o      |                                                         |               |         |          |           |             |                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                              |         |          |         | Τ    |               |        | -           | -       |               |       |       | T       | -                |         |          |                |
| ADDITIONAL COMMENTS RELINGUISHED BY LAFFILLATION DATE TIME ACCEPTED BY LAFFILLATION DATE TIME SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE PRINT NAME OF SAMPLER: MOLK PARTY FOR THE SIGNED SOOR OF S | 10     |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         | -        |         |      |               |        | -           | ŀ       |               | -     |       | ‡       |                  |         |          |                |
| ADDITIONAL COMMENTS  RELIADUISHED BY I AFFILIATION  ADDITIONAL COMMENTS  RELIADUISHED BY I AFFILIATION  DATE  TIME  ACCEPTED BY I AFFILIATION  DATE  TIME  ACCEPTED BY I AFFILIATION  DATE  TIME  ACCEPTED BY I AFFILIATION  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER: MOCCPTIC TO THE SIGNED SIGNATURE of SAMPLER: MOCCPTIC TO THE SIGNED SIGNATURE of SAMPLER: MOCCPTIC TO THE SIGNED SIGNATURE of SAMPLER: MOCCPTIC TO THE SIGNATURE OF SAMPLER: MOCCP | #      |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                              |         | +        |         | T    |               |        | -           |         | -             | +     |       | ‡       | -                |         |          |                |
| ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS  RELINQUISHED BY AFFILIATION DATE SIGNED BY AFFILIATION SAMPLER NAME AND SIGNATURE SIGNATURE OF SAMPLER: MOLK PMIT (MM/DD/YY); 00 24 66 66 60 60 60 60 60 60 60 60 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12     |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          | L       | Τ    |               |        | -           | ŀ       |               | -     |       | +       | -                |         |          |                |
| SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: WOCKPATTIFE (MANIDOTY): OB 24  FRINT NAME OF SAMPLER |        | ADDITIONAL COMMENTS                                     | RE            | ELINQU  | JISHED E | Y / AFFIL | IATION      | DA                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIME       |                              | 1       | ۱۶۱      |         | 100  | AFF           | ILIAT  | N N         | f       | DATE          | +     | TIME  | 1       | -                | SAMPLE  | OITIONO  | SZ             |
| SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: MOUNTY   COORDINATION   COORDIN |        |                                                         | Mac           | Kel     |          | 2         | 1           | 59                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15         | Ø                            | , ,     | B        | 1       | 8    | ğ             | 120    | e)          | 8       | 16/20         |       | 30    |         |                  | >       | \<br>\   | <b>&gt;</b>    |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: MOLL PMILL FIGURE  SIGNATURE of SAMPLER: MAINDOWY): 00 24 COOLER COOLE |        |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          |         |      |               |        |             |         |               |       |       | $\perp$ |                  | -       |          |                |
| SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: MICKPINIT (MINIDDITY): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                         |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |         |          | İ       | li.  |               |        |             | +       |               |       |       |         | -                |         |          |                |
| PRINT Name of SAMPLER: MOLK PMC   WITH Signed OF 24   FILE SIGNED OF 24   FILE SIGNED OF 25   FILE SIGNED  | , a    | Pa                                                      |               |         |          | SAN       | IPLER NA!   | ME AND SIG          | VATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1          |                              |         | (        | `       | Ι,   |               |        |             |         |               | -     |       | 0       |                  |         | ()       | los            |
| SIGNATURE of SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: SIGNATURE OF SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COOLS SAMPLER: MANDONYY; OF 24 CUSTON COO | g∪     | ae 1                                                    |               |         |          |           | PRINT       | Name of SAN         | PLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOC        | /LE                          | 1       | 5        | T/W     | +    |               |        |             |         |               |       |       | ° ni q  |                  |         | Y (Y/I   | uni se<br>(N/) |
| C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 13.0                                                    |               |         |          |           | SIGNA       | TURE of SAN         | PLER: \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2          | 3                            | X       | +        |         |      | 0             | TE SI  | gned        | 00      | 76            |       |       | Tem     |                  |         | plood    | olgme<br>Y)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . !    | f 1                                                     |               |         |          |           |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | 1                            | 3       |          |         |      | 2             | OO /W  | 1           |         | 1             |       |       | -       | ß ;              | 3       | )        | S              |

F-ALL-Q-020rev.08, 12-Oct-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

## Internal Transfer Chain of Custody -

|                           |                                                                                                           |                        | Rush Mi                                      | Rush Multiplier X                                                                                                   |           |           | Staf                 | State Of Origin: CO   | gin: (      | 0                            |            |                                       | - Lace                                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------------------|-----------------------|-------------|------------------------------|------------|---------------------------------------|-----------------------------------------|
| Wo                        | Workorder: 60452588                                                                                       | III<br>Workorder Name: |                                              | Samples Pre-Logged into eCOC 60709371 PRPA CCR                                                                      | nto eCO   | O         | Cer                  | Cert. Needed:         | <u>:</u>    | Yes                          | ×          |                                       |                                         |
| Rep                       | Report To                                                                                                 |                        | Ñ                                            | ot To                                                                                                               |           |           | 5                    | Owilei Necelveu Dale. |             | Jale.                        | Pauliet    | PIZUZ4 Results Requested By:          | By: 5/31/2024                           |
| Hea<br>Pac<br>9600<br>Pho | Heather Wilson<br>Pace Analytical Kansas<br>9608 Loiret Blvd.<br>Lenexa, KS 66219<br>Phone 1(913)563-1407 |                        | Pace /<br>1638 F<br>Suites<br>Green<br>Phone | Pace Analytical Pittsburgh<br>1638 Roseytown Road<br>Suites 2,3, & 4<br>Greensburg, PA 15601<br>Phone (724)850-5600 | righ<br>1 | President | Precented Containers | di<br>organi          | 82S muibe A | 82S muibeA<br>muibeA muS le3 |            |                                       |                                         |
|                           |                                                                                                           | Sample                 | Sample Collect                               |                                                                                                                     |           | EON       |                      |                       |             | οT                           |            |                                       |                                         |
| Item                      | Sample ID                                                                                                 | Type                   | Date/Time                                    | Lab ID                                                                                                              | Matrix    | Н         |                      |                       |             |                              |            |                                       | LAB USE ONLY                            |
| _                         | BAT-05-CCR                                                                                                | PS                     | 5/8/2024 10:15                               | 60452588001                                                                                                         | Water     | 2         |                      |                       | ×           | ×                            |            |                                       | 700                                     |
| 2                         | BAT-12-CCR                                                                                                | PS                     | 5/8/2024 12:40                               | 60452588002                                                                                                         | Water     | 2         |                      |                       | ×           | ×                            | -          |                                       | 000000000000000000000000000000000000000 |
| 3                         | DUP-02-CCR                                                                                                | PS                     | 5/8/2024 00:00                               | 60452588003                                                                                                         | Water     | 2         |                      |                       | ×           | -                            | -          |                                       | 100                                     |
| 4                         | BAT-02-CCR                                                                                                | PS                     | 5/8/2024 15:05                               | 60452588004                                                                                                         | Water     | 2         |                      |                       | ×           | +                            |            |                                       | 100                                     |
| 5                         |                                                                                                           |                        |                                              |                                                                                                                     |           |           |                      |                       |             | +                            | -          |                                       | too                                     |
|                           |                                                                                                           |                        |                                              |                                                                                                                     |           |           |                      | TANKS I               | 7           | KARALE                       |            | Comments                              |                                         |
| Tran                      | Transfers Released By                                                                                     |                        | Date/Time                                    | Received By                                                                                                         | _         |           |                      | Date/Time             | ne          | *Please                      | Provide OC | *Please Provide OC sheets with report |                                         |
| -                         |                                                                                                           |                        |                                              | K-m-X                                                                                                               | myhle     | - {       |                      | 12/15/5               | 1030        |                              | 2000       | אונון ובאסור                          |                                         |
| 2                         |                                                                                                           |                        |                                              | 2                                                                                                                   | 0         |           |                      | L                     |             |                              |            | £                                     |                                         |
|                           |                                                                                                           |                        |                                              |                                                                                                                     |           |           |                      |                       |             |                              | 9          |                                       |                                         |
| 읭                         | Cooler Temperature on Receipt                                                                             | Receipt                | Sno o.                                       | Custody Seal (Y                                                                                                     | or N      |           | Rec                  | Received on Ice       | <u> </u>    | Y or (                       | Z          | Samples Intack V                      | V or M                                  |
|                           |                                                                                                           |                        |                                              |                                                                                                                     | ı         | Ì         |                      |                       | 2           |                              | -          | סמווולווומס                           |                                         |

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

MO#:30682937



## CHAIN-OF-CUSTODY / Analytical Request Document

355

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

500 200 00 400 Pace Project No./ Lab I.D. DRINKING WATER SAMPLE CONDITIONS OTHER of Custody Sealed  $\geq$ ☐ GROUND WATER Page: Residual Chlorine (Y/N) REGULATORY AGENCY 00 RCRA 1030 Requested Analysis Filtered (Y/N) TIME STATE: 5/4/24 Site Location NPDES DATE UST ACCEPTED BY / AFFILIATION Lebrate - Pace muibeA leto Z 822-muibe5 322-muibes N/A Test Test Same as Section A Other Accounts Payable Methanol Heather Wilson Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Sompany Name: AECOM HOBN ace Profile #: 11033, 3 42700 HCI nvoice Information; HNO<sup>3</sup> OS2H Reference: Pace Project Section C ace Quote TIME D Unpreserved Address: Manager: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION 587 DATE 25 205 100 TIME COMPOSITE END/GRAB 5/8/2 DATE COLLECTED RELINQUISHED BY / AFFILIATION Project Name: 60709371 PRPA CCR TIME 1 N COMPOSITE NEED PO# DATE Report To: Vasanta Kalluri Copy To: Jamie Herman Required Project Information: 6070937 CN Due Date: 05/31/24 Purchase Order No.: SAMPLE TYPE (G=GRAB C=COMP) Project Number: (see valid codes to left) **MATRIX CODE** Section B MO#: 30682937 Valid Matrix Codes

MATRIX
DRINKING WATER
WATER WW
PRODUCT
P SOIL/SOLID
SL P St AR AR OIL WIPE AIR OTHER TISSUE Greenwood Village, CO 80111 jamie.herman@aecom.com ADDITIONAL COMMENTS Requested Due Date/TAT: STUIN (IC) (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 6200 South Quebec St SAMPLE ID Required Client Information PM: MAR Phone: (303) 740-2614 Required Client Information Section D Email To: Address: 9 7 12 # M3TI 6

F-ALL-Q-020rev.08, 12-Oct-2007

(N/A)

COOIST (Y/N)

(N/Y) eal

De ni qmeT

76

DATE Signed (MM/DD/YY): 109

3

PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

Page 15 of 18

CLIENT: PACE\_60\_LEKS

| Client Name: Pace - Lenexa                    | l ,     | (5         |               | PM: MAR Due Date: 05/31/24 CLIENT: PACE_60_LEKS              |
|-----------------------------------------------|---------|------------|---------------|--------------------------------------------------------------|
| Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client       | _       |            | rial [        | Pace Other Initial/Date                                      |
| Tracking Number: 7146 2378                    | 76      | 10         | L             | Examined By: 2 5/9/24                                        |
|                                               |         |            |               |                                                              |
| Custody Seal on Cooler/Box Present:           | Yes 🛭 I | No<br>Ice: | Wet           | Blue (None)                                                  |
| Cooler Temperature: Observed Temp             |         | _°C        | Cor           | rection Factor: °C Final Temp: °C                            |
| Temp should be above freezing to 6°C          |         |            |               | D. D. D. Daviduel Chloring Let #                             |
|                                               |         |            | T             | pH paper Lot# D.P.D. Residual Chlorine Lot #                 |
| Comments:                                     | Yes     | No         | NA            |                                                              |
| Chain of Custody Present                      |         |            |               | 1. Received IRWO via email                                   |
| Chain of Custody Filled Out:                  |         | 1_         | _             | 2.                                                           |
| -Were client corrections present on COC       |         | /          | 1             |                                                              |
| Chain of Custody Relinquished                 | /       |            |               | 3.                                                           |
| Sampler Name & Signature on COC:              | /       |            |               | 4.                                                           |
| Sample Labels match COC:                      |         |            | 1             | 5. The confiners for sample 004 have sample time at 13:05, 8 |
| -Includes date/time/ID                        |         |            |               | Sample time at 15,00,00                                      |
| Matrix: VO (                                  |         |            |               |                                                              |
| Samples Arrived within Hold Time:             | /       |            |               | 6.                                                           |
| Short Hold Time Analysis (<72hr               |         | _          | 1             | 7.                                                           |
| remaining):                                   |         |            |               |                                                              |
| Rush Turn Around Time Requested:              |         | /          |               | 8.                                                           |
| Sufficient Volume:                            |         |            |               | 9.                                                           |
| Correct Containers Used:                      | /       |            |               | 10.                                                          |
| -Pace Containers Used                         |         |            |               |                                                              |
| Containers Intact:                            | /       |            |               | 11.                                                          |
| Orthophosphate field filtered:                |         |            |               | 12.                                                          |
| Hex Cr Aqueous samples field filtered:        |         |            | _             | 13.                                                          |
| Organic Samples checked for dechlorination    |         |            | _             | 14:                                                          |
| Filtered volume received for dissolved tests: |         |            | /             | 15:                                                          |
| All containers checked for preservation:      |         |            |               | 16.                                                          |
| exceptions: VOA, coliform, TOC, O&G,          |         |            | 350           | pH <z< td=""></z<>                                           |
| Phenolics, Radon, non-aqueous matrix          |         | ren e sil  |               |                                                              |
| All containers meet method preservation       |         |            |               | Initial when Date/Time of Preservation                       |
| requirements:                                 |         |            |               | completed Preservation                                       |
| The state of the supplied had                 |         | *          |               | Preservative                                                 |
| 2260C/D: Headspace in VOA Vials (> 6mm)       |         |            | _             | 17.                                                          |
| 24.1: Headspace in VOA Vials (0mm)            |         |            | /             | 18.                                                          |
| adon: Headspace in RAD Vials (0mm)            |         |            |               | 19.                                                          |
| adon: neauspace in NAD viais (onin)           |         |            | $\rightarrow$ |                                                              |
| rip Blank Present:                            |         |            |               | Trip blank custody seal present? YES or NO                   |
| ad Samples Screened <.05 mrem/hr.             |         |            |               | Initial when completed Date: 5/9/84 Survey Meter SN:250/4380 |
| omments:                                      |         |            | .59           |                                                              |
|                                               |         |            |               |                                                              |

## **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Pace Analytical

Ra-226 LL1 5/13/2024 79152 DW 3252923 0.000 0.229 0.496 0.00 N/A Pass MB Sample ID
MB concentration:
M/B Counting Uncertainty:
MB MDC: Test:
Analyst:
Date:
Batch ID:
Matrix: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Method Blank Assessment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MS/MSD 2                             |                         |                            |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    |                                     |                |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------|-----------------|-------------|------------------------------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------------|------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------------------|------------------------------------|------------------------|-------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Matrix Spike Control Assessment  Sample Collection Date:  Sample MS I.D.  Sample MSD I.D.  Sample MSD I.D.  Sample MSD I.D.  Spike Volume Used in MSD II.D.  Spike Volume Used in MSD III.  MSD Miquot (L. g. F):  MSD Spike Uncertainty (calculated):  Sample Result:  Matrix Spike Result Counting Uncertainty (pCi/L. g. F):  Sample Matrix Spike Duplicate Result:  MSD Numerical Performance Indicator:  MSD Numerical Performance Indicator:  MSD Numerical Performance Indicator:  MSD Numerical Performance Indicator:  MSD Status vs Numerical Indicator:  MSD Status vs Numerical Indicator:  MSD Status vs Numerical Indicator:  MSD Status vs Numerical Indicator:  MSD Status vs Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD Status vs Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX Spike Recovery:  MSD MATRIX | MS/MSD 1                               |                         |                            |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    |                                     |                |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D. Sample MS I.D. | Sample MSD I.D. | Spike I.D.: | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Aliquot (L, g, F): | MS Target Conc.(pCi/t, g, F): | MSD Aliquot (L, g, F): | MSD Target Conc. (pCi/L, g, F): | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery: | MSD Percent Recovery: | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery: | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MACANON CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CON |

| 1 |                                      | 2         | Sample F    |             | Matrix Spike F                |                   | Matrix Spike Duplicate F  |                             |                           |                       |                                              |                                  |                   |                                |                     | _                        |                          | Matrix Spike/Matrix Spik    | ate             |                       |                              |                                                   | ow. Matrix Spike I                     |                                                             | Matrix Spike Duplicate                        | <u></u>                                    | (Based on the Perce                                       | MS/ MSC                                  |                          |               |
|---|--------------------------------------|-----------|-------------|-------------|-------------------------------|-------------------|---------------------------|-----------------------------|---------------------------|-----------------------|----------------------------------------------|----------------------------------|-------------------|--------------------------------|---------------------|--------------------------|--------------------------|-----------------------------|-----------------|-----------------------|------------------------------|---------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------------------|------------------------------------------|--------------------------|---------------|
| , |                                      | LCSD79152 | 5/28/2024   | 23-063      | 32.299                        | 0.10              | 0.652                     | 4.956                       | 0.233                     | 5.641                 | 1.013                                        | 1.29                             | 113.83%           | N/A                            | Pass                | 133%                     | 73%                      |                             | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                                       | the space below.                       |                                                             |                                               |                                            |                                                           |                                          |                          | _             |
|   | LCSD (Y or N)?                       | LCS79152  | 5/28/2024   | 23-063      | 32.299                        | 0.10              | 0.652                     | 4.951                       | 0.233                     | 4.844                 | 906.0                                        | -0.22                            | 97.84%            | A/N                            | Pass                | 133%                     | 73%                      |                             | LCS79152        | LCSD79152             | 4.844                        | 906.0                                             | 5.641                                  | 1.013                                                       | 2                                             | -1.149                                     | 15.11%                                                    | N/A                                      | Pass                     | 05.70         |
|   | Laboratory Control Sample Assessment |           | Count Date: | Spike I.D.: | Spike Concentration (pCi/mL): | Volume Used (mL): | Aliquot Volume (L, g, F): | Target Conc. (pCi/L, g, F): | Uncertainty (Calculated): | Result (pCi/L, g, F): | LCS/LCSD Counting Uncertainty (pCi/L, g, F): | Numerical Performance Indicator: | Percent Recovery: | Status vs Numerical Indicator: | Status vs Recovery: | Upper % Recovery Limits: | Lower % Recovery Limits: | Duplicate Sample Assessment | Sample I.D.:    | Duplicate Sample 1.D. | Sample Result (pCi/L, g, F): | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F): | Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | Are sample and/or duplicate results below RL? | Duplicate Numerical Performance Indicator: | (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | Duplicate Status vs Numerical Indicator: | Duplicate Status vs RPD: | אווא ס הוווגי |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | Sample MS I.D. | Sample MSD 1.D. | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |
|-------------------------------------------------------|-------------|----------------|-----------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
|                                                       | e           | _              | _               | _                           | š                                                       |                                       |                                                                   |                                            |                                                          | 1                                                |                                  |              |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:



Ra-226 NELAC QC Printed: 5/30/2024 12:44 PM

# **Quality Control Sample Performance Assessment**

Ra-228 JJS1 5/16/2024

79153 WT

Worklist: Matrix:

Test: Analyst: Date:

Pace Analytical"

3252928

MB Sample ID

Method Blank Assessment

0.208 0.306 0.658 1.33 Pass Pass

MB Numerical Performance Indicator:

MB Status vs Numerical Indicator: MB Status vs. MDC:

MB concentration: M/B 2 Sigma CSU: MB MDC:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

|           | Sample Matrix Spike Control Assessment                   | MS/MSD 1 | MS/MSD 2 |
|-----------|----------------------------------------------------------|----------|----------|
|           | Sample Collection Date:                                  |          |          |
|           | Sample I.D.                                              |          |          |
|           | Sample MS I.D.                                           |          |          |
|           | Sample MSD I.D.                                          |          |          |
|           | Spike I.D.:                                              |          |          |
|           | MS/MSD Decay Corrected Spike Concentration (pCi/mL):     |          |          |
|           | Spike Volume Used in MS (mL):                            |          |          |
|           | Spike Volume Used in MSD (mL):                           |          |          |
|           | MS Aliquot (L, g, F):                                    |          |          |
|           | MS Target Conc.(pCi/L, g, F):                            |          |          |
|           | MSD Aliquot (L. g, F):                                   |          |          |
|           | MSD Target Conc. (pCi/L, g, F):                          |          |          |
|           | MS Spike Uncertainty (calculated):                       |          |          |
| >         | MSD Spike Uncertainty (calculated):                      |          |          |
| LCSD79153 | Sample Result:                                           |          |          |
| 5/23/2024 | Sample Result 2 Sigma CSU (pCi/L, g, F):                 |          |          |
| 23-043    | Sample Matrix Spike Result:                              |          |          |
| 36.647    | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           |          |          |
| 0.10      | Sample Matrix Spike Duplicate Result:                    |          |          |
| 0.819     | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |          |          |
| 4.476     | MS Numerical Performance Indicator:                      |          |          |
| 0.219     | MSD Numerical Performance Indicator:                     |          |          |
| 3.554     | MS Percent Recovery:                                     |          |          |
| 0.799     | MSD Percent Recovery:                                    |          |          |
| -2.18     | MS Status vs Numerical Indicator:                        |          |          |
| 79.40%    | MSD Status vs Numerical Indicator:                       |          |          |
| N/A       | MS Status vs Recovery:                                   |          |          |
| Pass      | MSD Status vs Recovery:                                  |          |          |
| 135%      | MS/MSD Upper % Recovery Limits:                          |          |          |
| %09       | MS/MSD Lower % Recovery Limits:                          |          |          |

| >                                    | LCSD79153 | 5/23/2024   | 23-043      | 36.647                                        | 0.10              | 0.819                     | 4.476                       | 0.219                     | 3.554                 | 0.799                               | -2.18                            | 79.40%            | N/A                            | Pass                | 135%                     | %09                      |
|--------------------------------------|-----------|-------------|-------------|-----------------------------------------------|-------------------|---------------------------|-----------------------------|---------------------------|-----------------------|-------------------------------------|----------------------------------|-------------------|--------------------------------|---------------------|--------------------------|--------------------------|
| LCSD (Y or N)?                       | LCS79153  | 5/23/2024   | 23-043      | 36.647                                        | 0.10              | 0.822                     | 4.461                       | 0.219                     | 3.043                 | 0.742                               | -3.59                            | 68.22%            | N/A                            | Pass                | 135%                     | %09                      |
| Laboratory Control Sample Assessment |           | Count Date: | Spike I.D.: | Decay Corrected Spike Concentration (pCi/mL): | Volume Used (mL): | Aliquot Volume (L, g, F): | Target Conc. (pCi/L, g, F): | Uncertainty (Calculated): | Result (pCi/L, g, F): | LCS/LCSD 2 Sigma CSU (pCi/L, g, F): | Numerical Performance Indicator: | Percent Recovery: | Status vs Numerical Indicator: | Status vs Recovery: | Upper % Recovery Limits: | Lower % Recovery Limits: |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. Sample MS. I.D. Sample MS. I.D. Sample MSD. I.D. Sample MSD. I.D. Sample Matrix Spike Result Sample Matrix Spike Result Sample Matrix Spike Duplicate Result Matrix Spike Duplicate Result Duplicate Result 2 Sigma CSU (pCi/L. g. F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status Vs RPD: %RPD Duplicate Status Vs RPD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Enter Duplicate sample IDs if other than LCS/LCSD in the space below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                       | LCS79153<br>LCSD73153<br>2.043<br>0.742<br>0.742<br>0.799<br>NO<br>-0.918<br>15.15%<br>Pass<br>Pass<br>36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Duplicate Sample Assessment                           | Sample I.D.:  Duplicate Sample I.D.  Sample Result (DC/II. g. F):  Sample Duplicate Result 2 Sigma CSU (DC/II. g. F):  Sample Duplicate Result 2 Sigma CSU (DC/II. g. F):  Are sample and/or duplicate results below RL?  Duplicate Numerical Performance Indicator:  (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:  Duplicate Status vs Numerical Indicator:  Duplicate Status vs Numerical Indicator:  Duplicate Status vs RPD:  SARD:  

| . ;      |  |
|----------|--|
| 2        |  |
| <b>≥</b> |  |
| ş        |  |
| Š        |  |
| ă        |  |
| 20       |  |
| Ħ        |  |
| ē        |  |
| icate    |  |
| Š        |  |
| 큵        |  |
| ö        |  |
| e de     |  |
| ğ        |  |
| ě        |  |
| e<br>E   |  |
| Ě        |  |
| =        |  |
| g        |  |
| 2        |  |
| abi      |  |
| ğ        |  |
| 2        |  |
| ğ        |  |
| ö        |  |
| ď        |  |
| g        |  |
| 흑        |  |
| 를        |  |
| 드        |  |
| atic     |  |
| /all     |  |
| ш        |  |
| #        |  |

Comments:

W2/20/20

holm shap

Ra-228\_79153\_W Ra-228 (ENV-FRM-GBUR-0295 03).xls

1 of 1

Ra-228 NELAC DW2 Printed: 5/24/2024 2:02 PM





June 14, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452675

## Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 10, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

Databa m. Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM







## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

## Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |  |
|-------------|------------|--------|----------------|----------------|--|
| 60452675001 | BAT-11-CCR | Water  | 05/09/24 09:05 | 05/10/24 10:00 |  |
| 60452675002 | BAT-10-CCR | Water  | 05/09/24 11:15 | 05/10/24 10:00 |  |
| 60452675003 | BAT-01-CCR | Water  | 05/09/24 14:30 | 05/10/24 10:00 |  |



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

| Lab ID      | Sample ID  | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|--------------------------|----------|----------------------|------------|
| 60452675001 | BAT-11-CCR | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60452675002 | BAT-10-CCR | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60452675003 | BAT-01-CCR | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

| Sample: BAT-11-CCR<br>PWS: | Lab ID: 6045<br>Site ID:    | <b>2675001</b> Collected: 05/09/24 09:05 Sample Type: | Received: | 05/10/24 10:00 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.352 ± 0.630 (1.10)<br>C:NA T:84%                    | pCi/L     | 05/30/24 14:53 | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 1.05 ± 0.434 (0.688)<br>C:77% T:90%                   | pCi/L     | 05/29/24 12:16 | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 1.40 ± 1.06 (1.79)                                    | pCi/L     | 06/05/24 08:15 | 7440-14-4     |      |



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

| Sample: BAT-10-CCR<br>PWS: | Lab ID: 6045<br>Site ID:    | <b>2675002</b> Collected: 05/09/24 11:15 Sample Type: | Received: | 05/10/24 10:00 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.250 ± 0.490 (0.880)<br>C:NA T:91%                   | pCi/L     | 05/30/24 14:53 | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 1.32 ± 0.481 (0.708)<br>C:77% T:89%                   | pCi/L     | 05/29/24 12:17 | 7 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 1.57 ± 0.971 (1.59)                                   | pCi/L     | 06/05/24 08:15 | 7440-14-4     |      |



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

| Sample: BAT-01-CCR<br>PWS: | Lab ID: 6045<br>Site ID:    | <b>2675003</b> Collected: 05/09/24 14:30 Sample Type: | Received: | 05/10/24 10:00 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.240 ± 0.471 (0.846)<br>C:NA T:89%                   | pCi/L     | 05/30/24 14:53 | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 1.36 ± 0.471 (0.670)<br>C:80% T:89%                   | pCi/L     | 05/29/24 12:17 | 7 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 1.60 ± 0.942 (1.52)                                   | pCi/L     | 06/05/24 08:1  | 5 7440-14-4   |      |



## **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

QC Batch: 668296 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452675001, 60452675002, 60452675003

METHOD BLANK: 3254028 Matrix: Water

Associated Lab Samples: 60452675001, 60452675002, 60452675003

ParameterAct  $\pm$  Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-226-0.0889  $\pm$  0.203 (0.479) C:NA T:87%pCi/L05/30/24 14:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

QC Batch: 668298 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452675001, 60452675002, 60452675003

METHOD BLANK: 3254031 Matrix: Water

Associated Lab Samples: 60452675001, 60452675002, 60452675003

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.333 ± 0.329 (0.675) C:81% T:89%
 pCi/L
 05/29/24 14:36

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

## **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 06/14/2024 06:50 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452675

Date: 06/14/2024 06:50 PM

| Lab ID      | Sample ID  | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|--------------------------|----------|-------------------|---------------------|
| 60452675001 | BAT-11-CCR | EPA 903.1                | 668296   |                   |                     |
| 60452675002 | BAT-10-CCR | EPA 903.1                | 668296   |                   |                     |
| 60452675003 | BAT-01-CCR | EPA 903.1                | 668296   |                   |                     |
| 60452675001 | BAT-11-CCR | EPA 904.0                | 668298   |                   |                     |
| 60452675002 | BAT-10-CCR | EPA 904.0                | 668298   |                   |                     |
| 60452675003 | BAT-01-CCR | EPA 904.0                | 668298   |                   |                     |
| 60452675001 | BAT-11-CCR | Total Radium Calculation | 673286   |                   |                     |
| 60452675002 | BAT-10-CCR | Total Radium Calculation | 673286   |                   |                     |
| 60452675003 | BAT-01-CCR | Total Radium Calculation | 673286   |                   |                     |

Pace Analytical "

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

DRINKING WATER CC R RA PA ☐ GROUND WATER REGULATORY AGENCY 00 RCRA STATE: NPDES Site Location UST Same as Section A Invoice Information:
Attention: Accounts Payable Heather Wilson Company Name. AECOM ace Profile #: 11033, 3 42700 Pace Quote Reference: Pace Project Manager: Section C Address: Project Name: 60709371 PRPA CCR Purchase Order No.: NEED PO # Report To: Vasanta Kalluri Section B Required Project Information: Copy To: Jamie Herman roject Number: 60709371 Greenwood Village, CO 80111 jamie.herman@aecom.com 6200 South Quebec St Requested Due Date/TAT: STOINC Required Client Information: Phone: (303) 740-2614 AECOM Section D Company: Address: Email To:

|                                   |               | Chlorine (Y/V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Residual Of Pace Project No./ Lab I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                | SAMPLE CONDITIONS                                      | Geceived on Cooler (Y/N)  Samples Intact  Cooler (Y/N)  Samples Intact                                                                                 |
|-----------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requested Analysis Filtered (Y/N) | GN CHILD      | M 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | > -> -> -> -> -> -> -> -> -> -> -> -> -> |                | BBY AFFILIATION DATE TIME                              | DATE Signed (MM/IDD/YY): 05/69/22                                                                                                                      |
|                                   | Preservatives | E TEMP AT COLLECTION Served  2 Published Served Served Served Served                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other Methanic Massacian Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Machanic Macha | >                                        |                | DATE TIME ACCEPTED BY AFFILIATION                      | MPLER: MOCCT NOTE ( M ) FF month for any invoices not paid within 30 days.                                                                             |
| (ye                               | el of sebi    | COMPOSITE COMPOSITE START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START START STAR | SAMP DATE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                | RELINQUISHED BY / AFFILIATION                          | SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: 30 day payment terms and agreeing to late charges of 1.5% per month for ar     |
| atrix Co                          |               | SAMPLE ID WHE WAS WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTER WANTE | 2 BAT-11-CCK<br>2 Bat-10-CCK<br>3 Bat-01-CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  | 10<br>11<br>12 | Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TI  'B, Ca, Li | SAMPLER NAME AND SIG PRINT Name of SAM Signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per 18 |

F-ALL-Q-020rev.08, 12-Oct-2007

| ENV-FRM-GBUR-0088 v07_Sample Co | ondition Upon Receipt-Greensburg |
|---------------------------------|----------------------------------|
| Effective Date: 01/04/2024      |                                  |
|                                 |                                  |
| Client Name:                    | Project #:                       |

| Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client                                   | □ Com             | merci   | al 🗆 P | ace 🗆 Other                        |              | Initial / Date                           |
|---------------------------------------------------------------------------|-------------------|---------|--------|------------------------------------|--------------|------------------------------------------|
| Tracking Number:                                                          |                   |         |        |                                    |              | Examined By:                             |
| Custody Seal on Cooler/Box Present: Type Thermometer Used: Type           | es □N<br>oe of Io | e: W    | /et Bl | ue None                            | 'es □No      | Labeled By: Temped By:  •C Final Temp:•C |
| Cooler Temperature: Observed Temp<br>Temp should be above freezing to 6°C |                   |         | COITE  |                                    |              |                                          |
| Temp should be above freezing to o-c                                      |                   |         |        | pH paper Lot                       | #            | D.P.D. Residual Chlorine Lot #           |
| Comments:                                                                 | Yes               | No      | NA     |                                    |              |                                          |
| Chain of Custody Present                                                  |                   |         |        | 1.                                 |              |                                          |
| Chain of Custody Filled Out:                                              |                   |         |        | 2                                  |              |                                          |
| -Were client corrections present on COC                                   |                   |         |        |                                    |              |                                          |
| Chain of Custody Relinquished                                             |                   |         |        | 3.                                 |              |                                          |
| Sampler Name & Signature on COC:                                          |                   |         |        | 4.                                 |              |                                          |
| Sample Labels match COC:                                                  |                   |         |        | 5.                                 |              |                                          |
| -Includes date/time/ID                                                    |                   |         |        |                                    | 2/4          |                                          |
| Matrix:                                                                   |                   |         |        |                                    |              |                                          |
| Samples Arrived within Hold Time:                                         |                   |         |        | 6.                                 |              |                                          |
| Short Hold Time Analysis (<72hr                                           |                   |         |        | 7.                                 |              |                                          |
| remaining):                                                               |                   |         |        |                                    |              |                                          |
| Rush Turn Around Time Requested:                                          |                   |         |        | 8.                                 |              |                                          |
| Sufficient Volume:                                                        |                   |         |        | 9.                                 |              |                                          |
| Correct Containers Used:                                                  |                   |         |        | 10.                                |              |                                          |
| -Pace Containers Used                                                     |                   |         |        |                                    |              |                                          |
| Containers Intact:                                                        |                   |         |        | 11.                                |              |                                          |
| Orthophosphate field filtered:                                            |                   |         | _      | 12.                                |              |                                          |
| Hex Cr Aqueous samples field filtered:                                    |                   |         |        | 13.                                |              |                                          |
| Organic Samples checked for dechlorination                                |                   |         |        | 14:                                |              | - 1760                                   |
| Filtered volume received for dissolved tests:                             |                   |         |        | 15:                                |              |                                          |
| All containers checked for preservation:                                  |                   |         |        | 16.                                |              |                                          |
| exceptions: VOA, coliform, TOC, O&G,                                      |                   |         |        |                                    |              |                                          |
| Phenolics, Radon, non-aqueous matrix                                      |                   | 191 193 | - 200  |                                    | 3 74 - 10 74 | The attractor (6.6)                      |
| All containers meet method preservation                                   |                   |         |        | Initial when completed             |              | Date/Time of<br>Preservation             |
| requirements:                                                             |                   |         |        | Lot# of added                      |              | 7,000,744,000                            |
|                                                                           |                   |         |        | Preservative                       |              |                                          |
| 8260C/D: Headspace in VOA Vials (> 6mm)                                   |                   |         |        | 17.                                |              |                                          |
| 624.1: Headspace in VOA Vials (0mm)                                       |                   |         |        | 18.                                |              |                                          |
| Radon: Headspace in RAD Vials (0mm)                                       |                   |         |        | 19.                                |              |                                          |
| Trip Blank Present:                                                       |                   |         |        | PARTICIPATION OF THE PARTICIPATION |              | eal present? YES or NO                   |
| Rad Samples Screened <.05 mrem/hr.                                        |                   |         |        | nitial when completed              | Date:        | 5/10/24 Survey Meter<br>SN: 250/(1380    |
| Comments:                                                                 |                   |         |        | W                                  |              | 155                                      |
|                                                                           |                   |         |        |                                    |              |                                          |

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Updated CoC received your

LAB USE ONLY 907 6/3/2024 Z Samples Intact (Y) or 5/10/2024 Results Requested By: \*Please Provide QC sheets with report Requested Analysis × 3 Yes × × × Radium Sum Total Owner Received Date: State Of Origin: CO Radium 228 Received on Ice × × × Radium 226 Date/Time Cert. Needed: Preserved Containers 7976 7 2 7 ниоз Samples Pre-Logged into eCOC Z Matrix Water Water Water Custody Seal (N) or Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Received By 60709371 PRPA CCR my 60452675003 60452675002 60452675001 Rush Multiplier Lab ID Subcontract To Internal Transfer Chain of Custody Date/Time 5/9/2024 09:05 5/9/2024 11:15 5/9/2024 14:30 Date/Time Collect Workorder Name: ပ Sample Type PS PS PS Cooler Temperature on Receipt Workorder: 60452675 Released By Pace Analytical Kansas Lenexa, KS 66219 Phone 1(913)563-1407 9608 Loiret Blvd. Heather Wilson Item | Sample ID BAT-10-CCR BAT-11-CCR BAT-01-CCR **Transfers** Report To

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

MO#:30683331 30683331 Page 1 of 1

## ENV-FRM-GBUR-0088 v07\_Sample Condition Upon Receipt

Effective Date: 01/04/2024

WO#:30683331

PM: MAR

Due Date: 06/03/2

CLIENT: PACE\_60\_LEKS

| Client Name: Pack-KS (AROM)                               | ). ο <sub>ј</sub> ευι π.     |
|-----------------------------------------------------------|------------------------------|
|                                                           | oce   Other   Initial / Date |
| Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client ☐ Commercial ☐ Pa | Examined By: VB 5-10-24      |

Tracking Number: 7140 L510 UM6 Labeled By: \_ Lの S-1いと Yes □No Seals Intact: ☑ Yes □No Custody Seal on Cooler/Box Present: Temped By: \_ Type of Ice: Wet Blue None Thermometer Used: Final Temp: Cooler Temperature: Observed Temp \_\_\_\_\_\_ °C Correction Factor: \_ Temp should be above freezing to 6°C D.P.D. Residual Chlorine Lot # pH paper Lot# 100293 NA No Yes received the small on 5-10-14 Comments: Chain of Custody Present 2. Chain of Custody Filled Out: -Were client corrections present on COC 3. Only on original Col Chain of Custody Relinquished Sampler Name & Signature on COC: Sample Labels match COC: -Includes date/time/ID WT Matrix: 6. Samples Arrived within Hold Time: 7. Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used 11. Containers Intact: × 12. Orthophosphate field filtered: 13. Hex Cr Aqueous samples field filtered: × Organic Samples checked for dechlorination 14: X 15: Filtered volume received for dissolved tests: 16. All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix Date/Time of Initial when All containers meet method preservation Preservation completed requirements: Lot# of added Preservative 17. 8260C/D: Headspace in VOA Vials (> 6mm) 18. 624.1: Headspace in VOA Vials (0mm) X 19. Radon: Headspace in RAD Vials (0mm) X Trip blank custody seal present? YES or NO X Trip Blank Present: Survey Meter SN: 2 SOL 1380 Initial when Rad Samples Screened <.05 mrem/hr. completed Comments:

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office.

PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

MO#: 40684441

PM: MAR

CLIENT: PACE\_60\_LEKS

Due Date: 06/03/24

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

Section C

RA PA PA

DRINKING WATER 520 B Pace Project No./ Lab I.D. SAMPLE CONDITIONS of L 2 **GROUND WATER** Page: Residual Chlorine (Y/N) N/N 00 REGULATORY AGENCY RCRA TIME 1000 Requested Analysis Filtered (Y/N) MAIDE Site Location STATE: PC/01/2 NPDES DATE Kadlum UST 2 SCHOC LDS 470 Total Mercury ACCEPTED BY / AFFILIATION \*\* slstaM lstoT 0 r 0 č Lord - Have 3 N/A tast zisylsnA1 Same as Section A Other Accounts Payable Methanol Heather Wilson Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Company Name. AECOM ace Profile #: 11033, 3 HOBN 42700 HCI Invoice Information: HNO3 OSZH Reference: Pace Project Manager: Pace Quote Unpreserved TIME Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION 50 DATE 1430 Philips 0905 TIME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION 60709371 PRPA CCR TIME COMPOSITE NEED PO# DATE Report To: Vasanta Kalluri Copy To: Jamie Herman Project Number: 60709371 Required Project Information 'urchase Order No.: 0 NP) (G=GRAB C=COMP) SAMPLE TYPE (see valid codes to left) MATRIX CODE Project Name: Valid Matrix Codes TS AWP TS MATRIX
DRINKING WATER
WATER
WASTE WATER
PRODUCT
SOIL/SOLID OIL WIPE AJR OTHER TISSUE Greenwood Village, CO 80111 jamie.herman@aecom.com ADDITIONAL COMMENTS Requested Due Date/TAT: CHOING 6200 South Quebec St (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 'Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TI SAMPLE ID Required Client Information (303) 740-2614 Required Client Information: AECOM Section D B, Ca, Li Company: Email To: Address. -hone: 10 7 12 9 8 6 # MaTI 1

F-ALL-Q-020rev.08, 12-Oct-2007

(MM/DD/YY): 05/69

(V/V)

Cooler (Y/N)

Custody Sealed

ICE (Y/N) Received on

J° ni qma⊤

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

Page 16 of 18

PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

## Pace Analytical"

# **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-226 LL1 5/14/2024

79174 DW Test:
Analyst:
Date:
Batch ID:
Matrix:

3254028 -0.089 0.174 0.479 -1.00 MB Sample ID MB concentration: WB Counting Uncertainty: MB MDC: MB Numerical Performance Indicator: Method Blank Assessment

N/A Pass

MB Status vs Numerical Indicator: MB Status vs. MDC:

Laboratory Control Sample Assessment

|           | Sample Matrix Spike Control Assessment                            | MS/MSD 1 | MS/MSD 2 |
|-----------|-------------------------------------------------------------------|----------|----------|
|           | Sample Collection Date:                                           |          |          |
|           | Sample I.D.                                                       |          |          |
|           | Sample MS 1:0                                                     |          |          |
|           | Spike I.D.:                                                       |          |          |
|           | MS/MSD Decay Corrected Spike Concentration (pCi/mL):              |          |          |
|           | Spike Volume Used in MS (mL):                                     |          |          |
|           | Spike Volume Used in MSD (mL):                                    |          |          |
|           | MS Aliquot (L, 9, F):                                             |          |          |
|           | MS Target Conc.(pCi/L, g, F):                                     |          |          |
|           | MSD Aliquot (L, g, F):                                            |          |          |
|           | MSD Target Conc. (pCi/L, g, F):                                   |          |          |
|           | MS Spike Uncertainty (calculated):                                |          |          |
|           | MSD Spike Uncertainty (calculated):                               |          |          |
| LCSD79174 | Sample Result:                                                    |          |          |
| 6/4/2024  | Sample Result Counting Uncertainty (pCi/L, g, F):                 |          |          |
| 23-063    | Sample Matrix Spike Result:                                       |          |          |
| 32.299    | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           |          |          |
| 0.10      | Sample Matrix Spike Duplicate Result:                             |          |          |
| 0.656     | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |          |          |
| 4.925     | MS Numerical Performance Indicator:                               |          |          |
| 0.231     | MSD Numerical Performance Indicator:                              |          |          |
| 83        | MS Percent Recovery:                                              |          |          |
| 1.469     | MSD Percent Recovery:                                             |          |          |
| -0.10     | MS Status vs Numerical Indicator:                                 |          |          |
| 98.53%    | MSD Status vs Numerical Indicator:                                |          |          |
| N/A       | MS Status vs Recovery:                                            |          |          |
| Pass      | MSD Status vs Recovery:                                           |          |          |
| 133%      | MS/MSD Upper % Recovery Limits:                                   |          |          |
| 73%       | MS/MSD Lower % Recovery Limits:                                   |          |          |

LCS79174 6/4/2024 23-063 32.299 0.10 0.652 4.957 0.233 4.143

Count Date: Spike I.D.:

Spike Concentration (pCi/mL): Volume Used (mL):

Aliquot Volume (L. g. F):
Target Conc. (pCi/L. g. F):
Uncertainty (Calculated):
Result (pCi/L. g. F):
LCS/LCSD Counting Uncertainty (pCi/L. g. F):
Numerical Performance Indicator:

Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Percent Recovery: Status vs Numerical Indicator

| Duplicate Sample Assessment                                 |           |                  | Matrix Spi |
|-------------------------------------------------------------|-----------|------------------|------------|
| Sample I.D.:                                                | LCS79174  | Enter Duplicate  |            |
| Duplicate Sample I.D.                                       | LCSD79174 | sample IDs if    |            |
| Sample Result (pCi/L, g, F):                                | 4.143     | other than       |            |
| Sample Result Counting Uncertainty (pCi/L, g, F):           | 1.254     | LCS/LCSD in      |            |
| Sample Duplicate Result (pCi/L, g, F):                      | 4.853     | the space below. |            |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.469     |                  |            |
| Are sample and/or duplicate results below RL?               | 2         |                  | Matrix Sp  |
| Duplicate Numerical Performance Indicator:                  | -0.720    |                  |            |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:   | 16.41%    |                  | (Base      |
| Duplicate Status vs Numerical Indicator:                    | N/A       |                  |            |
| Duplicate Status vs RPD:                                    | Pass      |                  |            |
| % RPD Limit:                                                | 32%       |                  |            |
|                                                             |           |                  |            |

| Spike/Matrix Spike Duplicate Sample Assessment Sample 1.D. Sample 1.D. Sample 1.D. Sample MS 1.D. Sample MSD 1.D. Sample MSD 1.D. Sample MSD 1.D. Sample MSD 1.D. Sample Matrix Spike Result: Sample Matrix Spike Duplicate Result: C Spike Duplicate Result Counting Uncertainty (DCI/L, g, F): Duplicate Result Counting Uncertainty (DCI/L, g, F): Duplicate Numerical Performance Indicator: assed on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs Rumerical Indicator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                |                            |                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|-------------------------------------------------------|
| Spike/Matrix Spike Duplicate Sample Assessment Sample 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. Sample MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. MS 1.D. |                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                |                            |                                                       |
| Matrix (B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix Spike Duplicate Result Counting Uncertainty (pCiV., g. F); Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD: | Matrix Spike Result Counting Uncertainty (pCl/L, g, F): Sample Matrix Spike Duplicate Result: | Sample MSD I.D.<br>Sample Matrix Spike Result: | Sample I.D. Sample MS I.D. | Matrix Spike/Matrix Spike Duplicate Sample Assessment |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

در مه مه سه DINC WIS 124

## Pace Analytical"

# Quality Control Sample Performance Assessment

JJS1 5/17/2024 79175 WT Date: Worklist: Matrix: Analyst:

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample MSD 1.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F):

MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F):

Sample Result:

Analyst Must Manually Enter All Fields Highlighted in Yellow

0.333 0.329 0.675 1.99 Pass MB Sample ID M/B 2 Sigma CSU: MB MDC: MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: MB concentration: Wethod Blank Assessment

Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): MS Numerical Performance Indicator: MSD Numerical Performance Indicator MSD Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery MS Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated) CSD79175 -0.90 90.30% 23-043 36.575 0.10 0.820 4.461 0.219 4.028 0.919 N/A Pass 135% 60% LCS79175 5/29/2024 23-043 36.575 CSD (Y or N) 0.85 110.68% 0.10 0.818 4.470 0.219 1.083 4.947 Ϋ́

> Target Conc. (pCi/L, g, F): Result (pCi/L, g, F):

LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Numerical Performance Indicator:

Percent Recovery: Status vs Numerical Indicator Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:

Count Date:

Laboratory Control Sample Assessment

Spike I.D.

Decay Corrected Spike Concentration (pCi/mL):

Volume Used (mL): Aliquot Volume (L, g, F): Uncertainty (Calculated):

MS Percent Recovery

Matrix Spike Result 2 Sigma CSU (pCi/L, g, F). Matrix Spike/Matrix Spike Duplicate Sample Assessment other than LCS/LCSD in Enter Duplicate ne space below sample IDs if LCS79175 LCSD79175 4.947 NO 1.268 20.28% 1.083 4.028 0.919 Pass Pass 36%

Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):

Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Status vs Numerical Indicator

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessmen

Sample I.D. Sample MS I.D.

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits

MSD Status vs Recovery

Sample MSD I.D.

Sample Matrix Spike Result:

MS/ MSD Duplicate Status vs RPD: % RPD Limit: Sample Matrix Spike Duplicate Result. Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Numerical Performance Indicator. (Based on the Percent Recoveries) MS/ MSD Duplicate RPD MS/ MSD Duplicate Status vs Numerical Indicator. 19/24

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs RPD: % RPD Limit:

Comments:

Ra-228 NELAC DW2 Printed: 6/3/2024 1:26 PM

6 of 11





June 27, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452741

## Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 11, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Databa m. Wilson

**Enclosures** 

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM







## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

**Pace Analytical Services Kansas** 

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073

Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 60452741001 | BAT-13-CCR | Water  | 05/10/24 14:20 | 05/11/24 09:15 |

(913)599-5665



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60452741001 | BAT-13-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

Date: 06/27/2024 09:28 AM

| Sample: BAT-13-CCR | Lab ID: 604     | 52741001   | Collected: 05/10/2 | 24 14:20 | Received: 05   | 5/11/24 09:15 N | latrix: Water |      |
|--------------------|-----------------|------------|--------------------|----------|----------------|-----------------|---------------|------|
| Parameters         | Results         | Units      | Report Limit       | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| 6010 MET ICP       | Analytical Meth | od: EPA 60 | 10 Preparation Met | hod: EP  | A 3010         |                 |               |      |
|                    | Pace Analytica  | Services - | Kansas City        |          |                |                 |               |      |
| Boron              | 1470            | ug/L       | 100                | 1        | 05/21/24 14:52 | 05/30/24 10:10  | 7440-42-8     |      |
| Calcium            | 245000          | ug/L       | 200                | 1        | 05/21/24 14:52 | 05/30/24 10:10  | 7440-70-2     |      |
| Lithium            | 273             | ug/L       | 10.0               | 1        | 05/21/24 14:52 | 05/30/24 10:10  | 7439-93-2     |      |
| 6020 MET ICPMS     | Analytical Meth | od: EPA 60 | 20 Preparation Met | hod: EP  | A 3010         |                 |               |      |
|                    | Pace Analytica  | Services - | Kansas City        |          |                |                 |               |      |
| Antimony           | ND              | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-36-0     | D3   |
| Arsenic            | 8.6             | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-38-2     |      |
| Barium             | 223             | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-39-3     |      |
| Beryllium          | ND              | ug/L       | 1.5                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-41-7     | D3   |
| Cadmium            | ND              | ug/L       | 1.5                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-43-9     | D3   |
| Chromium           | 29.4            | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-47-3     |      |
| Cobalt             | 12.8            | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-48-4     |      |
| Lead               | 16.1            | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7439-92-1     |      |
| Molybdenum         | 61.0            | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7439-98-7     |      |
| Selenium           | 14.6            | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7782-49-2     |      |
| Thallium           | ND              | ug/L       | 3.0                | 3        | 05/20/24 10:32 | 06/25/24 12:20  | 7440-28-0     | D3   |
| 7470 Mercury       | Analytical Meth | od: EPA 74 | 70 Preparation Met | hod: EP  | A 7470         |                 |               |      |
|                    | Pace Analytica  | Services - | Kansas City        |          |                |                 |               |      |
| Mercury            | ND              | ug/L       | 0.20               | 1        | 05/20/24 12:41 | 05/21/24 13:18  | 7439-97-6     |      |
| 9056 IC Anions     | Analytical Meth | od: EPA 90 | 56                 |          |                |                 |               |      |
|                    | Pace Analytica  | Services - | Kansas City        |          |                |                 |               |      |
| Chloride           | 31.4            | mg/L       | 10.0               | 10       |                | 05/29/24 06:22  | 16887-00-6    |      |
| Fluoride           | 0.83            | mg/L       | 0.20               | 1        |                | 05/29/24 06:01  |               | N2   |
| Sulfate            | 2800            | mg/L       | 200                | 200      |                | 05/29/24 06:43  | 14808-79-8    |      |



Mercury

Date: 06/27/2024 09:28 AM

## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

QC Batch: 894580 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452741001

METHOD BLANK: 3540364 Matrix: Water

Associated Lab Samples: 60452741001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 05/21/24 12:17

LABORATORY CONTROL SAMPLE: 3540365

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers Mercury 5 5.0 101 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540366 3540367

MS MSD 60452178001 Spike Spike MS MSD MS MSD % Rec Max Units Conc. Result Result **RPD** RPD Parameter Result Conc. % Rec % Rec Limits Qual ND 5 20

Mercury ug/L ND 5 5 4.9 4.8 97 97 75-125 0 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540368 3540369

MS MSD

5

60452636007 MS MSD MS MSD % Rec Max Spike Spike RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 5 5 4.9 20 Mercury ND 4.8 97 96 75-125 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540370 3540371

ND

ug/L

MSD MS 60452423002 Spike Spike MS MSD MS MSD % Rec Max Result Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Limits

5

5.0

5.2

101

104

75-125

3 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Lithium

Date: 06/27/2024 09:28 AM

## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

QC Batch: 895256 Analysis Method: QC Batch Method: EPA 3010 Analysis Description:

6010 MET Laboratory: Pace Analytical Services - Kansas City

EPA 6010

Associated Lab Samples: 60452741001

METHOD BLANK: Matrix: Water

3543208

ug/L

Associated Lab Samples: 60452741001

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Boron ND 100 05/30/24 09:37 ug/L Calcium ND 200 05/30/24 09:37 ug/L Lithium ND 05/30/24 09:37 ug/L 10.0

LABORATORY CONTROL SAMPLE: Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 1000 970 97 80-120 ug/L

1000

10000 10400 Calcium ug/L 104 80-120 Lithium ug/L 1000 1040 104 80-120

24.2

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3543209 3543210 MS MSD 60452938007 MSD MSD Spike Spike MS MS % Rec Max Qual Parameter Conc. Result % Rec % Rec **RPD** RPD Units Result Conc. Result Limits ug/L 1050 20 Boron ND 1000 1000 1020 97 100 75-125 3 Calcium 370000 10000 374000 367000 ug/L 10000 37 -31 75-125 2 20 M1

1000

1080

1110

105

109

75-125

3 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

Date: 06/27/2024 09:28 AM

QC Batch: 895054 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452741001

METHOD BLANK: 3542472 Matrix: Water

Associated Lab Samples: 60452741001

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Antimony   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Arsenic    | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Barium     | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Beryllium  | ug/L  | ND              | 0.50               | 06/25/24 10:23 |            |
| Cadmium    | ug/L  | ND              | 0.50               | 06/25/24 10:23 |            |
| Chromium   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Cobalt     | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Lead       | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Molybdenum | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Selenium   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Thallium   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |

| LABORATORY CONTROL SAMPLE: | 3542473 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                   | ug/L    | 40    | 37.7   | 94    | 80-120 |            |
| Arsenic                    | ug/L    | 40    | 35.7   | 89    | 80-120 |            |
| Barium                     | ug/L    | 40    | 40.0   | 100   | 80-120 |            |
| Beryllium                  | ug/L    | 40    | 36.0   | 90    | 80-120 |            |
| Cadmium                    | ug/L    | 40    | 37.8   | 95    | 80-120 |            |
| Chromium                   | ug/L    | 40    | 43.3   | 108   | 80-120 |            |
| Cobalt                     | ug/L    | 40    | 39.4   | 99    | 80-120 |            |
| Lead                       | ug/L    | 40    | 41.1   | 103   | 80-120 |            |
| Molybdenum                 | ug/L    | 40    | 39.3   | 98    | 80-120 |            |
| Selenium                   | ug/L    | 40    | 33.3   | 83    | 80-120 |            |
| Thallium                   | ug/L    | 40    | 39.1   | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX S | SPIKE DUPL | ICATE: 3542 | 474   |       | 3542475 |        |       |       |        |     |     |      |
|-------------------------|------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         |            |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                         |            | 60452753001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units      | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                | ug/L       | ND          | 40    | 40    | 37.4    | 38.1   | 93    | 95    | 75-125 | 2   | 20  |      |
| Arsenic                 | ug/L       | ND          | 40    | 40    | 35.8    | 36.9   | 88    | 90    | 75-125 | 3   | 20  |      |
| Barium                  | ug/L       | 51.0        | 40    | 40    | 94.9    | 94.5   | 110   | 109   | 75-125 | 0   | 20  |      |
| Beryllium               | ug/L       | ND          | 40    | 40    | 35.5    | 34.7   | 89    | 87    | 75-125 | 2   | 20  |      |
| Cadmium                 | ug/L       | ND          | 40    | 40    | 35.6    | 36.1   | 89    | 90    | 75-125 | 2   | 20  |      |
| Chromium                | ug/L       | 1.6         | 40    | 40    | 41.8    | 43.1   | 100   | 104   | 75-125 | 3   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

Date: 06/27/2024 09:28 AM

| MATRIX SPIKE & MATRIX S | SPIKE DUPLIC | CATE: 3542 | 474<br>MS | MSD   | 3542475 |        |       |       |        |     |     |      |
|-------------------------|--------------|------------|-----------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         | 6            | 0452753001 | Spike     | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units        | Result     | Conc.     | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cobalt                  | ug/L         | ND         | 40        | 40    | 38.5    | 39.7   | 95    | 98    | 75-125 | 3   | 20  |      |
| Lead                    | ug/L         | ND         | 40        | 40    | 37.5    | 37.9   | 93    | 94    | 75-125 | 1   | 20  |      |
| Molybdenum              | ug/L         | 4.8        | 40        | 40    | 46.9    | 47.8   | 105   | 107   | 75-125 | 2   | 20  |      |
| Selenium                | ug/L         | 3.1        | 40        | 40    | 35.2    | 35.9   | 80    | 82    | 75-125 | 2   | 20  |      |
| Thallium                | ug/L         | ND         | 40        | 40    | 37.7    | 38.1   | 94    | 95    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

QC Batch: 895864 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452741001

METHOD BLANK: 3545640 Matrix: Water

Associated Lab Samples: 60452741001

Blank Reporting Parameter Units Limit Qualifiers Result Analyzed Chloride mg/L ND 1.0 05/28/24 14:52 Fluoride mg/L ND 0.20 05/28/24 14:52 N2 Sulfate mg/L ND 05/28/24 14:52 1.0

LABORATORY CONTROL SAMPLE: 3545641

Date: 06/27/2024 09:28 AM

|           |       | Spike | LCS    | LCS   | % Rec    |            |
|-----------|-------|-------|--------|-------|----------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits   | Qualifiers |
| Chloride  | mg/L  | 5     | 5.1    | 102   | 80-120   | _          |
| Fluoride  | mg/L  | 2.5   | 2.5    | 100   | 80-120 I | N2         |
| Sulfate   | mg/L  | 5     | 5.0    | 100   | 80-120   |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

## **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

## **ANALYTE QUALIFIERS**

Date: 06/27/2024 09:28 AM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A

complete list of accreditations/certifications is available upon request.

(913)599-5665



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452741

Date: 06/27/2024 09:28 AM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60452741001 | BAT-13-CCR | EPA 3010        | 895256   | EPA 6010          | 895387              |
| 60452741001 | BAT-13-CCR | EPA 3010        | 895054   | EPA 6020          | 895169              |
| 60452741001 | BAT-13-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452741001 | BAT-13-CCR | EPA 9056        | 895864   |                   |                     |

WO#:60452741

| DC#_Title: EN | V-FRM-LENE-0009_Sample C   | 60452741          |
|---------------|----------------------------|-------------------|
| Revision: 2   | Effective Date: 01/12/2022 | Issued By: Lenexa |
| - A - WA      |                            |                   |

| Client Name: A ecom  Ourier: FedEx D UPS UPS UPS UPS UPS UPS UPS UPS UPS UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EX 🗆 ECI         |              | Pace □ Xroads □ Client □ Other □                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----------------------------------------------------------|
| ourier: TedEx 010 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Shipping Lab   | el Used      |                                                           |
| sustody Seal on Cooler/Box Present: Yes  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Seals intact:    | Yes/2        |                                                           |
| acking Material: Bubble Wrap 🖫 Bubble Bags 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Foa              | am 🗆         | None ☐ Other ☐                                            |
| doming many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ice: Wet Blu     | ue Non       | e Date and initials of person                             |
| coler Temperature (°C): As-read 1, D Corr. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or O O           | Correct      |                                                           |
| emperature should be above freezing to 6°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              | AF 9/13                                                   |
| COLUMN TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART | Nes □No          | □N/A         |                                                           |
| Chain of Custody present:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes ONo          | □N/A         |                                                           |
| Chain of Custody relinquished:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -/               |              |                                                           |
| Samples arrived within holding time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ☑Yes □No         | □N/A         |                                                           |
| Short Hold Time analyses (<72hr):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | □Yes DNo         | □N/A         |                                                           |
| Rush Turn Around Time requested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | □Yes <b>□</b> No | □n/a         |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes □No          | □n/a         |                                                           |
| Sufficient volume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes □No          | □n/a         |                                                           |
| Correct containers used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |                                                           |
| Pace containers used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LYes □No         | □N/A         |                                                           |
| Containers intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ØYes □No         | □N/A         |                                                           |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □Yes □No         | DNIA         |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □Yes □No         | DN/A         |                                                           |
| Filtered volume received for dissolved tests?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |              |                                                           |
| Sample labels match COC: Date / time / ID / analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DYES DNo         |              |                                                           |
| Samples contain multiple phases? Matrix: W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □Yes □No         |              | List sample IDs, volumes, lot #'s of preservative and the |
| Containers requiring pH preservation in compliance?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IØYes □No        | □N/A         | date/time added.                                          |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 63090N         | )            |                                                           |
| (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT# Cyanide water sample checks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |              |                                                           |
| Lead acetate strip turns dark? (Record only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □Yes ŪMo         |              |                                                           |
| Potassium iodide test strip turns blue/purple? (Preserve)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | □Yes INO         |              | •                                                         |
| Trip Blank present:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □Yes □No         | DINIA        |                                                           |
| Headspace in VOA vials ( >6mm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □Yes □No         | <b>□</b> N/A |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □Yes □No         | BN/A         |                                                           |
| Samples from USDA Regulated Area: State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 1/           |                                                           |
| Additional labels attached to 5035A / TX1005 vials in the field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d? □Yes □No      |              | Field Data Required? Y / N                                |
| Client Notification/ Resolution: Copy COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | / IN         | Field Bala (184-1919)                                     |
| Person Contacted: Date/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /Time:           |              |                                                           |
| Comments/ Resolution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Da           | te:                                                       |
| Project Manager Review:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                | 20           |                                                           |

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Pace Analytical www.paceenus.com

ent

DRINKING WATER ✓ OTHER GROUND WATER Page: 00 REGULATORY AGENCY RCRA Site Location NPDES STATE □ UST Same as Section A Reference:
Pace Project Heather Wilson Manager:
Pace Profile #: 11033, 3 Accounts Payable Company Name: AECOM 42700 Invoice Information: Section C ace Quote Attention: Address: Project Name: 60709371 PRPA CCR Purchase Order No: NEED PO# Report To: Vasanta Kalluri Copy To: Jamie Herman Project Number: 60709371 Section B Required Project Information: Greenwood Village, CO 80111 jamie.herman@aecom.com 6200 South Quebec St Fax: hone: (303) 740-2614 Section A Required Client Information: Requested Due Date/TAT: AECOM отрапу: Email To: Address:

| nedres              | vequested Due Date/ I.A.I.                                                 | Figlect Number: 60709377                                       | . Del.          | 201033     | -          |                               |                            |                | ני<br>ט | Tace Piolife #. | 11033, 3                | ئ                                        |                           |              |        |                                   |        | STATE:    | TE:    |       |           |             |                                  |                            |
|---------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|------------|------------|-------------------------------|----------------------------|----------------|---------|-----------------|-------------------------|------------------------------------------|---------------------------|--------------|--------|-----------------------------------|--------|-----------|--------|-------|-----------|-------------|----------------------------------|----------------------------|
|                     |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           | Ц            | Req    | Requested Analysis Filtered (Y/N) | Anal   | ysis Fi   | Itered | (V/N) |           |             |                                  |                            |
|                     | Section D Valid M Required Client Information MATRIX                       | Valid Matrix Codes                                             |                 | (awc       | _          | COLLECTED                     | TED                        |                |         | ,               | Preservatives           | atives                                   |                           | <b>⊉</b> N/A | 1      | 1                                 |        |           |        |       |           |             |                                  |                            |
|                     |                                                                            | DRINKING WATER DW WATER WT WASTE WW PRODUCT P SCILSOLID SL OIL | see valid codes | =GRAB C=CC | COMPOSITE  | ш                             | COMPOSITE                  | OLLECTION      |         |                 |                         |                                          |                           |              |        | **8                               | f va   |           |        |       |           |             | 1428409                          | 142                        |
|                     | SAMPLE ID WIPE WRE ARE (A-Z, 0-9.1) OTHER Sample IDS MUST BE UNIQUE TISSUE |                                                                |                 | ED) BAYT   |            |                               |                            | TEMP AT        | ЯЗИІАТИ | pəvie           |                         | C                                        |                           | tesT eis     | F, SO4 | stal Meta                         |        |           |        |       |           | ıl Chlorine |                                  |                            |
| # MƏTİ              |                                                                            | ×                                                              | XIATAM          | SAMPLE     | DATE       | TIME                          | DATE                       | TIME<br>SAMPLE | # OE CC | Unprese         | HCI<br>HNO <sup>3</sup> | HObN<br>O <sub>S</sub> S <sub>2</sub> 6N | Methan                    | (IsnA↓       |        | T 0108                            | 5240C  |           |        |       |           |             | ace Project                      | Pace Project No./ Lab I.D. |
| -                   | 13AT-13-CCR                                                                |                                                                | M               | 5          | 1          | 1                             | 1 62019                    | 07h            | 1       |                 |                         | H                                        |                           |              |        | >                                 |        | 7.        |        |       |           | フ           |                                  |                            |
| 7                   |                                                                            |                                                                |                 |            | 1          |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           | -           |                                  |                            |
| е                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           | 1            |        |                                   |        |           |        |       |           | _           |                                  |                            |
| 4                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           | _           |                                  |                            |
| ĸ                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           |             |                                  |                            |
| φ                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        | $\exists$ |        |       |           |             |                                  |                            |
| 7                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           |             |                                  |                            |
| w                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           | -           |                                  |                            |
| 6                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           | -           |                                  |                            |
| 10                  |                                                                            |                                                                |                 |            |            |                               | 1                          |                |         |                 |                         |                                          |                           | -            |        |                                   |        | +         |        |       |           | -           |                                  |                            |
| =                   |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           | 7            |        |                                   |        |           |        |       |           | -           |                                  |                            |
| 12                  |                                                                            |                                                                |                 |            |            |                               |                            |                |         | H               |                         |                                          |                           | 4            |        |                                   | $\Box$ |           |        |       | $\exists$ | -           |                                  |                            |
|                     | ADDITIONAL COMMENTS                                                        |                                                                | RELIP           | NQUISHE    | ED BY / AF | RELINQUISHED BY / AFFILIATION |                            | DATE           | F       | TIME            |                         | AC                                       | ACCEPTED BY / AFFILIATION | ED BY        | AFFIL  | IATION                            |        | DATE      | щ      | TIME  | _         |             | SAMPLE CONDITIONS                | SNOILIO                    |
| 7Sb, A              | ≁Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, Tī                                | Z                                                              | CIC             | Marcher    | Jri F      | FINS 4 IN                     | Y                          | 10124          | 1550    | 0.6             |                         |                                          |                           | 6            | SAPale | 16                                |        | pt/11/8   |        | Sylva | <u>ရ</u>  | 7           | 7                                |                            |
| 8, Ca, ⊔            | a. Li                                                                      |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           | ,      |       | -         |             |                                  |                            |
|                     |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           |             |                                  |                            |
| -                   | F                                                                          |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           |             |                                  |                            |
| aye                 | Page                                                                       |                                                                |                 |            | 0,         | AMPLER                        | SAMPLER NAME AND SIGNATURE | SIGNATL        | IRE     |                 |                         |                                          |                           |              |        |                                   |        |           |        |       | J         |             | )<br>1)                          |                            |
| , 1 <del>4</del> Ul | e 14 of                                                                    |                                                                |                 |            |            | P. P.                         | PRINT Name of SAMPLER:     | SAMPLE         | R: M0   | 900             | CHIS                    | 30                                       | +17                       | t            | DAT    | E Signed                          | 12     | 1111      | 3 6    |       | ui qmə    | eceived     | Ice (Y/N<br>stody Se<br>soler (Y | il səlqm<br>(N\Y)          |
| . 13                | f 15                                                                       |                                                                |                 |            |            | Tr                            | SIGNATURE of SAMPLER:      | of SAMPLE      |         |                 | 0                       | 3                                        | Di                        |              | (MM    | (MM/DD/YY):                       | 3      | 2         | 5      |       |           |             | Cus                              | PS .                       |
|                     |                                                                            |                                                                |                 |            |            |                               |                            |                |         |                 |                         |                                          |                           |              |        |                                   |        |           |        |       |           |             |                                  |                            |

F-ALL-Q-020rev 08, 12-Oct-2007

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Pace Analytical Services, LLC

Qualtrax Document ID: 30422

DC# Title: ENV-FRM-LENE-0001\_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

Client

Site

Notes

Profile #

|                  | $\neg$ | -1 |   |   | Т | Т | Т | _  | Т | 1  | Т  |    |
|------------------|--------|----|---|---|---|---|---|----|---|----|----|----|
|                  |        | 4  | - |   | 4 | 4 |   | 4  | - | 4  |    | _  |
|                  |        |    | 4 |   | _ |   |   |    |   |    |    | 4  |
| Other            |        |    |   |   |   |   |   |    |   |    |    |    |
| SPLC             |        |    |   |   |   |   |   |    |   |    |    |    |
| WPDU             |        |    |   |   |   |   |   |    |   |    |    |    |
| SP3Z             |        |    |   |   |   |   |   |    |   |    |    |    |
| BP3C             |        |    |   |   |   |   |   |    |   |    |    |    |
| BP3S             |        |    |   |   |   |   |   |    |   |    |    |    |
| <b>HE9</b> E     |        |    |   |   |   |   |   |    |   |    |    |    |
| ВРЗИ             |        |    |   |   |   |   |   |    |   |    |    |    |
| NIA8             | 1      |    |   |   |   |   |   |    |   |    |    |    |
| USP3U            | 1      |    |   |   |   |   |   |    |   |    |    |    |
| BP2U             |        |    |   |   |   |   |   |    |   |    |    |    |
| Urqa             |        |    |   |   |   |   |   |    |   |    |    |    |
| MeDn             |        |    |   |   |   |   |   |    |   |    |    |    |
| мекп             |        |    |   |   |   |   |   |    |   |    |    |    |
| netn             |        |    |   |   |   |   |   |    |   |    |    |    |
| VG5U             |        |    |   |   |   |   |   |    |   |    |    |    |
| N≯9∀             |        |    |   |   |   |   |   |    |   |    |    |    |
| SE50A            |        |    |   |   |   |   |   |    |   |    |    |    |
| USDA             |        |    |   |   |   |   |   |    |   |    |    |    |
| UtaA             |        |    |   |   |   |   |   |    |   |    |    |    |
| HFÐA             |        |    |   |   |   |   |   |    |   |    |    |    |
| Bein             |        |    |   |   |   |   |   |    |   |    |    |    |
| DG9B             |        |    |   |   |   |   |   |    |   |    |    |    |
| W690             |        |    |   |   |   |   |   |    |   |    |    |    |
| neean            |        |    |   |   |   |   |   |    |   |    |    |    |
| N69A             |        |    |   |   |   |   |   |    |   |    |    |    |
| D690             |        |    |   |   |   |   |   |    |   |    |    |    |
| H69Cl            |        |    |   |   |   |   |   |    |   |    |    |    |
| Н6ЭЛ             | ,      |    |   |   |   |   |   |    |   |    |    |    |
| Matrix           | 1      |    |   |   |   |   |   |    |   |    |    |    |
| COC<br>Line Item | -      | 2  | ю | 4 | 2 | 9 | 7 | 00 | თ | 10 | 1- | 12 |

|      |                             | Glass |                                     |      | Plastic                             |           | Misc.                         |
|------|-----------------------------|-------|-------------------------------------|------|-------------------------------------|-----------|-------------------------------|
| DG9B | 40ml hisulfate clear vial   | IWGKU | 8oz clear soil iar                  | BP1C | 11L NAOH plastic                    |           | Wipe/Swab                     |
| H650 | 40mL HCl amber voa vial     | WGFU  | 4oz clear soil jar                  | BP1N | 1L HNO3 plastic                     | SP5T      | 120mL Coliform Na Thiosulfate |
| DG9M | 40mL MeOH clear vial        | WG2U  | 2oz clear soil jar                  | BP1S | 1L H2SO4 plastic                    | ZPLC      | Ziploc Bag                    |
| 0690 | 40mL TSP amber vial         | JGFU  | 4oz unpreserved amber wide          | BP1U | 1L unpreserved plastic              | AF        | Air Filter                    |
| DG9S | 40mL H2SO4 amber vial       | AGOU  | 100mL unores amber glass            | BP1Z | 1L NaOH, Zn Acetate                 | ပ         | Air Cassettes                 |
| DG9T | 40mL Na Thio amber vial     | AG1H  | 1L HCl amber glass                  | BP2C | 500mL NAOH plastic                  | 꼰         | Terracore Kit                 |
| DG90 | 40mL amber unpreserved      | AG1S  | 1L H2SO4 amber glass                | BP2N | 500mL HNO3 plastic                  | n         | Summa Can                     |
| VG9H | 40mL HCl clear vial         | AG1T  | 1L Na Thiosulfate clear/amber glass | BP2S | 500mL H2SO4 plastic                 |           |                               |
| VG9T | 40mL Na Thio. clear vial    | AG10  | 1liter unpres amber glass           | BP2U | 500mL unpreserved plastic           |           |                               |
| VG9U | 40mL unpreserved clear vial | AG2N  | 500mL HNO3 amber glass              | BP2Z | 500mL NaOH, Zn Acetate              |           | Matrix                        |
| BG1S | 1liter H2SO4 clear glass    | AG2S  | 500mL H2SO4 amber glass             | BP3C | 250mL NaOH plastic                  |           |                               |
| BG1U | 1liter unpres glass         | AG3S  | 250mL H2SO4 amber glass             | BP3F | 250mL HNO3 plastic - field filtered | <u></u> ∧ | Water                         |
| BG3H | 250mL HCL Clear glass       | AG2U  | 500mL unpres amber glass            | BP3N | 250mL HNO3 plastic                  | SL        | Solid                         |
| BG3U | 250mL Unpres Clear glass    | AG3U  | 250mL unpres amber glass            | BP3U | 250mL unpreserved plastic           | NAL       | Non-aqueous Liquid            |
| WGDU | 16oz clear soil iar         | AG4U  | 125mL unpres amber glass            | BP3S | 250mL H2SO4 plastic                 | <u>ا</u>  | OIL                           |
|      |                             | AG5U  | 100mL unpres amber glass            | BP3Z | 250mL NaOH, Zn Acetate              | WP        | Wipe                          |
|      |                             |       |                                     | BP4U | 125mL unpreserved plastic           | DW        | Drinking Water                |
|      |                             |       |                                     | BP4N | 125mL HNO3 plastic                  |           |                               |
|      |                             |       |                                     | BP4S | 125mL H2SO4 plastic                 |           |                               |
|      |                             |       |                                     |      | A Charles Languages and Aller       |           |                               |

Work Order Number:





June 27, 2024

Vasanta Kalluri **AECOM** 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 10, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

Databa m. Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

**Enclosures** 

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

**Pace Analytical Services Kansas** 

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073

Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |  |
|-------------|------------|--------|----------------|----------------|--|
| 60452754001 | BAT-11-CCR | Water  | 05/09/24 09:05 | 05/10/24 08:50 |  |
| 60452754002 | BAT-10-CCR | Water  | 05/09/24 11:15 | 05/10/24 08:50 |  |
| 60452754003 | BAT-01-CCR | Water  | 05/09/24 14:30 | 05/10/24 08:50 |  |



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60452754001 | BAT-11-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |
| 60452754002 | BAT-10-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |
| 60452754003 | BAT-01-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

| Sample: BAT-11-CCR           | Lab ID: 6045    | 2754001    | Collected: 05/09/2  | 24 09:05 | Received: 05   | 5/10/24 08:50 N | fatrix: Water |     |
|------------------------------|-----------------|------------|---------------------|----------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 010 Preparation Met | hod: EP  | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Boron                        | 398             | ug/L       | 100                 | 1        | 05/20/24 10:32 | 05/31/24 12:38  | 7440-42-8     |     |
| Calcium                      | 97500           | ug/L       | 200                 | 1        | 05/20/24 10:32 | 05/31/24 12:38  | 7440-70-2     |     |
| Lithium                      | 69.8            | ug/L       | 10.0                | 1        | 05/20/24 10:32 | 05/31/24 12:38  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Met  | hod: EP  | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-36-0     |     |
| Arsenic                      | ND              | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-38-2     |     |
| Barium                       | 41.4            | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 0.50                | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-41-7     |     |
| Cadmium                      | ND              | ug/L       | 0.50                | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-43-9     |     |
| Chromium                     | ND              | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-48-4     |     |
| Lead                         | ND              | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7439-92-1     |     |
| Molybdenum                   | 4.2             | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7439-98-7     |     |
| Selenium                     | 5.4             | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7782-49-2     |     |
| Thallium                     | ND              | ug/L       | 1.0                 | 1        | 05/20/24 10:32 | 06/25/24 12:06  | 7440-28-0     |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Met  | hod: EP  | A 7470         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                | 1        | 05/20/24 12:41 | 05/21/24 13:12  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 25  | 40C                 |          |                |                 |               |     |
|                              | Pace Analytical |            |                     |          |                |                 |               |     |
| Total Dissolved Solids       | 667             | mg/L       | 13.3                | 1        |                | 05/14/24 10:27  |               |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 056                 |          |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |          |                |                 |               |     |
| Chloride                     | 8.6             | mg/L       | 1.0                 | 1        |                | 05/29/24 02:53  | 16887-00-6    |     |
| Fluoride                     | ND              | mg/L       | 0.20                | 1        |                | 05/29/24 02:53  |               | N2  |
| Sulfate                      | 180             | mg/L       | 50.0                | 50       |                |                 | 14808-79-8    |     |



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

| Sample: BAT-10-CCR           | Lab ID: 6045    | 52754002   | Collected: 05/09/2  | 4 11:15 | Received: 05   | 5/10/24 08:50 N | Matrix: Water |     |
|------------------------------|-----------------|------------|---------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 10 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Boron                        | 815             | ug/L       | 100                 | 1       | 05/20/24 10:32 | 05/31/24 12:46  | 7440-42-8     |     |
| Calcium                      | 425000          | ug/L       | 200                 | 1       | 05/20/24 10:32 | 05/31/24 12:46  | 7440-70-2     |     |
| _ithium                      | 230             | ug/L       | 10.0                | 1       | 05/20/24 10:32 | 05/31/24 12:46  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-36-0     | D3  |
| Arsenic                      | ND              | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-38-2     | D3  |
| Barium                       | 14.4            | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 1.5                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-41-7     | D3  |
| Cadmium                      | ND              | ug/L       | 1.5                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-43-9     | D3  |
| Chromium                     | ND              | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-47-3     | D3  |
| Cobalt                       | ND              | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-48-4     | D3  |
| ₋ead                         | ND              | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7439-92-1     | D3  |
| Molybdenum                   | 5.0             | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7439-98-7     |     |
| Selenium                     | 136             | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7782-49-2     |     |
| - Thallium                   | ND              | ug/L       | 3.0                 | 3       | 05/20/24 10:32 | 06/25/24 11:49  | 7440-28-0     | D3  |
| 470 Mercury                  | Analytical Meth | od: EPA 74 | 70 Preparation Meth | nod: EP | A 7470         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                | 1       | 05/20/24 12:41 | 05/21/24 13:14  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 10C                 |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Total Dissolved Solids       | 1860            | mg/L       | 100                 | 1       |                | 05/15/24 10:59  |               |     |
| 0056 IC Anions               | Analytical Meth | od: EPA 90 | 56                  |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Chloride                     | 29.3            | mg/L       | 1.0                 | 1       |                | 05/29/24 03:35  | 16887-00-6    |     |
| Fluoride                     | ND              | mg/L       | 0.20                | 1       |                | 05/29/24 03:35  |               | N2  |
| Sulfate                      | 3100            | mg/L       | 200                 | 200     |                | 05/29/24 04:59  |               |     |



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

| Sample: BAT-01-CCR           | Lab ID: 6045    | 52754003   | Collected: 05/09/2  | 4 14:30 | Received: 05   | 5/10/24 08:50 N | Matrix: Water |     |
|------------------------------|-----------------|------------|---------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 10 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Boron                        | 1740            | ug/L       | 100                 | 1       | 05/20/24 10:32 | 05/31/24 12:48  | 7440-42-8     |     |
| Calcium                      | 117000          | ug/L       | 200                 | 1       | 05/20/24 10:32 | 05/31/24 12:48  | 7440-70-2     |     |
| _ithium                      | 190             | ug/L       | 10.0                | 1       | 05/20/24 10:32 | 05/31/24 12:48  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-36-0     | D3  |
| Arsenic                      | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-38-2     | D3  |
| Barium                       | 38.2            | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 1.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-41-7     | D3  |
| Cadmium                      | ND              | ug/L       | 1.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-43-9     | D3  |
| Chromium                     | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-47-3     | D3  |
| Cobalt                       | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-48-4     | D3  |
| ₋ead                         | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7439-92-1     | D3  |
| Molybdenum                   | 3.7             | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7439-98-7     |     |
| Selenium                     | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7782-49-2     | D3  |
| - Thallium                   | ND              | ug/L       | 2.0                 | 2       | 05/20/24 10:32 | 06/25/24 11:57  | 7440-28-0     | D3  |
| 470 Mercury                  | Analytical Meth | od: EPA 74 | 70 Preparation Meth | nod: EP | A 7470         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                | 1       | 05/20/24 12:41 | 05/21/24 13:16  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 10C                 |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Total Dissolved Solids       | 1570            | mg/L       | 66.7                | 1       |                | 05/15/24 10:59  |               |     |
| 0056 IC Anions               | Analytical Meth | od: EPA 90 | 56                  |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City         |         |                |                 |               |     |
| Chloride                     | 686             | mg/L       | 100                 | 100     |                | 05/29/24 05:40  | 16887-00-6    |     |
| Fluoride                     | 0.71            | mg/L       | 0.20                | 1       |                | 05/29/24 05:19  |               | N2  |
| Sulfate                      | 1050            | mg/L       | 100                 | 100     |                | 05/29/24 05:40  |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

QC Batch: 894580 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452754001, 60452754002, 60452754003

METHOD BLANK: 3540364 Matrix: Water

Associated Lab Samples: 60452754001, 60452754002, 60452754003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 05/21/24 12:17

LABORATORY CONTROL SAMPLE: 3540365

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers Mercury 5 5.0 101 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540366 3540367

MS MSD 60452178001 Spike Spike

60452178001 Spike Spike MS MSD MS MSD % Rec Max Units Conc. Result Result **RPD** RPD Parameter Result Conc. % Rec % Rec Limits Qual ND 5 20 Mercury ug/L 5 4.9 4.8 97 97 75-125 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540368 3540369

MS MSD 60452636007 MS MSD MS MSD Spike Spike % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual

Mercury ug/L ND 5 5 4.9 4.8 97 96 75-125 1 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540370 3540371

MS MSD

60452423002 Spike Spike MS MSD MS MSD % Rec Max Result Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Conc. Limits Qual Mercury ug/L ND 5 5 5.0 5.2 101 104 75-125 3 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452754

QC Batch: 895060 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452754001, 60452754002, 60452754003

METHOD BLANK: 3542495 Matrix: Water

Associated Lab Samples: 60452754001, 60452754002, 60452754003

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Boron     | ug/L  | ND ND  | 100       | 05/31/24 12:23 |            |
| Calcium   | ug/L  | ND     | 200       | 05/31/24 12:23 |            |
| Lithium   | ug/L  | ND     | 10.0      | 05/31/24 12:23 |            |

LABORATORY CONTROL SAMPLE: 3542496

Date: 06/27/2024 09:29 AM

|           |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Boron     | ug/L  | 1000  | 1000   | 100   | 80-120 |            |
| Calcium   | ug/L  | 10000 | 10800  | 108   | 80-120 |            |
| Lithium   | ug/L  | 1000  | 1090   | 109   | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | JCATE: 3542 | 497   |       | 3542498 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 60452886008 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                    | ug/L     | ND          | 1000  | 1000  | 995     | 1070   | 95    | 103   | 75-125 | 7   | 20  |      |
| Calcium                  | ug/L     | 239000      | 10000 | 10000 | 228000  | 252000 | -104  | 133   | 75-125 | 10  | 20  | M1   |
| Lithium                  | ug/L     | 37.4        | 1000  | 1000  | 1060    | 1150   | 102   | 111   | 75-125 | 8   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

QC Batch: 895054 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452754001, 60452754002, 60452754003

METHOD BLANK: 3542472 Matrix: Water

Associated Lab Samples: 60452754001, 60452754002, 60452754003

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Antimony   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Arsenic    | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Barium     | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Beryllium  | ug/L  | ND              | 0.50               | 06/25/24 10:23 |            |
| Cadmium    | ug/L  | ND              | 0.50               | 06/25/24 10:23 |            |
| Chromium   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Cobalt     | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Lead       | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Molybdenum | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Selenium   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |
| Thallium   | ug/L  | ND              | 1.0                | 06/25/24 10:23 |            |

| LABORATORY CONTROL SAMPLE: | 3542473 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                   | ug/L    | 40    | 37.7   | 94    | 80-120 |            |
| Arsenic                    | ug/L    | 40    | 35.7   | 89    | 80-120 |            |
| Barium                     | ug/L    | 40    | 40.0   | 100   | 80-120 |            |
| Beryllium                  | ug/L    | 40    | 36.0   | 90    | 80-120 |            |
| Cadmium                    | ug/L    | 40    | 37.8   | 95    | 80-120 |            |
| Chromium                   | ug/L    | 40    | 43.3   | 108   | 80-120 |            |
| Cobalt                     | ug/L    | 40    | 39.4   | 99    | 80-120 |            |
| Lead                       | ug/L    | 40    | 41.1   | 103   | 80-120 |            |
| Molybdenum                 | ug/L    | 40    | 39.3   | 98    | 80-120 |            |
| Selenium                   | ug/L    | 40    | 33.3   | 83    | 80-120 |            |
| Thallium                   | ug/L    | 40    | 39.1   | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPLI | CATE: 3542  | 474          |       | 3542475 |        |       |       |                |     |     |      |
|-----------------------|-------------|-------------|--------------|-------|---------|--------|-------|-------|----------------|-----|-----|------|
|                       | ,           | 60452752004 | MS<br>Spiles | MSD   | MC      | MCD    | MC    | MCD   | 0/ <b>D</b> oo |     | Mov |      |
| _                     |             | 60452753001 | Spike        | Spike | MS      | MSD    | MS    | MSD   | % Rec          |     | Max |      |
| Parameter             | Units       | Result      | Conc.        | Conc. | Result  | Result | % Rec | % Rec | Limits         | RPD | RPD | Qual |
| Antimony              | ug/L        | ND          | 40           | 40    | 37.4    | 38.1   | 93    | 95    | 75-125         | 2   | 20  |      |
| Arsenic               | ug/L        | ND          | 40           | 40    | 35.8    | 36.9   | 88    | 90    | 75-125         | 3   | 20  |      |
| Barium                | ug/L        | 51.0        | 40           | 40    | 94.9    | 94.5   | 110   | 109   | 75-125         | 0   | 20  |      |
| Beryllium             | ug/L        | ND          | 40           | 40    | 35.5    | 34.7   | 89    | 87    | 75-125         | 2   | 20  |      |
| Cadmium               | ug/L        | ND          | 40           | 40    | 35.6    | 36.1   | 89    | 90    | 75-125         | 2   | 20  |      |
| Chromium              | ug/L        | 1.6         | 40           | 40    | 41.8    | 43.1   | 100   | 104   | 75-125         | 3   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

| MATRIX SPIKE & MATRIX S |       |            | MS    | MSD   | 3542475 |        |       |       |        |     |     |      |
|-------------------------|-------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         | 6     | 0452753001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cobalt                  | ug/L  | ND         | 40    | 40    | 38.5    | 39.7   | 95    | 98    | 75-125 | 3   | 20  |      |
| Lead                    | ug/L  | ND         | 40    | 40    | 37.5    | 37.9   | 93    | 94    | 75-125 | 1   | 20  |      |
| Molybdenum              | ug/L  | 4.8        | 40    | 40    | 46.9    | 47.8   | 105   | 107   | 75-125 | 2   | 20  |      |
| Selenium                | ug/L  | 3.1        | 40    | 40    | 35.2    | 35.9   | 80    | 82    | 75-125 | 2   | 20  |      |
| Thallium                | ug/L  | ND         | 40    | 40    | 37.7    | 38.1   | 94    | 95    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452754

QC Batch: 894321 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452754001

METHOD BLANK: 3539167 Matrix: Water

Associated Lab Samples: 60452754001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 05/14/24 10:24

LABORATORY CONTROL SAMPLE: 3539168

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 945 94 80-120

SAMPLE DUPLICATE: 3539169

60452564004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 411 **Total Dissolved Solids** mg/L 411 0 10

SAMPLE DUPLICATE: 3539170

Date: 06/27/2024 09:29 AM

60452564002 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 447 10 mg/L 467 4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452754

QC Batch: 894428 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452754002, 60452754003

METHOD BLANK: 3539742 Matrix: Water

Associated Lab Samples: 60452754002, 60452754003

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 05/15/24 10:58

LABORATORY CONTROL SAMPLE: 3539743

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 983 98 80-120

SAMPLE DUPLICATE: 3539744

60452876001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1620 **Total Dissolved Solids** mg/L 23 10 D6,H3 2050

SAMPLE DUPLICATE: 3539745

Date: 06/27/2024 09:29 AM

60452766008 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 Total Dissolved Solids 753 749 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665



## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

QC Batch: 895864 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452754001, 60452754002, 60452754003

METHOD BLANK: 3545640 Matrix: Water

Associated Lab Samples: 60452754001, 60452754002, 60452754003

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L ND 1.0 05/28/24 14:52 Fluoride mg/L ND 0.20 05/28/24 14:52 N2 Sulfate mg/L ND 05/28/24 14:52 1.0

LABORATORY CONTROL SAMPLE: 3545641

Date: 06/27/2024 09:29 AM

| Parameter | Units | Spike<br>Conc. | Result | % Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|--------|-------|-----------------|------------|
| Chloride  | mg/L  | 5              | 5.1    | 102   | 80-120          |            |
| Fluoride  | mg/L  | 2.5            | 2.5    | 100   | 80-120          | N2         |
| Sulfate   | mg/L  | 5              | 5.0    | 100   | 80-120          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

## **ANALYTE QUALIFIERS**

Date: 06/27/2024 09:29 AM

| D3 | Sample was diluted due to the p | presence of high levels of non-targ | et analytes or other matrix interference. |
|----|---------------------------------|-------------------------------------|-------------------------------------------|
|    |                                 |                                     |                                           |

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H3 Sample was received or analysis requested beyond the recognized method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A

complete list of accreditations/certifications is available upon request.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452754

Date: 06/27/2024 09:29 AM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60452754001 | BAT-11-CCR | EPA 3010        | 895060   | EPA 6010          | 895170              |
| 60452754002 | BAT-10-CCR | EPA 3010        | 895060   | EPA 6010          | 895170              |
| 60452754003 | BAT-01-CCR | EPA 3010        | 895060   | EPA 6010          | 895170              |
| 60452754001 | BAT-11-CCR | EPA 3010        | 895054   | EPA 6020          | 895169              |
| 60452754002 | BAT-10-CCR | EPA 3010        | 895054   | EPA 6020          | 895169              |
| 60452754003 | BAT-01-CCR | EPA 3010        | 895054   | EPA 6020          | 895169              |
| 60452754001 | BAT-11-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452754002 | BAT-10-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452754003 | BAT-01-CCR | EPA 7470        | 894580   | EPA 7470          | 895142              |
| 60452754001 | BAT-11-CCR | SM 2540C        | 894321   |                   |                     |
| 60452754002 | BAT-10-CCR | SM 2540C        | 894428   |                   |                     |
| 60452754003 | BAT-01-CCR | SM 2540C        | 894428   |                   |                     |
| 60452754001 | BAT-11-CCR | EPA 9056        | 895864   |                   |                     |
| 60452754002 | BAT-10-CCR | EPA 9056        | 895864   |                   |                     |
| 60452754003 | BAT-01-CCR | EPA 9056        | 895864   |                   |                     |

Pace

DC#\_Title: ENV-FRM-LENE-0009\_Sampl

WO#:60452754

Revision: 2 Effective Date: 01/12/202

| Client Name: AECOM                                                                                                                                  |                       |                                                  |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|---------------------------|
| Courier: FedEx UPS UPS VIA Clay F                                                                                                                   | PEX 🗆 ECI 🗆           | Pace □ Xroads □ Client                           | □ Other □                 |
| Tracking #: 714623781598 Pace                                                                                                                       | e Shipping Label Use  | d? Yes□ NoД                                      |                           |
| Custody Seal on Cooler/Box Present: Yes ☐ No □                                                                                                      | Seals intact: Yes     |                                                  |                           |
| Packing Material: Bubble Wrap ☐ Bubble Bags ☐                                                                                                       | Foam 🗆                | None □ Other 🗹                                   | 791(                      |
| Thermometer Used: T499 Type of                                                                                                                      |                       | ne                                               | and initials of person    |
| Cooler Temperature (°C): As-read Corr. Factor Temperature should be above freezing to 6°C                                                           | orCorrec              | ted 2.(                                          | nining contents:          |
| Chain of Custody present:                                                                                                                           | <b>Z</b> Yes □No □N/A |                                                  |                           |
| Chain of Custody relinquished:                                                                                                                      | Yes Ono On/A          |                                                  |                           |
| Samples arrived within holding time:                                                                                                                | ✓Yes □No □N/A         |                                                  |                           |
| Short Hold Time analyses (<72hr):                                                                                                                   | □Yes ZNo □N/A         |                                                  |                           |
| Rush Turn Around Time requested:                                                                                                                    | □Yes ØNo □N/A         |                                                  |                           |
| Sufficient volume:                                                                                                                                  |                       |                                                  |                           |
| Correct containers used:                                                                                                                            |                       | -                                                |                           |
|                                                                                                                                                     | Yes No N/A            |                                                  |                           |
| Pace containers used:                                                                                                                               | 7Yes □No □N/A         |                                                  |                           |
| Containers intact:                                                                                                                                  | Yes No N/A            |                                                  |                           |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                                                              | □Yes □No ☑N/A         |                                                  |                           |
| Filtered volume received for dissolved tests?                                                                                                       | □Yes □No ☑N/A         |                                                  |                           |
| Sample labels match COC: Date / time / ID / analyses                                                                                                | AYes □No □N/A         |                                                  |                           |
| Samples contain multiple phases? Matrix: W                                                                                                          | □Yes Tho □N/A         |                                                  |                           |
| Containers requiring pH preservation in compliance?                                                                                                 | ✓Yes □No □N/A         | List sample IDs, volumes, lot # date/time added. | s of preservative and the |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)<br>(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: | 1.7187                | date/time added.                                 |                           |
| Cyanide water sample checks:                                                                                                                        | <u> </u>              |                                                  |                           |
| Lead acetate strip turns dark? (Record only)                                                                                                        | □Yes □No              |                                                  |                           |
| Potassium iodide test strip turns blue/purple? (Preserve)                                                                                           | □Yes □No              |                                                  |                           |
| Trip Blank present:                                                                                                                                 | □Yes □No □N/A         |                                                  |                           |
| Headspace in VOA vials ( >6mm):                                                                                                                     | □Yes □No ⊅N/A         |                                                  |                           |
| Samples from USDA Regulated Area: State:                                                                                                            | □Yes □No ØN/A         |                                                  |                           |
| Additional labels attached to 5035A / TX1005 vials in the field?                                                                                    |                       |                                                  |                           |
| Client Notification/ Resolution: Copy COC to                                                                                                        | Client? Y / N         | Field Data Required? Y                           | / N                       |
| Person Contacted: Date/Tir                                                                                                                          | me:                   |                                                  |                           |
| Comments/ Resolution:                                                                                                                               |                       |                                                  |                           |
|                                                                                                                                                     |                       |                                                  |                           |
| Project Manager Review:                                                                                                                             | Date                  |                                                  |                           |



# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

| Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution   Consecution      | March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | Section A                        | Section B                          | Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company to the company   Company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company to the company t   | Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Commonweight   Comm   | Combanue Arcons                  | Required Project Information:      | Invoice Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Continued Village Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued    | Section 5 and 10 states 53   States 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10 states 6 and 10   |                                  | Report To: Vasanta Kalluri         | Attention: Accounts Payable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonwed Williams   Commonw   | Section   Common      |                                  |                                    | Company Name: AECOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DECILI ATOMY ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Settler forms of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard  | Selfer   Part    | Greenwood Village, CO 80111      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selection   Page   Pa   | Selection   Control   Co   | .:                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TOTAL CONTENTS OF THE WARE AND SCONTINE  PROPERTY AND SCONTINE  THE WARD TO THE THIND TO THE MARTEN THE TANK TO THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE THIND TO THE MARTEN THE MARTEN THE MARTEN THE THIND TO THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN THE MARTEN T | TOTAL DESIGNATION AND THE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDINATE COORDIN | (303) 740-2614                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i RCKA OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID   | SAMPLE ID  SAMPLE ID  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COMMENT  SURFACE COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER COLOR BY MARTER BY MARTER BY MARTER COLOR BY MARTER BY MARTER COLOR BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY MARTER BY M | Requested Due Date/TAT: STONGONG |                                    | in 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID   | SAMPLE ID Service of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of  | -                                |                                    | Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis Filtered (VIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE  SAMPLE ID  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAMPLE  SAM | SAMPLE ID ON THE PROPERTY WAS AND STANDARD OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF  |                                  | odes<br>CODE (AMP)                 | 1 N /A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (MI) name of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the l |
| ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONA | And the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th |                                  | WWW TO COMPOSITE START START CODES | **S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AND THE PRINT HERE OF SAMPLES MARIES TO SCHAPLES TO SC | ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONA |                                  | ) BOOE                             | ved<br>ved<br><b>E Test</b><br>'S SO4<br>'I Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLUATION  BOTT- OI - C.C.R.  WING FIGHT 1005 3 2 1 1 2 2 8 0 4 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADDIT OF CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  BOAT - OI - CACA  ADDITIONAL COMMENTS  RELINQUISHED BY AFFLIATION  BATE  THE  BOAT - OI - CACA  ADDITIONAL COMMENTS  RELINQUISHED BY AFFLIATION  BATE  THE  ADDITIONAL COMMENTS  RELINQUISHED BY AFFLIATION  BATE  THE  BOAT - OI - CACA  THOMAS AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINQUISH BATE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINQUISH BATE  THE  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE  RELINQUISH BATE  THE  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE  RELINQUISH BATE  THE  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE  RELINQUISH BATE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  THE  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  THE  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISH BATE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SI | 1.TEM #                          | T 3J9MA                            | AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMPLE TE AMP | 40C TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BOH-OI-CCE WWW WWW WWW WAS STANDARD STOWN WWW WWW WWW WWW WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STANDARD STOWN WAS STANDARD STOWN WAS STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDA | DOT-OFCE  BOT-OFCE  BOT-OF | 1 BOH-11-CC                      | DATE TIME DATE                     | 09<br>09<br>06<br>06<br>00<br>W<br>N<br>N<br>N<br>H<br>H<br>H<br>H<br>H<br>H<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Б<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITI | ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE  THE  ACCEPTED BY AFFILLATION  DATE  THE  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  THE  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  THE  CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIO |                                  |                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  DATE: THE  ACCEPTED BY AFFILLATION  DATE: THE  ACCEPTED BY AFFILLATION  DATE: THE  ACCEPTED BY AFFILLATION  SAMPLER NAME COMMITTEE  SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAMPLER  PRINT NAME OF SAM | ADDITIONAL COMMENTS  RELINQUISHED BY AFFILATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILATION  DATE  TIME  ACCEPTED BY AFFILATION  OATE  TIME  SAMPLER NAME SAMPLER  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER:  RELINQUISHED Place NET 30 day payment terms and sayments to 15% serronthing transmicts and sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than an sayments to the payment than and sayments to the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serronthing the payments at 15% serron | Н                                | → ^ /                              | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFPILATION  DATE  THE  ACCEPTED BY AFPILATION  DATE  THE  ACCEPTED BY AFPILATION  SAMPLER NAME AND SIGNATURE  PRINT NAme of SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  PRINT NAme of SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME AND SIGNATURE  PRINT NAME OF SAMPLER NAME OF SAMPLER NAME AND SIGNATURE OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER NAME OF SAMPLER | ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE: THE ACCEPTED BY AFFILLATION  AMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINQUISH DATE THAT  SAMPLER NAME AND SIGNATURE  PRINT NAME of SAMPLER NAME AND SIGNATURE  RELINQUISH DATE SAMPLER  SAMPLER NAME AND SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNATURE OF SAMPLER  SIGNA | 4                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ADDITIONAL COMMENTS  RELINDUSHED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE NAME AND SIGNATURE  FRINT Name of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  SIGNATURE of SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONDITIONS  CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONDITIONS  CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE  THE SAMPLE CONTINUE OF SAMPLER. MOLIC RYTH CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SAMPLE CONTINUE OF SA | ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY I AFFILIATION  DATE  TIME  ACCEPTED BY I AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CON | un u                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MICLE PRINT THE SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MICLE PRINT THE SAMPLER: MICLE PRINT THE SAMPLER: MICLE PRINT THE SAMPLER: MICLE PRINT THE SAMPLER: MICLE PRINT THE SAMPLER: MICLE PRINT THE SAMPLER: MICLE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SAMPLER: MICRE PRINT THE SA | ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE NAME AND SIGNATURE  FRINT Name of SAMPLER:  MOLL CATLL  SAMPLER NAME AND SIGNATURE  FRINT Name of SAMPLER:  SIGNATURE of SAMPLER:  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE NAME AND SIGNATURE  FRINT Name of SAMPLER:  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLE NAME AND SIGNATURE  FRINT Name of SAMPLER:  TIME  SAMPLE NAME OF SAMPLER  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CONDITIONS  TO CO | 7                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE TIME SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MUCCEPTED BY AFFILIATION  DATE TIME SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MUCCEPTED BY AFFILIATION  OUT SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINQUISHED BY AFFILIATION  SAMPLER NAME AND SIGNATURE  SIGNATURE OF SAMPLER: MUCCEPTED BY AFFILIATION  OUT SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINQUISHED BY AFFILIATION  SAMPLER NAME AND SIGNATURE  RELINGUISHED BY AFFILIATION  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  SAMPLER NAME AND SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISHED BY AFFILIATION  OUT SIGNATURE  RELINGUISH BY AF | ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER:  PRINT Name of SAMPLER:  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER:  TIME  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SAMPLER NAME OF SAMPLER:  TIME  SAMPLER OF SAMPLER CONDITIONS  SAMPLER NAME AND SIGNATURE  SAMPLER OF SAMPLER CONDITIONS  TO GO SO SO SO SO SO SO SO SO SO SO SO SO SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE FRINT Name of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  SIGNATURE OF SAMPLER:  | ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE TIME ACCEPTED BY AFFILIATION  SAMPLER NAME AND SIGNATURE  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH II COMMENT BY SAMPLER: MOUCH  | 6                                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: MUCKENI CMM MANDONYS: 05   07   07   07   07   07   07   07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ADDITIONAL COMMENTS  RELINQUISHED BY / AFFILLATION  DATE: TIME ACCEPTED BY / AFFILLATION  DATE: TIME ACCEPTED BY / AFFILLATION  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: MOUCH PRINT BY BEIGN BY SIGNATURE  SIGNATURE of SAMPLER: MOUCH PRINT BY BY SIGNATURE  SIGNATURE of SAMPLER: MOUCH PRINT BY BY SIGNATURE  SIGNATURE of SAMPLER: MOUCH PRINT BY BY SIGNATURE  SIGNATURE of SAMPLER: MOUCH BY SIGNAR BY SIGNATURE  SIGNATURE of SAMPLER: MOUCH BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR BY SIGNAR  | 10                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY I AFFILIATION  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MULK CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL CHILL  | ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE: TIME ACCEPTED BY / AFFILIATION DATE: TIME ACCEPTED BY / AFFILIATION Se, TI MOCKETING COMMENTS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE of SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: MOCKETING COMMENTS SIGNATURE OF SAMPLER: M | 11                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: MUCK PARTICIONE TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED TO STAPPED  | Thropatant Note: By signing this form, you are accepting Pace's NET 30 day payment terms and agreeing to late changes of 1.5% per month for any invoices not need to supply the changes of 1.5% per month for any invoices not need to supply the changes of 1.5% per month for any invoices not need within 30 day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                    | TWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: MUCK BY (I) FRINT Name of SAMPLER: MOUNT BY (WIND) SIGNATURE of SAMPLER: MOUNT BY (WIND) (MMIDDONY): 05   07   12   12   12   12   12   12   12   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER:    Control of the characs of 15% per month for any invoices on tail within an days are accepting Pace's NET 30 day payment terms and agreeing to late characs of 15% per month for any invoices on tail within an days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                | L                                  | Carried American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: MUCK PTILL TIME FROM POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT  | SAMPLER NAME AND SIGNATURE   PRINT Name of SAMPLER:   MUCK ACT   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "B. Ca, Li                       | -                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: MUCK ATT C M F Signed OS SEATON CUSTOD SIGNATURE of SAMPLER: MUCK ATT C M F SIGNED COOLER C COOLER C COOLER C M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAMPLER NAME AND SIGNATURE   SIGNATURE   SIGNATURE   SIGNATURE of SAMPLER:   MINIOR   SIGNATURE of SAMPLER:     |                                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIGNATURE of SAMPLER: MCC AMPLER: MCC AMPL | Thropotant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late changes of 1.5% per month for any invoices not naid within 30 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pag                              | SAMPLER NAME AND SI                | GNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPLER: Was SIGNATURE of SAMPL | SIGNATURE of SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ge 18                            | PRINT Name of SA                   | Mackerial Camilt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o bevied<br>(V/V) e.<br>(Se2 vbd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Timportant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not naid within 30 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of 1                             | SIGNATURE of SA                    | TY WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PeR<br>ol<br>ol<br>ol<br>ol<br>oo<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Pace Analytical Services, LLC

DC#\_Tritle: ENV-FRM-LENE-0001\_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

Client:

AECOM

14565409

Profile #

Notes

| L |                  |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|---|------------------|---|-----|----|---|---|---|---|----|---|----|----|----|-----------------|
| L | Ofher            |   |     |    | L |   | L |   |    |   |    |    |    |                 |
| L | SPLC             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | MPDU             |   |     | L  |   |   |   |   |    |   |    |    |    |                 |
|   | SP3Z             |   |     | L  |   |   |   |   |    |   |    |    |    |                 |
|   | ВЬЗС             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | 8638             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | ВРЗГ             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | ВРЗИ             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | ИГЧВ             | _ | . ~ | -  |   |   |   |   |    |   |    |    |    |                 |
|   | UEAB             | _ | -   | -  |   |   |   |   |    |   |    |    |    |                 |
|   | BP2U             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | UI48             | _ | _   | _  |   |   |   |   |    |   |    |    |    |                 |
|   | Medn             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | Mekn             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | neen             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | NGSA             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | Ne⊄N             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | SE5A             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | USĐĄ             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | บเอง             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | нгәА             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | Beın             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | DC9B             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | DG9M             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | DG90             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | U69V             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | DG90             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | DC9H             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | H69∧             |   |     |    |   |   |   |   |    |   |    |    |    |                 |
|   | Xirix            | 7 | _   | -) |   |   |   |   |    |   |    |    |    | Codes           |
|   | COC<br>Line Item | 1 | 2   | ъ  | 4 | 5 | 9 | 7 | 00 | 6 | 10 | 11 | 12 | Container Codes |

|           | Glass Misc. | ital WGKU 8oz clear soil jar BP1C IL NAOH plastic I Wipe/Swab | al WGFU 4oz clear soil ar BP1N | WG2U 2oz clear soil jar BP1S 1L H2SO4 plastic ZPLC | JGFU 4oz unpreserved amber wide BP1U 1L unpreserved plastic AF | AG0U 100mL unores amber glass BP1Z 1L NaOH, Zn Acetate C | AG1H 1L HCl amber glass BP2C 500mL NAOH plastic R | rved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U Summa Can | AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic | AG1U 1liter unpres amber glass BP2U | AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate | AG2S                     | AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT Water | AG2U   500mL unpres amber glass   BP3N | AG3U 250mL unpres amber glass BP3U | AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL OL | AG5U   100mL unpres amber glass   BP3Z   250mL NaOH, Zn Acetate   WP   Wipe | BP4U   125mL unpreserved plastic   DW   Drinking Water | BP4N   125mL HNO3 plastic | BP4S   125mL H2SO4 plastic |  |
|-----------|-------------|---------------------------------------------------------------|--------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|----------------------------|--|
|           | Glass       |                                                               |                                |                                                    |                                                                |                                                          |                                                   |                                                                    |                                                                   |                                     |                                                         |                          |                                                                                |                                        |                                    |                                                              |                                                                             |                                                        |                           |                            |  |
|           |             | 40mL bisulfate clear vial                                     | 40mL HCI amber voa vial        | 40mL MeOH clear vial                               | 40mL TSP amber vial                                            | 40mL H2SO4 amber vial                                    | 40mL Na Thio amber vial                           | 40mL amber unpreserved                                             | 40mL HCI clear vial                                               | 40mL Na Thio. clear vial            | 40mL unpreserved clear vial                             | 1liter H2SO4 clear glass | 1 liter unpres glass                                                           | 250mL HCL Clear glass                  | 250mL Unpres Clear glass           | 16oz clear soil jar                                          |                                                                             |                                                        |                           |                            |  |
| ner Codes |             | DG9B                                                          | DG9H                           | DG9M                                               | DG90                                                           | DG9S                                                     | DG9T                                              | DG9N                                                               | VG9H                                                              | VG9T                                | VG9U                                                    | BG1S                     | BG1U                                                                           | ВСЗН                                   | BG3U                               | WGDU                                                         |                                                                             |                                                        |                           |                            |  |

Work Order Number:





June 14, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452817

## Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407

Databa m. Wilson

Project Manager

**Enclosures** 

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

## Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Ohio EPA Rad Approval: #41249

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 60452817001 | BAT-03-CCR | Water  | 05/13/24 10:05 | 05/14/24 09:45 |
| 60452817002 | ERB-02-CCR | Water  | 05/13/24 10:20 | 05/14/24 09:45 |



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

| Lab ID      | Sample ID  | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|--------------------------|----------|----------------------|------------|
| 60452817001 | BAT-03-CCR | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60452817002 | ERB-02-CCR | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

| Sample: BAT-03-CCR<br>PWS: | <b>Lab ID: 604528</b> 1 Site ID: | 17001 Collected: 05/13/24 10:05<br>Sample Type: | Received: | 05/14/24 09:45 | Matrix: Water |      |
|----------------------------|----------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                           | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Se               | rvices - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                        | 0.655 ± 0.507 (0.715)<br>C:NA T:96%             | pCi/L     | 05/30/24 13:55 | 5 13982-63-3  |      |
|                            | Pace Analytical Se               | rvices - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                        | 0.821 ± 0.444 (0.797)<br>C:83% T:77%            | pCi/L     | 05/29/24 15:33 | 3 15262-20-1  |      |
|                            | Pace Analytical Se               | rvices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation      | 1.48 ± 0.951 (1.51)                             | pCi/L     | 06/05/24 10:30 | 7440-14-4     |      |



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

| Sample: ERB-02-CCR<br>PWS: | <b>Lab ID: 604528</b> <sup>o</sup> Site ID: | 17002 Collected: 05/13/24 10:20<br>Sample Type: | Received: | 05/14/24 09:45 | Matrix: Water |      |
|----------------------------|---------------------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Se                          | rvices - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                                   | 0.000 ± 0.502 (1.01)<br>C:NA T:92%              | pCi/L     | 05/30/24 13:55 | 5 13982-63-3  |      |
|                            | Pace Analytical Se                          | rvices - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                                   | 0.427 ± 0.415 (0.853)<br>C:82% T:74%            | pCi/L     | 05/29/24 15:33 | 3 15262-20-1  |      |
|                            | Pace Analytical Se                          | rvices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation                 | 0.427 ± 0.917 (1.86)                            | pCi/L     | 06/05/24 10:30 | 7440-14-4     |      |



## **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

QC Batch: 669505 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452817001, 60452817002

METHOD BLANK: 3260259 Matrix: Water

Associated Lab Samples: 60452817001, 60452817002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0473 ± 0.216 (0.440) C:NA T:88%
 pCi/L
 05/30/24 13:55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

QC Batch: 669507 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452817001, 60452817002

METHOD BLANK: 3260266 Matrix: Water

Associated Lab Samples: 60452817001, 60452817002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.807 ± 0.490 (0.912) C:79% T:71%
 pCi/L
 05/29/24 15:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 06/14/2024 06:43 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452817

Date: 06/14/2024 06:43 PM

| Lab ID      | Sample ID  | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|--------------------------|----------|-------------------|---------------------|
| 60452817001 | BAT-03-CCR | EPA 903.1                | 669505   |                   |                     |
| 60452817002 | ERB-02-CCR | EPA 903.1                | 669505   |                   |                     |
| 60452817001 | BAT-03-CCR | EPA 904.0                | 669507   |                   |                     |
| 60452817002 | ERB-02-CCR | EPA 904.0                | 669507   |                   |                     |
| 60452817001 | BAT-03-CCR | Total Radium Calculation | 673358   |                   |                     |
| 60452817002 | ERB-02-CCR | Total Radium Calculation | 673358   |                   |                     |

## CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

DRINKING WATER
OTHER CC/2 T OTHER o GROUND WATER Page: 00 REGULATORY AGENCY RCRA Site Location STATE NPDES UST Same as Section A Accounts Payable Heather Wilson Company Name: AECOM Manager. Pace Profile #: 11033, 3 42700 Invoice Information: Pace Quote Reference: Pace Project Section C Attention: Address. Project Name: 60709371 PRPA CCR Purchase Order No.: NEED PO # Report To: Vasanta Kalluri Copy To: Jamie Herman Project Number: 60709371 Section B Required Project Information: Standard Greenwood Village, CO 80111 jamie.herman@aecom.com 6200 South Quebec St Fax: Phone: (303) 740-2614 Requested Due Date/TAT: Section A Required Client Information: AECOM Company: Email To: Address:

| Sequired Client Information  SAMPLE ID  (A-2, 0-91, -)  Sample IDs MUST BE UNIQUE  ERT-03-CCR | Valid Matrix Codes MATRIX CODE ORNANICAMEN WA WASTE WATER WW PRODUCT SCUSOLID SL OIL WPE WPE WPE WPE WPE WPE WPE WPE WPE WPE | 1 100000 62     | (д        |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      | 200000            |               | Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Compan | William Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Contract Cont |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-------------------------------|------------------|-----------------|------------------|----------------|-----------------------------------------------|-------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|------|-------|------|------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMPLE ID (A-Z, 0-91,-) Ds MUST BE UNIQUE  - 07 - CCR                                          |                                                                                                                              |                 | IMO       |                               | COLLECTED        | ŒD.             |                  |                | σ.                                            | Preservatives           | atives                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z<br>TN/A                  | 9                                |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AWIPLE ID (A-2, 0-91,-) Ds MUST BE UNIQUE  -02 - CCR  -02 - CCR                               |                                                                                                                              | see valid codes | 0=0 8ARD= | COMPOSITE                     |                  | COMPOSITE       | ОГГЕСТІОЙ        | S              |                                               |                         |                                                    | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 1:                         |                                  |      |       |      |      | (N/Y)             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BAT-03-CCR<br>ERB-02-CCR                                                                      |                                                                                                                              | ) BOOD XIRTAM   |           | DATE                          | LL SE            | DATE            | ZAMPLE TEMP AT C | # OF CONTAINER | Unpreserved<br>P <sub>2</sub> SO <sub>4</sub> | HCI<br>HNO <sup>3</sup> | HOBV<br>SO <sub>S</sub> O <sub>S</sub><br>Iogetial | Vethanol<br>Jehto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis Test<br>325-muibs | 82S-muibs<br>muibsЯ lst <u>o</u> |      |       |      |      | Posidual Chlorine | d             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ERB-02-CCR                                                                                    |                                                                                                                              | M               | 2         | -                             |                  | 1               | +                | $\top$         |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | D                                | t    |       |      |      | 1 2               | Lace          | roject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | race Project No./ Lab I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                               |                                                                                                                              | <b>&gt;</b>     | 4         | <b>&gt;</b>                   | 7                | $\leftarrow$    | 9                | 2              | 1,4                                           | 12                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\times$                   | X                                |      |       |      |      | 2                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                          |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                          |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177                        |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADDITIONAL COMMENTS                                                                           |                                                                                                                              | REL             | INQUISH   | RELINQUISHED BY / AFFILIATION | FILIATION        |                 | DATE             | TIME           | Ē                                             |                         | ACCI                                               | ACCEPTED BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BY / AF                    | FILIATIO                         | z    | DATE  |      | TIME | L                 | SAME          | SAMPLE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SNOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                               |                                                                                                                              | //              | M         | the                           | ARCOM            | N               | h/81)            | 17             | 1730                                          | M                       |                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Ш                                | S    | 4-74  | 2460 | 5    |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           |                               |                  |                 |                  |                |                                               |                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       |      |      |                   |               | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                              |                 |           | (S)                           | SAMPLER NAME AND | AME AND S       | SIGNATURE        | Œ              |                                               |                         | ,                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |      |       | i    |      | 0                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                               |                                                                                                                              |                 |           |                               | PRIN             | PRINT Name of S | SAMPLER:         |                | ath                                           | tara Hoppres            | 5 8                                                | Mád                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1                        | ensiesmi                         | Swit | 7     |      |      | , uị di           | bevie<br>N/Y) | 98 yt<br>14) 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                               |                                                                                                                              |                 |           |                               | SIG              | SIGNATURE of S  | SAMPLER:         | /              | N                                             | 1                       | 1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | DATE Signed                      |      | 15/13 | 12/  |      | nəT               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()<br>dwe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev.08, 12-Oct-2007

| -        |
|----------|
| Custody  |
| of       |
| Chain    |
| Transfer |
| Internal |

|                           |                                                                                                           |                 | Rush Multiplie                              | Altiplier X                                                                                                         |               | 0,         | State Of                      | State Of Origin: CO | 8                            |                   |                                       | 1      | Jace         |
|---------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------|------------|-------------------------------|---------------------|------------------------------|-------------------|---------------------------------------|--------|--------------|
| Mo                        | Workorder: 60452817                                                                                       | Workorder Name: |                                             | Samples Pre-Logged into eCOC 60709371 PRPA CCR                                                                      | nto eCOC      |            | Cert. Needed:<br>Owner Receiv | Cert. Needed: Yes   | Yes Date:                    | X No<br>5/14/2024 | Results Reguested Bv.                 |        | 6/5/2024     |
| Rep                       | Report To                                                                                                 |                 | Subcontract To                              | it To                                                                                                               | 3             |            |                               |                     |                              | Requeste          | 9                                     |        | 17071        |
| Hea<br>9600<br>Pho<br>Pho | Heather Wilson<br>Pace Analytical Kansas<br>9608 Loiret Blvd.<br>Lenexa, KS 66219<br>Phone 1(913)563-1407 |                 | Pace/<br>1638 I<br>Suites<br>Green<br>Phone | Pace Analytical Pittsburgh<br>1638 Roseytown Road<br>Suites 2,3, & 4<br>Greensburg, PA 15601<br>Phone (724)850-5600 |               |            |                               | 925 muibe9          | 8SS muibeA<br>muibeA mu2 le: |                   |                                       |        |              |
|                           |                                                                                                           | -               |                                             |                                                                                                                     | 1             | Preserve   | Preserved Containers          | T                   |                              |                   |                                       |        |              |
| ltem                      | Sample ID                                                                                                 | Sample<br>Type  | Collect<br>Date/Time                        | Lab ID                                                                                                              | Matrix        | EONH       |                               |                     |                              |                   |                                       | LAB    | LAB USE ONLY |
| -                         | BAT-03-CCR                                                                                                | PS              | 5/13/2024 10:05                             | 60452817001                                                                                                         | Water         | 2          |                               | ×                   | ×                            |                   |                                       | 100    | 1            |
| 2                         | ERB-02-CCR                                                                                                | PS              | 5/13/2024 10:20                             | 60452817002                                                                                                         | Water         | 2          |                               | ×                   | ×                            |                   |                                       | 600    | 6            |
| က                         |                                                                                                           |                 |                                             |                                                                                                                     |               |            |                               |                     |                              |                   |                                       |        |              |
| 4                         |                                                                                                           |                 |                                             |                                                                                                                     |               |            |                               |                     |                              |                   |                                       |        |              |
| 2                         |                                                                                                           |                 |                                             |                                                                                                                     |               |            |                               |                     |                              |                   |                                       |        |              |
|                           |                                                                                                           |                 |                                             |                                                                                                                     |               |            |                               |                     |                              |                   | Comments                              |        |              |
| Tran                      | Transfers Released By                                                                                     |                 | Date/Time                                   | Received By                                                                                                         | المعطد المقلم | . 400      | Ď                             | Date/Time           | *Plea                        | e Provide QC      | *Please Provide QC sheets with report |        |              |
| -                         |                                                                                                           |                 |                                             | 1                                                                                                                   | note the      | dod: - Pro |                               | hb hemis            | -                            |                   | •                                     |        |              |
| 7                         |                                                                                                           |                 |                                             |                                                                                                                     |               |            |                               |                     | _                            |                   |                                       |        |              |
| က                         |                                                                                                           |                 |                                             |                                                                                                                     |               |            |                               |                     |                              |                   |                                       | ,      |              |
| ပိ                        | Cooler Temperature on Receipt                                                                             | Receipt         | sno ၁                                       | Custody Seal Y                                                                                                      | or (N)        |            | Receiv                        | Received on Ice     | Y or                         | (Ne               | Samples Intact                        | t() or | z            |

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.



# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

## ENV-FRM-GBUR-0088 v07\_Sample Condition Upon Receipt-G

Effective Date: 01/04/2024

## WO#: 30683965

PM: MAR

Due Date: 06/05/24

CLIENT: PACE\_60\_LEKS

| Client Name: Pace KS / AEC                    | COM               | (                 |         | Projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p & 11 ·                                     |                           | K                            |
|-----------------------------------------------|-------------------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|------------------------------|
| Tod Ev □ UPS □ USPS □ Client                  | □ Com             | nmerc             | ial 🗆 F | Pace 🗆 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                           | Initial / Date               |
| Tracking Number: 7146 2378                    | 00                | 127               | L       | 1,3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | 1                         | y: 53 S/14/24                |
| Custody Seal on Cooler/Box Present:           | es ⊠N<br>oe of lo | lo                | Seals   | Intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>P</b> No                                  | Labeled By:<br>Temped By: | <u>ज्</u> राय विप            |
| Illetinomete.                                 |                   |                   |         | ection Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.                                    </u> |                           | mp: °C                       |
| Cooler Temperature: Observed Temp             |                   | _°C               | Corre   | ection Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | C Intaire                 |                              |
| Temp should be above freezing to 6°C          |                   |                   |         | pH paper Lot#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T                                            | D.P.D. Resid              | ual Chlorine Lot #           |
|                                               | T                 | N1 -              | TALA    | 100,2531.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1                                          | -                         |                              |
| Comments:                                     | Yes               | No                | NA      | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                              |                           |                              |
| Chain of Custody Present                      | /                 |                   | -       | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| Chain of Custody Filled Out:                  |                   | L                 |         | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| -Were client corrections present on COC       |                   | /                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                           |                              |
| Chain of Custody Relinquished                 |                   |                   |         | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| Sampler Name & Signature on COC: •            |                   |                   |         | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| Sample Labels match COC:                      |                   | <u></u>           |         | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| -Includes date/time/ID                        |                   | WI                |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                           |                              |
| Matrix:                                       |                   |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                           |                              |
| Samples Arrived within Hold Time:             | /                 |                   |         | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| Short Hold Time Analysis (<72hr               |                   | /                 |         | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           | ae a                         |
| remaining):                                   |                   |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                           |                              |
| Rush Turn Around Time Requested:              |                   | /                 |         | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| Sufficient Volume:                            | /                 |                   |         | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                           |                              |
| Correct Containers Used:                      | /                 |                   |         | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| -Pace Containers Used                         | /                 |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                           |                              |
| Containers Intact:                            | /                 | e• 1 <sub>1</sub> |         | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| Orthophosphate field filtered:                |                   |                   | /       | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| Hex Cr Aqueous samples field filtered:        |                   |                   | -       | 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| Organic Samples checked for dechlorination    |                   |                   | /       | 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| Filtered volume received for dissolved tests: |                   |                   |         | 15:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| All containers checked for preservation:      | /                 |                   |         | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
|                                               |                   |                   |         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| exceptions: VOA, coliform, TOC, O&G,          | 7.14              |                   |         | PH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                            |                           | 2 34 3 9 93 93 199999        |
| Phenolics, Radon, non-aqueous matrix          |                   |                   |         | Initial when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | Date/Time of              |                              |
| All containers meet method preservation       | /.                | П                 |         | completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | Preservation              |                              |
| requirements:                                 |                   | N                 |         | Lot# of added<br>Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                           | *                            |
|                                               |                   |                   |         | 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| 8260C/D: Headspace in VOA Vials (> 6mm)       |                   |                   | /       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                           |                              |
| 624.1: Headspace in VOA Vials (0mm)           |                   |                   | /       | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                           |                              |
| Radon: Headspace in RAD Vials (0mm)           |                   |                   |         | 19. Trip blank cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | toduca                                       | nal precent?              | YES or NO                    |
| Trip Blank Present:                           |                   |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | ai presenti               |                              |
| Rad Samples Screened <.05 mrem/hr.            | /                 |                   |         | Initial when completed 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date:                                        | 4-24                      | Survey Meter<br>SN: 25014380 |
| Comments:                                     |                   |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                           |                              |

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office.

PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

## Pace Analytical

# **Quality Control Sample Performance Assessment**

Ra-226 CLM 5/20/2024 79274 DW

Test: Analyst: Date:

Batch ID: Matrix:

3260259

MB Sample ID

Method Blank Assessment

MB concentration:

M/B Counting Uncertainty:

MB MDC:

0.047 0.207 0.440 0.45 N/A Pass

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| MS/MSD 2                               |                         |             |                |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    |                                     |                |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                 |
|----------------------------------------|-------------------------|-------------|----------------|-----------------|-------------|------------------------------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------------|------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------------------|------------------------------------|------------------------|-------------------------|---------------------------------|---------------------------------|
| MS/MSD 1                               |                         |             |                |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    |                                     |                |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                 |
| Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Spike I.D.: | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F): | MSD Aliquot (L, g, F): | MSD Target Conc. (pCi/L, g, F): | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery: | MSD Percent Recovery: | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery: | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MS/MSD Lower % Recovery Limits: |
|                                        |                         |             |                |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    | ٨                                   | LCSD79274      | 5/30/2024                                         | 23-063                      | 32.299                                                  | 0,10                                  | 0.652                                                             | 4.952                               | 0.233                                | 4.952                | 1.124                 | 00:00                             | 100.01%                            | N/A                    | Pass                    | 133%                            | 73%                             |

|                                      |           |             |             |                               |                    | Matri                     |                             | _                         |                       |                                              |                                  |                   |                                | _                   |                          |                          |
|--------------------------------------|-----------|-------------|-------------|-------------------------------|--------------------|---------------------------|-----------------------------|---------------------------|-----------------------|----------------------------------------------|----------------------------------|-------------------|--------------------------------|---------------------|--------------------------|--------------------------|
| >                                    | LCSD79274 | 5/30/2024   | 23-063      | 32.299                        | 0.10               | 0.652                     | 4.952                       | 0.233                     | 4.952                 | 1.124                                        | 00:00                            | 100.01%           | A/N                            | Pass                | 133%                     | 73%                      |
| LCSD (Y or N)?                       | LCS79274  | 5/30/2024   | 23-063      | 32.299                        | 0.10               | 0.651                     | 4.959                       | 0,233                     | 4.027                 | 0.886                                        | -1.99                            | 81.21%            | N/A                            | Pass                | 133%                     | 73%                      |
| Laboratory Control Sample Assessment |           | Count Date: | Spike I.D.: | Spike Concentration (pCi/mL): | Volume Used (mL.): | Aliquot Volume (L, g, F): | Target Conc. (pCi/L, g, F): | Uncertainty (Calculated): | Result (pCi/L, g, F): | LCS/LCSD Counting Uncertainty (pCi/L, g, F): | Numerical Performance Indicator: | Percent Recovery: | Status vs Numerical Indicator: | Status vs Recovery: | Upper % Recovery Limits: | Lower % Recovery Limits: |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Enter Duplicate Sample I.D. Sample ID. |           | LCS/LCSD in   Sample Matrix Spike Result: | Matrix Spike Re  | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |
|-------------------------------------------------------|----------------------------------------|-----------|-------------------------------------------|------------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
|                                                       | Enter Dupii<br>sample ID               | other the | LCS/LCSI                                  | the space below. |                                       |                                                                   |                                            |                                                          |                                                  |                                  |              |

LCS79274 LCSD79274

4.027 0.886 4.952 1.124 NO -1.267 20.75%

Duplicate Numerical Performance Indicator:

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator:

Sample I.D.:

Duplicate Sample I.D.:

Sample Result (DG/IL, g, F):

Sample Result Counting Uncertainty (pG/IL, g, F):

Sample Duplicate Result (pG/IL, g, F):

Sample and/or duplicate results (pG/IL, g, F):

Are sample and/or duplicate results below RL?

Duplicate Sample Assessment

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

N/A Pass 32%

Duplicate Status vs RPD: % RPD Limit:

Comments:

Ra-226 NELAC QC Printed: 6/3/2024 2:48 PM

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2

MS/MSD 1

Spike I.D.:

Ra-228

Test:

Pace Analytical

Method Blank Assessmen

MSD Ailquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): Sample I.D. Sample MS I.D. Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator: Sample Collection Date: Sample MSD I.D. MS/MSD Decay Corrected Spike Concentration (pCi/mL): Spike Volume Used in MS (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): Sample Result Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result MS Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator Spike Volume Used in MSD (mL) MSD Spike Uncertainty (calculated) MSD Percent Recovery Sample Matrix Spike Control Assessment VAL 5/21/2024 79275 WT 0.807 0.490 0.912 3.23 Fail\* Pass MB concentration: M/B 2 Sigma CSU: MB MDC: Analyst: Worklist: Matrix: Date: MB Sample ID MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

| Laboratory Control Sample Assessment          | LCSD (Y or N)? | <b>&gt;</b> |
|-----------------------------------------------|----------------|-------------|
|                                               | LCS79275       | LCSD79275   |
| Count Date:                                   | 5/29/2024      | 5/29/2024   |
| Spike I.D.:                                   | 23-043         | 23-043      |
| Decay Corrected Spike Concentration (pCi/mL): | 36.575         | 36.575      |
| Volume Used (mL):                             | 0.10           | 0.10        |
| Aliquot Volume (L, g, F):                     | 0.821          | 0.817       |
| Target Conc. (pCi/L, g, F):                   |                | 4.477       |
| Uncertainty (Calculated):                     | 0.218          | 0.219       |
| Result (pCi/L, g, F):                         | 4.564          | 3.995       |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 1.102          | 0.999       |
| Numerical Performance Indicator:              | 0.19           | -0.92       |
| Percent Recovery:                             | 102.45%        | 89.23%      |
| Status vs Numerical Indicator:                | N/A            | N/A         |
| Status vs Recovery:                           | Pass           | Pass        |
| Upper % Recovery Limits:                      | 135%           | 135%        |
| Lower % Recovery Limits:                      | %09            | %09         |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |
|-------------------------------------------------------|-------------|----------------|-----------------|-----------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|

other than LCS/LCSD in the space below.

4.564 1.102 3.995 0.999

Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator:

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Status vs Numerical Indicator

NO 0.749 13.79%

Pass Pass 36%

Duplicate Status vs RPD: % RPD Limit:

Enter Duplicate sample IDs if

LCS79275 LCSD79275

Sample I.D.: Duplicate Sample I.D.

**Duplicate Sample Assessment** 

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

MS Status vs Recovery MSD Status vs Recovery

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

\*# the lowest activity samp

Comments:

between is greater than ten times the blank weters, the blank ris acceptable, otherwise this batch must be re-prepage. Must a chart 4 < Must Palls

6 of 11

Ra-228\_79275\_W Ra-228 (ENV-FRM-GBUR-0295 03).xls





June 18, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

Databa m. Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM







### **CERTIFICATIONS**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



### **SAMPLE SUMMARY**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60452818001 | BAT-13-CDPHE | Water  | 05/10/24 14:20 | 05/14/24 09:45 |

(913)599-5665



### **SAMPLE ANALYTE COUNT**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

| Lab ID      | Sample ID    | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|--------------------------|----------|----------------------|------------|
| 60452818001 | BAT-13-CDPHE | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

| Sample: BAT-13-CDPHE<br>PWS: | <b>Lab ID: 604528</b> Site ID: | 18001 Collected: 05/10/24 14:20 Sample Type: | Received: | 05/14/24 09:45 | Matrix: Water |      |
|------------------------------|--------------------------------|----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                         | Act ± Unc (MDC) Carr Trac                    | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical Se             | ervices - Greensburg                         |           |                |               |      |
| Radium-226                   | EPA 903.1                      | 1.04 ± 0.852 (1.30)<br>C:NA T:87%            | pCi/L     | 05/30/24 13:55 | 5 13982-63-3  |      |
|                              | Pace Analytical Se             | ervices - Greensburg                         |           |                |               |      |
| Radium-228                   | EPA 904.0                      | 2.74 ± 0.759 (0.842)<br>C:84% T:74%          | pCi/L     | 05/29/24 15:32 | 2 15262-20-1  |      |
|                              | Pace Analytical Se             | ervices - Greensburg                         |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation    | 3.78 ± 1.61 (2.14)                           | pCi/L     | 06/05/24 10:30 | 7440-14-4     |      |



### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

QC Batch: 669505 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452818001

METHOD BLANK: 3260259 Matrix: Water

Associated Lab Samples: 60452818001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0473 ± 0.216 (0.440) C:NA T:88%
 pCi/L
 05/30/24 13:55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

QC Batch: 669507 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60452818001

METHOD BLANK: 3260266 Matrix: Water

Associated Lab Samples: 60452818001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.807 ± 0.490 (0.912) C:79% T:71%
 pCi/L
 05/29/24 15:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 06/18/2024 03:48 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731455 PRPA CDPHE

Pace Project No.: 60452818

Date: 06/18/2024 03:48 PM

| Lab ID      | Sample ID    | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|--------------------------|----------|-------------------|---------------------|
| 60452818001 | BAT-13-CDPHE | EPA 903.1                | 669505   |                   |                     |
| 60452818001 | BAT-13-CDPHE | EPA 904.0                | 669507   |                   |                     |
| 60452818001 | BAT-13-CDPHE | Total Radium Calculation | 673358   |                   |                     |

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

CDPHEQCCK BAT PA

| Section       | Section A<br>Renuired Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section B<br>Required Project Information. | ct Infe       | format         | ation:                        |            |                  |                     | Sec                  | Section C                | mation                    | 294       |                                          |           |              |              |                           |           |                                   |               |        |              | Page:      | -                  | 3       | of                       |                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|----------------|-------------------------------|------------|------------------|---------------------|----------------------|--------------------------|---------------------------|-----------|------------------------------------------|-----------|--------------|--------------|---------------------------|-----------|-----------------------------------|---------------|--------|--------------|------------|--------------------|---------|--------------------------|----------------------------|
| Company:      | AECOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Report To: Vasanta Kalluri                 | sant          | ta K           | alluri                        |            |                  |                     | Atte                 | Attention:               | Ac                        | conut     | Accounts Payable                         | aple      |              |              |                           | Г         |                                   |               |        | 4            |            |                    |         |                          |                            |
| Address:      | 6200 South Quebec St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copy To: Jar                               | mie           | Jamie Herman   | man                           |            |                  |                     | Com                  | Company Name:            |                           | AECOM     | MO                                       |           |              |              |                           |           | REGULATORY AGENCY                 | LATO          | RY AG  | ENCY         |            |                    |         |                          |                            |
|               | Greenwood Village, CO 80111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |               |                |                               |            |                  |                     | Address:             | ess:                     | Sa                        | me a      | Same as Section A                        | tion A    | _            |              |                           |           | Ž                                 | NPDES         | L      | GROUND WATER | D WAT      | ER                 | DRIF    | DRINKING WATER           | ۱۱                         |
| Email To:     | jamie.herman@aecom.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Purchase Order No.:                        | No.:          |                | NEED PO#                      | #          |                  |                     | Pace                 | Pace Quote<br>Reference: | 73                        | 73141     |                                          |           |              |              |                           |           | ž<br>L                            | UST           | L      | RCRA         |            | 2                  | OTHER   |                          | の世代の                       |
| Phone:        | (303) 740-2614 Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project Name.                              |               | 0709           | 60709418 PRPA CDPHE           | A CDPH     | E                |                     | Pace Pro<br>Manager: | Pace Project<br>Manager: | H                         | ather     | Heather Wilson                           | uc        |              |              |                           |           | Site L                            | Site Location | E      | 5            |            |                    |         |                          |                            |
| Request       | Requested Due Date/TAT: 15 Day TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project Number: 60709418                   | i. 60         | 070            | 9418                          |            |                  |                     | Pace                 | Pace Profile #.          |                           | 11033, 8  | 80                                       |           |              |              |                           |           | 428                               | STATE:        | 1      | 3            |            |                    |         |                          |                            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |               |                |                               |            |                  |                     |                      |                          |                           |           |                                          |           | Ц            | اعّا         | edne                      | ted A     | Requested Analysis Filtered (Y/N) | is Filt       | ered ( | (N)          |            |                    |         |                          |                            |
|               | Section D Valid Matrix Codes Required Client Information MATRIX CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - H                                        | _             | (dW            |                               | COLLECTED  | CTED             |                     |                      |                          | Pre                       | serva     | Preservatives                            |           | <b>↑</b> N/A | ż            | 1                         |           |                                   |               |        |              |            |                    |         |                          |                            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 示点 3 (元) " " 5                             |               | 00=0 8AR8:<br> | COMPOSITE                     | E .        | COMPOSITE        |                     | S                    |                          |                           |           |                                          |           | 17           | 97           |                           | 077 7     |                                   |               |        |              | (N/Y) 8    |                    |         |                          |                            |
|               | SAMPLE ID wipe ARR (A-Z, 0-9 / ,-) OTHER Sample IDs MUST BE UNIQUE TISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WP<br>AR<br>OT<br>TS                       | To the second | =0)            |                               |            |                  | 2. 07131            | S TA 4M31            |                          |                           |           | E                                        |           | tesT eie     | SZ-muiba     | SS-muibe<br>SS-muibe      | 77.111515 |                                   |               |        |              | I Chlorine |                    |         |                          |                            |
| # M3TI        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XIATAM                                     |               | SAMPLE.        | DATE                          | TIME       | DATE             | TIME                |                      | Onprese                  | FONH<br>PSSO <sup>‡</sup> | HCI       | HOaN<br>O <sub>S</sub> S <sub>2</sub> 6N | Methan    | Other Other  | Total Ra     |                           | 271 1112  |                                   |               |        |              | Residus    |                    | ice Pro | ject No.                 | Pace Project No./ Lab I.D. |
| 1             | BAT-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | $\vdash$      | ~              | PSTAGOS                       | 1          | 5/10/24          | 1420                | 7                    | Į,                       | 7                         |           | $\vdash$                                 |           | -            | >            | 5                         |           |                                   |               |        | -            | Z          |                    |         |                          |                            |
| 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | $\dashv$      |                |                               |            | -                |                     | $\dashv$             | $\exists$                | +                         |           |                                          |           |              |              |                           | _         |                                   |               |        | -            | +          |                    |         |                          |                            |
| က             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |               |                |                               |            |                  |                     | +                    |                          | +                         |           | -                                        |           |              |              | _                         | 1         |                                   |               |        |              |            |                    |         |                          |                            |
| 4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |               | $\dagger$      |                               |            |                  |                     | +                    |                          | -                         |           |                                          |           | 1            |              |                           |           |                                   |               | -      |              |            |                    |         |                          |                            |
| 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | +             |                |                               |            |                  |                     | +                    | Ŧ                        | +                         | 1         | +                                        |           |              |              | <u> </u>                  | Ŧ         | +                                 | 1             | Ŧ      | F            | +          |                    |         |                          |                            |
| 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | +             |                |                               |            |                  |                     | +                    |                          | +                         |           |                                          |           |              |              |                           | 1         | +                                 |               |        |              | $\pm$      |                    |         |                          |                            |
| 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | +             | +              |                               |            |                  |                     | +                    | +                        | +                         | 1         | +                                        | 1         | T            | I            | 1                         | F         | $\pm$                             | #             |        |              | $\pm$      |                    |         |                          |                            |
| œ (           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | +             |                |                               |            |                  |                     |                      |                          |                           |           |                                          |           |              |              |                           | +         | 1                                 |               |        | +            | $\pm$      |                    |         |                          |                            |
| 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | +             |                |                               |            |                  |                     | +                    | -                        | -                         |           | -                                        |           |              | The state of |                           |           |                                   | F             |        |              |            |                    |         |                          |                            |
| =             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |               |                |                               |            |                  |                     | H                    |                          |                           |           |                                          |           | \$ H.        | 19217        |                           |           |                                   |               |        |              |            |                    |         |                          |                            |
| 12            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |               |                |                               |            |                  |                     | $\dashv$             | -                        | $\exists$                 | $\Box$    | $\dashv$                                 | $\exists$ |              | 4            |                           | 4         |                                   | $\exists$     | 1      | $\exists$    |            |                    |         |                          |                            |
| Ving          | ADDITIONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | œ                                          | RELIN         | VQUIS          | RELINQUISHED BY / AFFILIATION | AFFILIATIO | NC               | DATE                | No.                  | TIME                     |                           | 7         | AC                                       | CEPT      | ED B         | Y / AF       | ACCEPTED BY / AFFILIATION | NO        |                                   | DATE          | , T.,  | TIME         |            | Š                  | AMPLEC  | SAMPLE CONDITIONS        | NS                         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                          | 1,            | K              | 42 /                          | REC        | Ma               | 1730                | 472 13/H             | 13/2                     | 4                         | A         | 4                                        |           | K            |              |                           | ,         | 5-14-24                           | 25-           | COUS   | 5            |            |                    | -       |                          |                            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | V             | د              |                               |            |                  |                     |                      | .                        | `                         |           |                                          |           |              |              |                           |           | $\dashv$                          |               |        |              |            |                    | -       |                          |                            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |               |                |                               |            |                  |                     |                      |                          |                           |           |                                          |           |              |              |                           |           | +                                 |               | _      |              |            |                    | -       |                          |                            |
|               | Pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |               |                |                               | SAMPLE     | SAMPLER NAME AND | ID SIGNATURE        | URE -                |                          |                           |           |                                          |           |              | Ģ.           |                           |           | +                                 |               |        |              | 0,         |                    |         |                          | lact                       |
| <i>y</i> C 10 | ge 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |               |                |                               |            | PRINT Name of    | of SAMPLER:         | ER:                  | 10                       | af                        | anaflepos | 5                                        |           |              |              |                           |           | ,                                 |               | -      |              | , uị dwa   | Sceived<br>MVX) 93 | N/Y) 93 | tody Se                  | nples In<br>(Y/V)          |
| OI.           | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |               |                |                               |            | SIGNATURE of     | of SAMPLER:         | ER: /                | 1                        | W                         | H         |                                          |           |              | າ ຮ          | (MM/DD/YY):               | (YY):     | 25                                | 13            | 57     |              | )T         |                    | _       |                          | ns2                        |
| J             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                            | Ţ.            |                |                               |            |                  | THE PERSON NAMED IN |                      | ١                        |                           |           |                                          |           |              |              |                           |           |                                   |               |        |              | i          | 000                | 0       | 7000 LO 04 00000 O 114 F | 71                         |

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

| Custody  |
|----------|
| of       |
| Chain    |
| Transfer |
| iternal  |

|                                                                                                     |                                                                                                           |                                 | Rush Multiplier                                                                         | tiplier                                                                                                             |                     | State                | State Of Origin: CO  | 8                             |            |                                       | 7           | Jace         |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|----------------------|-------------------------------|------------|---------------------------------------|-------------|--------------|
|                                                                                                     |                                                                                                           |                                 |                                                                                         | Samples Pre-Logged into eCOC                                                                                        | ococ -              | Cert.                | Cert. Needed:        | Yes                           | ×          |                                       |             |              |
| Workord                                                                                             | Workorder: 60452818                                                                                       | Workorder Name:                 | ame: 60709418 PRPA                                                                      | 8 PRPA CUPHE                                                                                                        |                     | Owne                 | Owner Received Date: | Date:                         | 5/14/2024  | 14/2024 Results Requested By:         | - 1         | 6/5/2024     |
| 2                                                                                                   |                                                                                                           |                                 | Ton III Compo                                                                           |                                                                                                                     |                     | -                    |                      |                               | Medical    | od Aridiyala                          |             |              |
| Heather Wilson<br>Pace Analytical Kar<br>9608 Loiret Blvd.<br>Lenexa, KS 66219<br>Phone 1(913)563-1 | Heather Wilson<br>Pace Analytical Kansas<br>9608 Loiret Blvd.<br>Lenexa, KS 66219<br>Phone 1(913)563-1407 |                                 | Pace Analytical<br>1638 Roseyfow<br>Suites 2,3, & 4<br>Greensburg, PA<br>Phone (724)85( | Pace Analytical Pittsburgh<br>1638 Roseytown Road<br>Suites 2,3, & 4<br>Greensburg, PA 15601<br>Phone (724)850-5600 |                     | Preserved Containers | e<br>o<br>Sadium 226 | 82S muibeA<br>muibeA mu2 leto |            |                                       |             |              |
|                                                                                                     |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     | -                    |                      | ът                            | _          | _                                     |             |              |
| Item Samp                                                                                           | Sample ID                                                                                                 | Sample Collect<br>Type Date/Til | эш                                                                                      | Lab ID M                                                                                                            | Matrix HX03         |                      |                      |                               |            |                                       | LAE         | LAB USE ONLY |
| 1 BAT-13                                                                                            |                                                                                                           | PS                              | 5/10/2024 14:20                                                                         | 60452818001 M                                                                                                       | Water 2             |                      | ×                    | ×                             |            |                                       |             | 361          |
| 2                                                                                                   |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     |                      |                      |                               |            |                                       |             |              |
| 3                                                                                                   |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     |                      |                      |                               |            |                                       |             |              |
| 4                                                                                                   |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     |                      |                      |                               |            |                                       |             |              |
| 5                                                                                                   |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     |                      |                      |                               |            |                                       |             |              |
|                                                                                                     |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     |                      |                      |                               |            | Comments                              |             |              |
| Transfers                                                                                           | Released By                                                                                               |                                 | Date/Time                                                                               | Received By                                                                                                         |                     |                      | Date/Time            | IR-30 *I                      | Rad QC she | IR-30 *Rad QC sheets required         |             |              |
| -                                                                                                   |                                                                                                           |                                 |                                                                                         | Short                                                                                                               | the schools - Pace. |                      | 5 14 24 941          |                               | Provide QC | *Please Provide QC sheets with report |             |              |
| 2                                                                                                   |                                                                                                           |                                 |                                                                                         |                                                                                                                     |                     |                      |                      |                               |            |                                       |             |              |
| 3                                                                                                   |                                                                                                           |                                 |                                                                                         |                                                                                                                     | 1                   |                      |                      |                               |            |                                       | 1           |              |
| Cooler 1                                                                                            | Cooler Temperature on Receipt                                                                             | 1                               | _°C   Cust                                                                              | Custody Seal Y                                                                                                      | or (N)              | Rece                 | Received on Ice      | Y or                          | 2          | Samples Intact                        | tact (Y) or | z            |

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.



Page 1 of 1

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

CDPHEQCCK BAT PA

| In Quebec St  ad Village, CO 80111  Than@aecom.com  Than@aecom.com  A Fex:  AMARIX  MATRIX  DALE ID  WATRIX  DOIL  WATRIX  DOIL  WATRIX  DOIL  WATRIX  DOIL  WATRIX  DOIL  WATRIX  DOIL  WATRIX  DOIL  WATRIX  DOIL  TONAL COMMENTS  TONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Section A | liant Information           | Section B<br>Required Project Information | nforms    | nation:       |            |           |             | Sect     | Section C       | ation. |         |        |         |          |          |       |          |          | а.    | Page:      | <b>-</b>  | o                |             | _      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|-------------------------------------------|-----------|---------------|------------|-----------|-------------|----------|-----------------|--------|---------|--------|---------|----------|----------|-------|----------|----------|-------|------------|-----------|------------------|-------------|--------|
| Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Commonwell   Com   | Compan    |                             | Report To: Vasa                           | nta K     | Kalluri       |            |           |             | Atten    | ion:            | Acco   | unts F  | ayable |         |          |          | _     |          |          | ]     |            |           |                  | .           | 1      |
| Note   September   | Address   |                             | 1                                         | e Hei     | ırman         |            |           |             | Comp     | any Nar         |        | ECON    | _      |         |          |          | REC   | SULATO   | JRY AG   | ENCY  |            |           |                  | 1 =         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Greenwood Village, CO 80111 |                                           |           |               |            |           |             | Addre    | iss:            | 1.76   | e as S  | ection | A       |          |          | L     | NPDES    | L        | ROUND | NATER      | l PR      | NKING            | ۱ ۱         |        |
| The part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the pa | Email To  | 1                           | Purchase Order N                          |           | NEED PO       | #          |           |             | Pace     | Quote:          |        | Ξ       |        |         |          |          | L     | UST      | L        | CRA   |            | _         | HE C             |             |        |
| TIDATM  THE LANGE GOTOGATIS  WHICH MARIN COOMERTS  WHICH MARIN COOMERTS  WHICH MARIN COOMERTS  WHICH MARIN COOMERTS  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTED  WHICH WATCH COOLECTE | Phone:    | (303) 740-2614              |                                           | 6070      | 09418 PRP     | A CDPHE    | 111       |             | Pace     | Project<br>ler: | 10     | her W   | llson  |         |          |          | Sit   | e Locati | no       | 9     |            |           |                  |             |        |
| SAMPLE ID Wild farmer Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons of the Colons o | Rednes    | 1                           | Project Number:                           | 6070      | 09418         |            |           |             | Pace     | Profile #:      |        | 13, 8   |        |         |          |          |       | STAT     | ii       | 3     |            |           |                  |             |        |
| SAMPLE ID Suppose the Control of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection  |           |                             |                                           |           |               |            |           |             |          |                 |        |         |        | H       | R.       | queste   | d Ana | ysis Fil | tered (Y | (N    |            |           |                  |             | 333    |
| SAMPLE ID Survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey of the survey |           |                             | Ы                                         | (aw       |               | COLLEC     | TED       |             |          |                 | Prese  | ervativ | es     | ¶N/A    |          | 4        |       |          |          |       |            |           |                  |             |        |
| SAMPLE ID  SAMPLE ID  SAMPLE ID  SAMPLE WARE AND SCIONATURE OF APPLIATION  ADDITIONAL COMMENTS  RELINQUISIES DEVIAFILATION  ADDITIONAL COMMENTS  RELINQUISITES  ADDITIONAL COMMENTS  RELINQUISITES  ADDITIONAL COMMENTS  RELINQUISITES  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  RELINQUISITES  ADDITIONAL COMMENTS  ADDITIO |           |                             | WYT<br>WWW<br>S.L.                        | OD=D 8A90 | COMPOS        | <u> </u>   | COMPOSITE | NOIT23 I IO |          |                 |        |         |        | 1       | 97       |          |       |          |          |       | (N/A) a    |           |                  |             |        |
| ADDITIONAL COMMENTS  RELIGIOUS NATE TIME  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  ADDITIONA | 1         |                             |                                           | =D) 34YT  |               |            |           | TA GMET     |          | pəvie           |        |         |        | saT sis | adium-22 |          |       |          |          |       | ninoldO la |           |                  |             |        |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # M∃TI    |                             | XIATAM                                    |           | DATE          | TIME       |           |             |          |                 | FONH   | HOBN    | Methan |         | Total R  |          |       |          |          |       | Residus    | Pace Pr   | oject No         | ./ Lab I.D. |        |
| ADDITIONAL COMMENTS  RELINGUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILIATION  ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY  | -         | 1.0                         |                                           |           | NOTACION.     | 1          |           | 97          | 4        |                 | 7      |         | H      |         | >        | >        |       |          |          |       | Z          |           |                  |             |        |
| ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFLIATION  ADDITIONAL COMMENTS  RELINGUISHED BY  | 2         |                             |                                           |           | -             |            | -         | $\dashv$    | _        |                 |        |         |        |         |          |          |       |          |          | 1     | _          |           |                  |             | Т      |
| ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILLATION  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: Concept by 17 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6         |                             |                                           |           |               |            |           | +           |          | 1               |        |         | -      | T       | 1        |          | -     | -        |          | +     | +          |           |                  |             |        |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  ADDITIONAL COMMENTS  SAMPLER NAME AND SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  MINIMADOPTY: DATE Signad  ADDITIONAL COMMENTS  BARRIER NAME AND SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  MINIMADOPTY: DATE SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE of SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF SAMPLER: CACALLEGIPE'S  SIGNATURE OF S | 4         |                             |                                           |           |               |            |           | +           | -        |                 | 1      |         | -      | T       |          | -        | -     | T        | =        |       |            |           |                  |             | T      |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE  THE  ACCEPTED BY AFFILLATION  SAMPLER NAME AND SIGNATURE  PRINT NAME AND SIGNATURE  PRINT NAME AND SIGNATURE OF SAMPLER:  ACCEPTED BY AFFILLATION  ACCOUNTIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  SAMPLE CONDITIONS  ACCEPTED BY AFFILLATION  DATE  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  A | S         |                             |                                           |           |               |            |           | $\dagger$   | +        | +               | 1      | -       | 7      | I       |          | Ī        | 3     |          | 30       | à     | 30%        | 5         |                  |             |        |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE TIME  ACCEPTED BY AFFILLATION  DATE TIME  ACCEPTED BY AFFILLATION  DATE TIME  SAMPLER NAME AND SIGNATURE  FRINT NAME AND SIGNATURE  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SAMPLER NAME of SAMPLER:  SIGNATURE of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLER:  SAMPLER NAME of SAMPLE | 9         |                             |                                           | 1         |               |            |           | +           | +        | 1               |        |         |        | I       |          |          | W. W. |          |          |       |            | -         |                  |             |        |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE  TIME  ACCEPTED BY AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: Local Holy 65  TOWN TOWN TOWN TO SAMPLER: Local Holy 65  TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7         |                             |                                           |           |               |            | +         | +           | +        | +               | 1      |         |        | T       |          | 1        | i     |          |          | Due   | Date:      | 0/90      | 5/24             |             | T      |
| ADDITIONAL COMMENTS  RELINQUISHED BY / AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY / AFFILIATION  DATE  TIME  ACCEPTED BY / AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: Lova Hoppes  SIGNATURE of SAMPLER: Lova Hoppes  (MMIDDITY): 15 L4 February  SAMPLER NAME AND SIGNATURE of SAMPLER: Lova Hoppes  (MMIDDITY): 15 L4 February  SAMPLER NAME SAMPLER: Lova Hoppes  (MMIDDITY): 15 L4 February  SAMPLER NAME AND SIGNATURE of SAMPLER: Lova Hoppes  (MMIDDITY): 15 L4 February  SAMPLER NAME SAMPLER: Lova Hoppes  (MMIDDITY): 15 L4 February  SAMPLER NAME SAMPLER: Lova Hoppes  (MMIDDITY): 15 L4 February  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER: Lova Hoppes  SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER  SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SAMPLER NAME SA | 00        |                             |                                           |           |               |            |           | +           |          | 1               | 1      |         |        | I       |          | _        | CLIE  |          | ACE_6    | O_LEK | S          |           |                  |             | T      |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE TIME SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER: Wave to sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sample to the sampl | 6         |                             |                                           |           |               |            |           |             | +        | #               | 1      | +       | -      | T       |          |          |       |          |          |       |            |           |                  |             | T      |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  ADDITIONAL COMMENTS  RELINQUISHED BY AFFILIATION  DATE TIME ACCEPTED BY AFFILIATION  SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: Cottal Confection of Sampler: Cottal Confection of Sampler: Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal Cottal C | 10        |                             |                                           |           |               |            |           | +           | +        | +               | _      | -       |        | T       |          | -        | +     | I        | -        | -     | -          |           |                  |             | T      |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  SAMPLER NAME AND SIGNATURE of SAMPLER:  SAMPLER NAME AND SIGNATURE of SAMPLER:  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  SAMPLER NAME OF SAMPLER:  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  COCODIET CONDITIONS  CO | =         |                             | +                                         |           |               | +          | -         |             | +        | +               | +      | -       |        |         |          |          |       |          |          |       | +          |           |                  |             |        |
| ADDITIONAL COMMENTS  RELINQUISHED BY AFFILLATION  DATE SIGNED BY AFFILLATION  SAMPLER  SAMPLER  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCOSION  COCCO | 12        |                             |                                           |           | 1000          |            | -         |             | +        | 7               | 7      | -       |        | 1       | -        |          |       | -        | -        | +     | -          |           |                  |             | T      |
| SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER:  SAMPLER NAME OF SAMPLER:  SIGNATURE of SAMPLER:  SIGNATURE of SAMPLER:  SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER:  SAMPLER NAME OF SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER SAMPLER | The       | ADDITIONAL COMMENTS         | REL                                       | INQU      | JISHED BY / / | AFFILIATIO |           |             | -        | TIME            |        |         | ACCEP  | TED B   | Y / AF   | ILIATION | -     | DAT      |          | IME   | -          | SAMPLE    | CONDITI          | SNS         | 1      |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: Local Sealed Cooler (YY Sealed Cooler (YY Sealed Cooler (YMMIDDITY)): 05 13 24  [MMIDDITY]: 05 12 24  [MMIDDITY]: 05 12 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                             | N                                         | T)        | 1             | RECO       | 7         | 1000        | 12       | 13/24           |        | 4       |        | 1       | V        |          | 5     | 46-34    |          | ب     | -          |           |                  |             |        |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: Land Hopp of Custody Sealed Cooler (MM/DD/YY): 05/13/24  Final Cooler (MM/DD/YY): 05/13/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                             | ,                                         |           |               |            |           |             |          |                 | 1      |         |        |         |          |          |       |          |          | +     |            |           |                  |             | $\top$ |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER: Lang Hopp & Sampler Cooler Cooler Cooler (MM/DD/YY): 05/13/24  Figure of SAMPLER: Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Cooler Co |           |                             |                                           |           |               |            |           |             | +        |                 | -      |         |        |         |          |          |       |          |          |       | +          | $\dagger$ |                  |             |        |
| PRINT Name of SAMPLER: Lang Hopp #5  SIGNATURE of SAMPLER: (MM/DD/YY): 05 13 24  FIND SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SAMPLER: COORDINATOR OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE OF SIGNATURE O |           | Pac                         |                                           |           |               | SAMPLEF    |           | IGNAT       | URE -    | 100             | -      |         |        |         |          |          |       |          |          |       |            |           | sled<br>(N)      | toeli       |        |
| SIGNATURE of SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY); 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE RESIDENCE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDITY OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDITY, 05/13/24 PE REPORT OF SAMPLER: MMIDDITY, 05/13/24  | -         | ge 11                       |                                           |           | -             | •          |           | SAMPLE      | ii.      | ans             | 4      | Soda    |        |         |          |          | 10    |          |          |       | - 1.7      |           | dy Se<br>ler (Y) | (V/V)       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2 of                        |                                           |           |               | S          |           | SAMPLE      | \<br>i:: | 1               | M      | 1       | \      |         | ے ہ      | ATE Sign |       |          |          |       |            |           | otsuO<br>ooO     | lmeS        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                             |                                           |           | ī             |            |           |             | 2        | 1               | 4      |         |        |         |          |          |       |          |          |       |            |           |                  |             |        |

0#:30683964 ENV-FRM-GBUR-0088 v07\_Sample Condition Upon Receipt-Gre-Due Date: 06/05/24 Effective Date: 01/04/2024 CLIENT: PACE\_60\_LEKS Pace KS/AECOM Client Name: Proie Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking Number: 7146 2378 6227 Initial / Date Examined By: \_ 33 \$/14/24 Labeled By: 3 Slu 24 ☐ Yes ®No Custody Seal on Cooler/Box Present: ☐ Yes ☑No Seals Intact: Temped By: \_\_ Type of Ice: Wet Blue None Thermometer Used: Final Temp: \_\_\_\_ Correction Factor: \_\_\_\_\_ Cooler Temperature: Observed Temp Temp should be above freezing to 6°C D.P.D. Residual Chlorine Lot # pH paper Lot# 1002931 NA No Yes Comments: 1. Chain of Custody Present 2. Chain of Custody Filled Out: -Were client corrections present on COC Chain of Custody Relinquished 31424 -3. 4. Sampler Name & Signature on COC: . 5. Sample Labels match COC: -Includes date/time/ID Matrix: 6. Samples Arrived within Hold Time: 7. Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used 11. Containers Intact: 12. Orthophosphate field filtered: 13. Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination 14: 15: Filtered volume received for dissolved tests: 16. All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix Date/Time of Initial when All containers meet method preservation Preservation completed Lot# of added requirements: Preservative 8260C/D: Headspace in VOA Vials (> 6mm) 17. 18. 624.1: Headspace in VOA Vials (0mm) 19. Radon: Headspace in RAD Vials (0mm) YES or NO Trip blank custody seal present? Trip Blank Present: Survey Meter Initial when Rad Samples Screened <.05 mrem/hr. SN: 25014380 completed | Comments:

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office.

PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Pace Analytical"

## **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-226 CLM 5/20/2024 79274 DW 0.047 0.207 0.440 0.45 N/A Pass Test: Analyst: Date: Batch ID: Matrix: MB Numerical Performance Indicator:
MB Status vs Numerical Indicator:
MB Status vs. MDC: MB Sample ID MB concentration: M/B Counting Uncertainty: MB MDC: Method Blank Assessment

| MS/MSD 2                               |                         |             |                |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    |                                     |                |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                 |
|----------------------------------------|-------------------------|-------------|----------------|-----------------|-------------|------------------------------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------------|------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|-----------------------------------|------------------------------------|------------------------|-------------------------|---------------------------------|---------------------------------|
| MS/MSD 1                               |                         |             |                |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    |                                     |                |                                                   |                             |                                                         |                                       |                                                                   |                                     |                                      |                      |                       |                                   |                                    |                        |                         |                                 |                                 |
| Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Spike I.D.: | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F): | MSD Aliquot (L, g, F): | MSD Target Conc. (pCi/L, g, F): | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery: | MSD Percent Recovery: | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery: | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MS/MSD Lower % Recovery Limits: |
|                                        |                         |             |                |                 |             |                                                      |                               |                                |                       |                               |                        |                                 |                                    | <b>\</b>                            | LCSD79274      | 5/30/2024                                         | 23-063                      | 32.299                                                  | 0,10                                  | 0.652                                                             | 4.952                               | 0.233                                | 4.952                | 1.124                 | 0.00                              | 100.01%                            | A/A                    | Pass                    | 133%                            | 73%                             |

LCS79274 5/30/2024 23-063 32.299 0.10 0.651 4.959 0.233 4.027 0.886

Volume Used (mL): Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F):

Uncertainty (Calculated):

Result (pCi/L, g, F): LCS/LCSD Counting Uncertainty (pCi/L, g, F):

Numerical Performance Indicator:

Count Date:
Spike I.D.:
Spike Concentration (pCi/mL):

Percent Recovery:
Status vs Numerical Indicator:
Status vs Recovery:
Upper % Recovery Limits:
Lower % Recovery Limits:

CSD (Y or N)?

Laboratory Control Sample Assessment

| Duplicate Sample Assessment                                 |           |                  | Matrix Spike/Matrix |
|-------------------------------------------------------------|-----------|------------------|---------------------|
| Sample I.D.:                                                | LCS79274  | Enter Duplicate  |                     |
| Duplicate Sample I.D.                                       | LCSD79274 | sample IDs if    |                     |
| Sample Result (pCi/L, g, F):                                | 4.027     | other than       |                     |
| Sample Result Counting Uncertainty (pCI/L, g, F):           | 0.886     | LCS/LCSD in      |                     |
| Sample Duplicate Result (pCi/L, g, F):                      | 4.952     | the space below. | Matrix St           |
| Sample Duplicate Result Counting Uncertainty (pCI/L, g, F): | 1.124     |                  |                     |
| Are sample and/or duplicate results below RL?               | 9         |                  | Matrix Spike Duplic |
| Duplicate Numerical Performance Indicator:                  | -1.267    |                  |                     |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:   | 20.75%    |                  | (Based on the F     |
| Duplicate Status vs Numerical Indicator:                    | N/A       |                  | /SW                 |
| Duplicate Status vs RPD:                                    | Pass      |                  |                     |
| % RPD Limit:                                                | 32%       |                  |                     |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | % RPD Limit: |
|-------------------------------------------------------|-------------|----------------|-----------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
|                                                       | ate         | <u></u>        |                 | <u></u>                     | ow.                                                     |                                       |                                                                   |                                            |                                                          | ĺ                                                |                                  |              |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Ra-226 NELAC QC Printed: 6/3/2024 2:48 PM

# Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Pace Analytical

VAL 5/21/2024 79275 WT Date: Worklist: Matrix: Analyst:

0.807 0.490 0.912 3.23 Fail\* Pass M/B 2 Sigma CSU: MB MDC: MB Sample ID MB concentration MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Method Blank Assessmen

MS/MSD 2 MS/MSD 1 Sample I.D. Sample MS I.D. Sample MSD I.D. MSD Target Conc. (pCi/L, g, F): Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator: MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: Spike I.D. MS/MSD Decay Corrected Spike Concentration (pCi/mL): Spike Volume Used in MS (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MS Spike Uncertainty (calculated): Sample Result Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result MS Percent Recovery MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery MSD Status vs Recovery Sample Collection Date Spike Volume Used in MSD (mL) MSD Spike Uncertainty (calculated) MSD Percent Recovery Sample Matrix Spike Control Assessment

> LCSD79275 5/29/2024 23-043 36.575 0.10 0.817 4.477 0.219 3.995 0.999 -0.92 N/A Pass 135% 60% CSD (Y or N) 23-043 02.45% 0.821 4.454 0.218 4.564 1.102 0.10 0.19 Š Result (pCi/L, g, F): LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Numerical Performance Indicator; Aliquot Volume (L, g, F): Target Conc. (pCi/L, g, F): Uncertainty (Calculated): Upper % Recovery Limits: Lower % Recovery Limits: Count Date Spike I.D. Decay Corrected Spike Concentration (pCi/mL): Volume Used (mL): Percent Recovery: Status vs Numerical Indicator Status vs Recovery: Laboratory Control Sample Assessmen

Sample I.D. Sample MS I.D. Sample MSD I.D. MS/ MSD Duplicate Status vs RPD: % RPD Limit: Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD MS/ MSD Duplicate Status vs Numerical Indicator Matrix Spike/Matrix Spike Duplicate Sample Assessment Enter Duplicate other than LCS/LCSD in the space below sample IDs if

LCS79275 LCSD79275

Sample I.D.: Duplicate Sample I.D.

**Duplicate Sample Assessmen** 

4.564

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. NO 0.749 13.79% 1.102 3.995 0.999 Pass Pass 36% Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs RPD: % RPD Limit: Duplicate Status vs Numerical Indicator

this better is greater than len lines the blank weter; the blank is acceptable; otherwise this batch must be re-propped. WB alch with < 1000 C, Palls \*If the lowest activity sample in

Comments:

Ra-228\_79275\_W Ra-228 (ENV-FRM-GBUR-0295 03).xls





June 27, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60452841

### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Databa m. Wilson

Enclosures

cc: Ann Cinabro, AECOM Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

**Pace Analytical Services Kansas** 

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Inorganic Drinking Water Certification

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073

Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 60452841001 | BAT-03-CCR | Water  | 05/13/24 10:05 | 05/14/24 08:25 |
| 60452841002 | ERB-02-CCR | Water  | 05/13/24 10:20 | 05/14/24 08:25 |



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60452841001 | BAT-03-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |
| 60452841002 | ERB-02-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |            | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |            | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |            | SM 2540C | KVI      | 1                    | PASI-K     |
|             |            | EPA 9056 | PL       | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



### **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

Date: 06/27/2024 02:56 PM

| Sample: BAT-03-CCR           | Lab ID: 6045    | 52841001   | Collected: 05/13/2   | 4 10:05 | Received: 05   | 5/14/24 08:25 N | Matrix: Water |      |
|------------------------------|-----------------|------------|----------------------|---------|----------------|-----------------|---------------|------|
| Parameters                   | Results         | Units      | Report Limit         | DF      | Prepared       | Analyzed        | CAS No.       | Qua  |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 010 Preparation Meth | od: EP  | A 3010         |                 |               |      |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |      |
| Boron                        | 1240            | ug/L       | 100                  | 1       | 05/22/24 15:38 | 05/30/24 13:03  | 7440-42-8     |      |
| Calcium                      | 452000          | ug/L       | 200                  | 1       | 05/22/24 15:38 | 05/30/24 13:03  | 7440-70-2     |      |
| _ithium                      | 282             | ug/L       | 10.0                 | 1       | 05/22/24 15:38 | 05/30/24 13:03  | 7439-93-2     |      |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth  | od: EP  | A 3010         |                 |               |      |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |      |
| Antimony                     | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-36-0     |      |
| Arsenic                      | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-38-2     |      |
| Barium                       | 15.6            | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-39-3     | B,B0 |
| Beryllium                    | ND              | ug/L       | 0.50                 | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-41-7     |      |
| Cadmium                      | ND              | ug/L       | 0.50                 | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-43-9     |      |
| Chromium                     | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-47-3     | M1   |
| Cobalt                       | 1.4             | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-48-4     |      |
| .ead                         | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7439-92-1     |      |
| Nolybdenum                   | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7439-98-7     |      |
| Selenium                     | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7782-49-2     |      |
| - Thallium                   | ND              | ug/L       | 1.0                  | 1       | 05/22/24 11:07 | 06/26/24 12:46  | 7440-28-0     |      |
| 470 Mercury                  | Analytical Meth | od: EPA 74 | 70 Preparation Meth  | od: EP  | A 7470         |                 |               |      |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |      |
| Mercury                      | ND              | ug/L       | 0.20                 | 1       | 05/16/24 12:32 | 05/20/24 11:42  | 7439-97-6     |      |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 25  | 40C                  |         |                |                 |               |      |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |      |
| Total Dissolved Solids       | 2360            | mg/L       | 100                  | 1       |                | 05/16/24 15:22  |               |      |
| 0056 IC Anions               | Analytical Meth | od: EPA 90 | 056                  |         |                |                 |               |      |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |      |
| Chloride                     | 17.5            | mg/L       | 1.0                  | 1       |                | 05/29/24 07:04  | 16887-00-6    |      |
| Fluoride                     | 1.1             | mg/L       | 0.20                 | 1       |                | 05/29/24 07:04  |               | N2   |
| Sulfate                      | 3420            | mg/L       | 50.0                 | 50      |                | 05/29/24 07:25  |               |      |



### **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

Date: 06/27/2024 02:56 PM

| Sample: ERB-02-CCR           | Lab ID: 604     | 52841002     | Collected: 05/13/2  | 4 10:20 | Received: 05   | 5/14/24 08:25 N | latrix: Water |     |
|------------------------------|-----------------|--------------|---------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units        | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60   | 10 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytica  | l Services - | Kansas City         |         |                |                 |               |     |
| Boron                        | ND              | ug/L         | 100                 | 1       | 05/22/24 15:38 | 05/30/24 13:10  | 7440-42-8     |     |
| Calcium                      | ND              | ug/L         | 200                 | 1       | 05/22/24 15:38 | 05/30/24 13:10  | 7440-70-2     |     |
| Lithium                      | ND              | ug/L         | 10.0                | 1       | 05/22/24 15:38 | 05/30/24 13:10  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60   | 20 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytica  | l Services - | Kansas City         |         |                |                 |               |     |
| Antimony                     | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-36-0     |     |
| Arsenic                      | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-38-2     |     |
| Barium                       | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L         | 0.50                | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-41-7     |     |
| Cadmium                      | ND              | ug/L         | 0.50                | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-43-9     |     |
| Chromium                     | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-48-4     |     |
| _ead                         | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7439-92-1     |     |
| Molybdenum                   | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7439-98-7     |     |
| Selenium                     | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7782-49-2     |     |
| - Thallium                   | ND              | ug/L         | 1.0                 | 1       | 05/22/24 11:07 | 06/26/24 13:03  | 7440-28-0     |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74   | 70 Preparation Meth | nod: EP | A 7470         |                 |               |     |
| -                            | Pace Analytica  | l Services - | Kansas City         |         |                |                 |               |     |
| Mercury                      | ND              | ug/L         | 0.20                | 1       | 05/16/24 12:32 | 05/20/24 11:44  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254   | 40C                 |         |                |                 |               |     |
|                              | Pace Analytica  | l Services - | Kansas City         |         |                |                 |               |     |
| Total Dissolved Solids       | 16.0            | mg/L         | 5.0                 | 1       |                | 05/16/24 15:22  |               |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90   | 956                 |         |                |                 |               |     |
|                              | Pace Analytica  | l Services - | Kansas City         |         |                |                 |               |     |
| Chloride                     | ND              | mg/L         | 1.0                 | 1       |                | 05/29/24 07:46  | 16887-00-6    |     |
| Fluoride                     | ND              | mg/L         | 0.20                | 1       |                | 05/29/24 07:46  |               | N2  |
| Sulfate                      | ND              | mg/L         | 1.0                 | 1       |                | 05/29/24 07:46  |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60452841

Date: 06/27/2024 02:56 PM

QC Batch: 894585 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452841001, 60452841002

METHOD BLANK: 3540383 Matrix: Water

Associated Lab Samples: 60452841001, 60452841002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 05/20/24 11:05

LABORATORY CONTROL SAMPLE: 3540384

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.0 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3540385 3540386

MS MSD

60452938007 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 5 4.2 20 Mercury ug/L 5 4.1 83 84 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452841

QC Batch: 895495
QC Batch Method: EPA 3010

Analysis Method: EPA 6010
Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452841001, 60452841002

METHOD BLANK: 3544053 Matrix: Water

Associated Lab Samples: 60452841001, 60452841002

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Boron ug/L ND 100 05/30/24 12:48 Calcium ug/L ND 200 05/30/24 12:48 Lithium ug/L ND 05/30/24 12:48 10.0

LABORATORY CONTROL SAMPLE: 3544054

Date: 06/27/2024 02:56 PM

|           |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Boron     | ug/L  | 1000  | 990    | 99    | 80-120 |            |
| Calcium   | ug/L  | 10000 | 10800  | 108   | 80-120 |            |
| Lithium   | ug/L  | 1000  | 1060   | 106   | 80-120 |            |

| MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3544055 3544056 |       |             |       |       |        |        |       |       |        |     |     |      |
|--------------------------------------------------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|                                                        |       |             | MS    | MSD   |        |        |       |       |        |     |     |      |
|                                                        |       | 60453227004 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                                              | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                                                  | ug/L  | ND          | 1000  | 1000  | 1090   | 1110   | 101   | 103   | 75-125 | 1   | 20  |      |
| Calcium                                                | ug/L  | 189000      | 10000 | 10000 | 200000 | 201000 | 108   | 124   | 75-125 | 1   | 20  |      |
| Lithium                                                | ug/L  | 24.8        | 1000  | 1000  | 1110   | 1120   | 108   | 110   | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452841

Date: 06/27/2024 02:56 PM

QC Batch: 895432 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452841001, 60452841002

METHOD BLANK: 3543795 Matrix: Water

Associated Lab Samples: 60452841001, 60452841002

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Antimony   | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Arsenic    | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Barium     | ug/L  | 14.4            | 1.0                | 06/26/24 12:40 |            |
| Beryllium  | ug/L  | ND              | 0.50               | 06/26/24 12:40 |            |
| Cadmium    | ug/L  | ND              | 0.50               | 06/26/24 12:40 |            |
| Chromium   | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Cobalt     | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Lead       | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Molybdenum | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Selenium   | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |
| Thallium   | ug/L  | ND              | 1.0                | 06/26/24 12:40 |            |

| LABORATORY CONTROL SAMPLE: | 3543796 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                   | ug/L    | 40    | 40.7   | 102   | 80-120 |            |
| Arsenic                    | ug/L    | 40    | 40.8   | 102   | 80-120 |            |
| Barium                     | ug/L    | 40    | 40.8   | 102   | 80-120 |            |
| Beryllium                  | ug/L    | 40    | 41.4   | 103   | 80-120 |            |
| Cadmium                    | ug/L    | 40    | 41.7   | 104   | 80-120 |            |
| Chromium                   | ug/L    | 40    | 41.6   | 104   | 80-120 |            |
| Cobalt                     | ug/L    | 40    | 41.5   | 104   | 80-120 |            |
| Lead                       | ug/L    | 40    | 41.5   | 104   | 80-120 |            |
| Molybdenum                 | ug/L    | 40    | 40.3   | 101   | 80-120 |            |
| Selenium                   | ug/L    | 40    | 40.7   | 102   | 80-120 |            |
| Thallium                   | ug/L    | 40    | 39.6   | 99    | 80-120 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPLIC | CATE: 3543  | 797   |       | 3543798 |        |       |       |        |     |     |      |
|-----------------------|--------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |              |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                       | 6            | 60452841001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units        | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony              | ug/L         | ND ND       | 40    | 40    | 36.6    | 36.4   | 91    | 91    | 75-125 | 1   | 20  |      |
| Arsenic               | ug/L         | ND          | 40    | 40    | 41.3    | 41.5   | 102   | 103   | 75-125 | 0   | 20  |      |
| Barium                | ug/L         | 15.6        | 40    | 40    | 57.5    | 58.2   | 105   | 107   | 75-125 | 1   | 20  |      |
| Beryllium             | ug/L         | ND          | 40    | 40    | 34.2    | 34.7   | 85    | 87    | 75-125 | 2   | 20  |      |
| Cadmium               | ug/L         | ND          | 40    | 40    | 34.4    | 34.6   | 86    | 86    | 75-125 | 1   | 20  |      |
| Chromium              | ug/L         | ND          | 40    | 40    | 29.4    | 29.9   | 73    | 74    | 75-125 | 2   | 20  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

Date: 06/27/2024 02:56 PM

| MATRIX SPIKE & MATRIX S |       |            | MS    | MSD   | 3543798 |        |       |       |        |     |     |      |
|-------------------------|-------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         | 6     | 0452841001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cobalt                  | ug/L  | 1.4        | 40    | 40    | 43.8    | 43.9   | 106   | 106   | 75-125 | 0   | 20  |      |
| Lead                    | ug/L  | ND         | 40    | 40    | 35.1    | 35.1   | 87    | 87    | 75-125 | 0   | 20  |      |
| Molybdenum              | ug/L  | ND         | 40    | 40    | 45.5    | 45.3   | 112   | 111   | 75-125 | 0   | 20  |      |
| Selenium                | ug/L  | ND         | 40    | 40    | 40.2    | 41.0   | 99    | 101   | 75-125 | 2   | 20  |      |
| Thallium                | ug/L  | ND         | 40    | 40    | 35.5    | 35.6   | 89    | 89    | 75-125 | 0   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452841

QC Batch: 894660 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452841001, 60452841002

METHOD BLANK: 3540611 Matrix: Water

Associated Lab Samples: 60452841001, 60452841002

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 05/16/24 15:21

LABORATORY CONTROL SAMPLE: 3540612

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 950 95 80-120

SAMPLE DUPLICATE: 3540613

 Parameter
 Units
 60452814013 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 720
 714
 1
 10

SAMPLE DUPLICATE: 3540623

Date: 06/27/2024 02:56 PM

60452886008 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1340 10 D6 mg/L 2380 55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60452841

QC Batch: 895864 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60452841001, 60452841002

METHOD BLANK: 3545640 Matrix: Water

Associated Lab Samples: 60452841001, 60452841002

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L ND 1.0 05/28/24 14:52 Fluoride mg/L ND 0.20 05/28/24 14:52 N2 Sulfate mg/L ND 05/28/24 14:52 1.0

LABORATORY CONTROL SAMPLE: 3545641

Date: 06/27/2024 02:56 PM

|           |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride  | mg/L  |       | 5.1    | 102   | 80-120 |            |
| Fluoride  | mg/L  | 2.5   | 2.5    | 100   | 80-120 | N2         |
| Sulfate   | mg/L  | 5     | 5.0    | 100   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 06/27/2024 02:56 PM

| В | Analyte was detected in the associated method blank. |
|---|------------------------------------------------------|
|---|------------------------------------------------------|

- BO Analyte was detected in an associated blank at a concentration greater than the MDL.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A

complete list of accreditations/certifications is available upon request.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60452841

Date: 06/27/2024 02:56 PM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60452841001 | BAT-03-CCR | EPA 3010        | 895495   | EPA 6010          | 895555              |
| 60452841002 | ERB-02-CCR | EPA 3010        | 895495   | EPA 6010          | 895555              |
| 60452841001 | BAT-03-CCR | EPA 3010        | 895432   | EPA 6020          | 895479              |
| 60452841002 | ERB-02-CCR | EPA 3010        | 895432   | EPA 6020          | 895479              |
| 60452841001 | BAT-03-CCR | EPA 7470        | 894585   | EPA 7470          | 894776              |
| 60452841002 | ERB-02-CCR | EPA 7470        | 894585   | EPA 7470          | 894776              |
| 60452841001 | BAT-03-CCR | SM 2540C        | 894660   |                   |                     |
| 60452841002 | ERB-02-CCR | SM 2540C        | 894660   |                   |                     |
| 60452841001 | BAT-03-CCR | EPA 9056        | 895864   |                   |                     |
| 60452841002 | ERB-02-CCR | EPA 9056        | 895864   |                   |                     |





## DC#\_Title: ENV-FRM-LENE-0009\_Sample Co

|                 | ANALYTICAL SERVERS                     | Revision: 2                                | Effective Dat               | te: 01/12/20     | 22        | Issued By: Lene               | xa               |                 |         |
|-----------------|----------------------------------------|--------------------------------------------|-----------------------------|------------------|-----------|-------------------------------|------------------|-----------------|---------|
| Client Nan      | ne: AE                                 | COM                                        |                             |                  |           |                               |                  |                 |         |
| Courier:        | FedEx UPS                              |                                            | □ PEX □                     | ECI □            | Pace      | □ Xroads □                    | Client □         | Other □         |         |
| Tracking #:     | 2746                                   | 18387290                                   | Pace Shippir                | ng Label Used    | ? Y∈      | es 🗆 No 🕟                     |                  |                 |         |
| Custody Sea     | l on Cooler/Box                        | Present: Yes 🕟 N                           | o 🗆 Seals i                 | intact: Yes 🗷    | > No      | o 🗆                           |                  |                 |         |
| Packing Mate    |                                        |                                            | Bags □                      | Foam □           |           | lone □ Othe                   | er @ 300         | بن.             |         |
| Thermomete      | 7                                      |                                            | Type of Ice: We             |                  |           |                               | _                | initials of per | son     |
|                 |                                        | As-read <u>I· 6</u> Co                     | rr. Factor <del>20- ¿</del> | Correcte         | ed _\     | · (                           |                  | contents:       | *       |
| Temperature sh  | nould be above free                    | ezing to 6°C                               |                             | - T              |           |                               | $\angle \lambda$ | 5               | 2/12/50 |
| Chain of Cust   | ody present:                           |                                            | Yes                         | □No □N/A         |           |                               |                  |                 |         |
| Chain of Cust   | ody relinquished:                      |                                            | €Yes                        | □No □N/A         |           |                               |                  |                 |         |
| Samples arriv   | ed within holding                      | time:                                      | <b>₽</b> res                | □No □N/A         |           |                               |                  |                 |         |
| Short Hold Ti   | ime analyses (<                        | 72hr):                                     | □Yes                        | □No □N/A         |           |                               |                  |                 |         |
| Rush Turn Aı    | round Time requ                        | uested:                                    | □Yes                        | □No □N/A         |           |                               |                  |                 |         |
| Sufficient volu | ıme:                                   |                                            | <b>Ø</b> Yes                | □No □N/A         |           |                               |                  |                 |         |
| Correct contai  | iners used:                            |                                            | <b>₫y</b> es                | □No □N/A         |           |                               |                  |                 |         |
| Pace containe   | ers used:                              |                                            | <b>5</b> Yes                | □No □N/A         |           |                               |                  |                 |         |
| Containers int  | act:                                   |                                            | <b>⊉</b> Yes                | □No □N/A         |           |                               |                  |                 |         |
| Unpreserved 5   | 5035A / TX1005/                        | 1006 soils frozen in 48h                   | rs? □Yes I                  | □No (Z)1/A       |           |                               |                  |                 |         |
| Filtered volum  | e received for dis                     | ssolved tests?                             | □Yes                        | □No Qany/A       |           |                               |                  |                 |         |
| Sample labels   | match COC: Da                          | te / time / ID / analyses                  | <b>©</b> res l              | □No □N/A         |           |                               |                  |                 |         |
| Samples conta   | ain multiple phase                     | es? Matrix: 🕠                              | [ □Yes [                    | <b>∄</b> No □N/A |           |                               |                  |                 |         |
|                 |                                        | vation in compliance?                      | ÆÎYes [                     |                  |           | mple IDs, volume<br>me added. | s, lot #'s of    | preservative    | and the |
|                 | HCI<2; NaOH>9 Sเ<br>DA, Micro, O&G, Ks | ulfide, NaOH>10 Cyanide)<br>S TPH, OK-DRO) | LOT#: 63087                 | 1                | Jale/ III | me added.                     |                  |                 |         |
| Cyanide water   | sample checks:                         |                                            |                             |                  |           |                               |                  |                 |         |
| 21              | strip turns dark? (                    | • • • • • • • • • • • • • • • • • • • •    | ☐Yes [                      |                  |           |                               |                  |                 |         |
| Potassium logi  | ide test strip turn                    | s blue/purple? (Preserve                   | e) □Yes [                   | □No              |           |                               |                  |                 |         |
| Trip Blank pres | sent:                                  |                                            | □Yes [                      | □No ØN/A         |           |                               |                  |                 |         |
| Headspace in    | VOA vials ( >6mi                       | m):                                        | □Yes                        | □No ØN/A         |           |                               |                  |                 |         |
| Samples from    | USDA Regulated                         | d Area: State:                             | □Yes [                      | □No ØN/A         |           |                               |                  |                 |         |
| Additional labe | els attached to 50                     | 35A / TX1005 vials in th                   | ne field? □Yes [            | □No ØN/A         |           |                               |                  |                 |         |
| Client Notifica | ation/ Resolution                      | n: Copy                                    | COC to Client?              | Y / N            | Fi        | eld Data Required?            | Y / N            | N               |         |
| Person Contac   |                                        |                                            | Date/Time:                  |                  |           |                               |                  |                 |         |
| Comments/ Re    | esolution:                             |                                            |                             |                  |           |                               |                  |                 |         |
|                 |                                        |                                            |                             |                  |           |                               |                  |                 |         |
| Project Manage  | er Review:                             |                                            |                             | Date:            |           |                               |                  |                 |         |



## CHAIN-OF-CUSTODY / Analytical Request Document

|                                              |                                                   |     | *B, Ca, U                          | Sb, As, Ba, Be, |                               | 12    | =    | 10 | 9 | œ | 7 | 6        | Сh | 4     | ω    | 2        | 1                                                  | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | 20 CO                                                 |                         | Requested                         | Phone: (3              | Email To:           |                             | Address:                 | Company:                               | Section A<br>Required C                  | 1                |                                   |  |
|----------------------------------------------|---------------------------------------------------|-----|------------------------------------|-----------------|-------------------------------|-------|------|----|---|---|---|----------|----|-------|------|----------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------|-----------------------------------|------------------------|---------------------|-----------------------------|--------------------------|----------------------------------------|------------------------------------------|------------------|-----------------------------------|--|
|                                              |                                                   |     | la, Be, Cd, Cr, Co, Pb, Mo, Se, Tl |                 |                               |       |      |    |   |   |   |          |    | 10000 | RB-  | BAT-03   | SAMPLE ID  (A-Z, 0-91,-) Sample IDs MUST BE UNIQUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section D  Required Client Information              |                                                       | Requested Due Date/TAT: | (303) 740-2614                    | jamie.herman@aecom.com | Greenwood Vi        | 6200 South Quebec St        | AECOM                    | Section A Required Client Information: | www.pacellabs.com                        |                  |                                   |  |
|                                              |                                                   |     |                                    |                 | ADDITIONAL COMMENTS           |       |      |    |   |   |   |          |    |       |      | CAPIE    | CDPHE                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                         | Standard                          | Fax                    | @aecom.com          | Greenwood Village, CO 80111 | rebec St                 |                                        |                                          | 0007             |                                   |  |
|                                              |                                                   | -   |                                    |                 |                               |       | 3    |    |   |   |   |          |    |       |      |          |                                                    | SONUSOLID PERSONUSOLID SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTIO | DRINKING WATER DW WATER WT WASTE WATER WW PRODUCT P | Valid Matrix Codes MATRIX CODE                        |                         |                                   | Project                | Purcha              |                             | Сору То:                 | Report                                 | Section B<br>Required P                  |                  |                                   |  |
|                                              |                                                   |     |                                    | W               | REI                           | _     |      |    |   |   |   |          | _  |       | _    | _        | Z                                                  | MATRIX CODE (see val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lid codes te                                        |                                                       |                         | Project Number:                   | Project Name:          | Purchase Order No.: |                             |                          | Report To: Vasanta Kalluri             | Section B  Required Project Information: |                  |                                   |  |
|                                              |                                                   |     | 2                                  | 1               | INQUI                         | Г     |      |    |   |   |   |          |    |       |      | 4        | Ġ                                                  | SAMPLE TYPE (G=GRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B C=CO                                              | MP)                                                   |                         | 6070                              | 6070                   |                     |                             | ie He                    | anta                                   | Inform                                   |                  |                                   |  |
|                                              |                                                   |     |                                    | 7               | RELINQUISHED BY / AFFILIATION |       |      |    |   |   |   |          |    |       |      |          | 1                                                  | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMPOSITE                                           |                                                       |                         | 60709371                          | 60709371 PRPA CCR      | NEED PO             |                             | Jamie Herman             | \alluri                                | nation:                                  |                  |                                   |  |
|                                              | SAMPLE                                            |     | 1 ARC                              | AFFILIATIO      |                               |       |      |    |   |   |   |          |    |       | )    |          | TIME                                               | SITE I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COLLECTED                                           |                                                       |                         | PA CCR                            | #                      |                     |                             |                          |                                        |                                          |                  |                                   |  |
| PRINT Nam                                    | SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: | 017 | M                                  | N               |                               |       |      |    |   |   |   |          |    |       | 1    | 13/13/24 | DATE                                               | COMPOSITE<br>END/GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTED                                                |                                                       |                         |                                   |                        |                     |                             |                          |                                        |                                          |                  |                                   |  |
| PRINT Name of SAMPLER: SIGNATURE of SAMPLER: |                                                   |     | 5/13/                              | DATE            |                               |       |      |    |   |   |   |          |    |       | 1020 | 5001     | TIME                                               | SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                       |                         |                                   |                        |                     |                             |                          |                                        |                                          |                  |                                   |  |
| E E                                          | ATURE                                             |     |                                    |                 |                               |       |      |    |   |   |   |          |    |       |      |          |                                                    | SAMPLE TEMP AT COLLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ECTION                                              |                                                       |                         | T                                 | ₹ U                    | ט ע                 | D                           | 0                        | Þ                                      | <b>¬ ω</b>                               |                  |                                   |  |
| 15                                           | -                                                 |     |                                    | 7               |                               |       |      |    |   |   |   |          |    |       |      |          |                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | # OF CONTAINERS                                       |                         |                                   |                        | Pace Profile #:     | ace Pro                     | Pace Quote<br>Reference: | Address:                               | Company Name:                            | Attention:       | Section C<br>Invoice Information: |  |
| Wan Hoppes                                   | İ                                                 | i i |                                    | 30              | TIME                          | -     |      |    |   |   |   |          |    |       |      | 2        | 2                                                  | Unpreserved<br>H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                                       |                         | file #:                           | ject                   | e ote               | .91                         | )y Nan                   | 2.                                     | n C<br>Inform                            |                  |                                   |  |
| 1 3                                          | =                                                 |     | _                                  |                 |                               |       |      |    |   |   |   |          |    |       |      | _        | ļ                                                  | HNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | Pre                                                   |                         | 1 3                               | He                     | 42700               | Sar                         |                          | Acc                                    | ation:                                   |                  |                                   |  |
| 143                                          |                                                   | 1 1 |                                    |                 |                               | _     |      |    |   |   |   |          |    |       |      |          |                                                    | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | Preservatives                                         |                         | 11033, 3                          | Heather Wi             | 8                   | Same as So                  | AECOM                    | ount                                   |                                          |                  |                                   |  |
| 1 8                                          | 7                                                 |     |                                    |                 |                               |       | ₽    | -  |   |   |   | -        | -  |       |      |          | -                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | NaOH<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> |                         | tive.                             |                        |                     | <u>\$</u>                   |                          | s Se                                   | 8                                        | s Pa             |                                   |  |
| 17                                           | -                                                 | 1 1 |                                    |                 |                               |       | CCEF |    |   |   |   |          |    |       |      |          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | Methanol                                              |                         | S                                 |                        |                     | Ison                        |                          | ection A                               |                                          | Accounts Payable | :                                 |  |
| MACKONSIA                                    |                                                   | 1   |                                    | 50              | ACCEPTED BY / AFFILIATION     |       |      |    |   |   |   |          |    |       |      |          |                                                    | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                       | L                       |                                   |                        |                     | ≻                           |                          | Œ                                      |                                          |                  |                                   |  |
| -6                                           | 7.                                                |     | -                                  | 1               | BY /                          | _     | _    |    | _ | _ | _ |          | _  |       | _    |          |                                                    | ↓ Analysis Test↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                   | Y/ N .                                                |                         |                                   |                        |                     |                             |                          |                                        |                                          |                  |                                   |  |
| DATE Signed                                  |                                                   |     |                                    | /               | F                             | -     |      |    | _ | - | _ | Н        |    | Н     |      | Ş        | _                                                  | 9056 CI, F, SO4<br>6020 Total Metals*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | 7                                                     | Rec                     |                                   |                        |                     |                             |                          |                                        |                                          |                  |                                   |  |
| 0                                            | 3                                                 |     |                                    |                 | ,                             | IATIC |      |    |   |   |   |          |    |       | Н    |          | $ \geq $                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6010 Total Metals**                                 | _                                                     | +                       | Requested Analysis Filtered (Y/N) |                        |                     |                             |                          |                                        |                                          |                  |                                   |  |
| gned of                                      |                                                   |     |                                    |                 | ž                             |       | П    | П  |   |   |   |          |    |       |      | X        | -                                                  | 7470 Total Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                       | ted ,                   |                                   |                        |                     |                             |                          |                                        |                                          |                  |                                   |  |
| 7 5                                          | 2                                                 |     |                                    | 5               |                               |       |      |    |   |   |   |          |    |       |      | X        | X                                                  | 2540C TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     | 4                                                     | δna                     |                                   | Sit                    | 1                   | 71                          | REGULATORY AGENCY        |                                        |                                          |                  |                                   |  |
|                                              | 1                                                 |     | -                                  | Shaha           |                               |       |      |    |   |   |   |          |    |       |      |          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       | lysis                   | S                                 | Site Location          | TSU                 | NP.                         | 띩                        |                                        |                                          |                  |                                   |  |
| N                                            | 1                                                 |     |                                    | 141             | DATE                          | _     |      |    |   |   |   |          |    |       |      |          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                   |                                                       | 1                       | STATE:                            | čati                   | -                   | NPDES                       | ATC                      |                                        |                                          |                  |                                   |  |
| 10/12/14                                     | ì                                                 |     |                                    | 2               |                               | L     |      |    |   |   |   |          |    |       | _    |          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       | tere                    | Ţ.                                | <u> </u>               | ٦                   |                             | Ν̈́                      |                                        |                                          |                  |                                   |  |
|                                              | ŀ                                                 |     |                                    | 20              | -                             | _     |      |    |   | _ |   |          | _  |       | _    | _        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       | ďγ                      | ľ                                 | - 1                    |                     | ် ြ                         | AG                       |                                        |                                          |                  |                                   |  |
|                                              | ı                                                 |     |                                    | 0925            | TIME                          | -     |      | _  | _ | _ | _ | -        | _  |       | _    | _        | Н                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       | ž                       |                                   | ,                      | RCRA                | RO                          | E                        |                                        |                                          |                  |                                   |  |
|                                              | _                                                 | -   |                                    |                 | _                             | -     |      |    |   | _ | - | -        | -  |       | -    | -        | -                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                         | 8                                 | ·                      |                     | S                           |                          | 1                                      |                                          | ŀ                |                                   |  |
| Temp l                                       | n °C                                              |     |                                    | 1.6             |                               | -     | H    | _  |   | - |   | $\dashv$ | _  | Н     | _    | 7        | Z                                                  | Residual Chlorine (Y/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (N)                                                 | 200                                                   | 100                     | 1                                 | - 1                    |                     | GROUND WATER                |                          |                                        | Page:                                    |                  |                                   |  |
|                                              |                                                   |     |                                    | -               |                               | _     | Н    | =  | Н |   | - | $\dashv$ |    |       |      | _        |                                                    | Trooladar of morning (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                   |                                                       |                         |                                   |                        |                     | ᇁ                           |                          |                                        |                                          |                  |                                   |  |
| Receive<br>Ice (Y                            |                                                   |     |                                    |                 | SA                            |       |      |    |   |   |   |          |    |       |      |          | 00                                                 | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                       |                         |                                   |                        | V                   |                             |                          |                                        |                                          |                  |                                   |  |
|                                              |                                                   |     |                                    | Ш               | SAMPLE CONDITIONS             |       |      |    |   |   |   |          |    |       |      |          | 2540g                                              | Pace Project No./ Lab I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                       |                         |                                   |                        | 0                   |                             |                          |                                        |                                          |                  |                                   |  |
| ustody 5                                     | Sealed                                            |     |                                    |                 | S S                           |       |      |    |   |   |   |          |    |       |      |          | 32                                                 | roje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                       |                         |                                   |                        | OTHER               | DRINKING WATER              |                          |                                        | of                                       |                  |                                   |  |
| Cooler (                                     | (Y/N)                                             |     |                                    |                 | IIDN                          |       |      |    |   |   |   |          |    |       |      |          | 7%                                                 | ct P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                       | 100                     | 1860                              |                        | Ü                   | X N                         |                          |                                        |                                          |                  |                                   |  |
|                                              |                                                   |     |                                    |                 | SNOL                          |       |      |    |   |   |   |          |    |       |      |          | +                                                  | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                       |                         |                                   |                        | 10                  | WA                          |                          |                                        | _                                        |                  |                                   |  |
| Samples                                      | Intact                                            |     |                                    |                 | "                             |       |      |    |   |   |   |          |    |       |      |          |                                                    | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                       |                         |                                   |                        | 8                   | TER                         |                          |                                        |                                          |                  |                                   |  |
| (Y/N                                         |                                                   |     |                                    |                 |                               |       |      |    |   |   |   |          |    |       |      |          |                                                    | I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                       | N.T.                    |                                   |                        | 7                   | 6                           |                          |                                        |                                          |                  |                                   |  |
|                                              |                                                   |     |                                    |                 | 1                             |       |      |    |   |   |   |          |    |       |      |          |                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | 1                                                     |                         |                                   |                        |                     | . •                         |                          |                                        | Pag                                      | e 16 (           |                                   |  |

ine Item Matrix DC#\_Title: ENV-FRM-LENE-0001\_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa VG9H DG9H Client DG9Q Site 1L250L09 "AECON VG9U DG9U DG9M DG9B PRPA BG1U AG1H S AG1U AG2U AG3S AG4U AG5U JGFU WGKU WGDU BP1U Profile # 11033 Notes BP2U BP3U BP1N BP3N BP3F BP3S BP3C BP3Z WPDU ZPLC Other

000

Container

Codes

40mL bisulfate clear vial 40mL HCl amber voa vial 40mL MeOH clear vial

Glass WGKU WGFU WG2U

8oz clear soil jar 4oz clear soil jar 2oz clear soil jar

12

10 9 ð

Work Order Number:

VG9U BG1S

1liter H2SO4 clear glass

40mL unpreserved clear vial

40mL Na Thio, clear vial 40mL HCI clear vial 40mL amber unpreserved 40mL Na Thio amber vial 40mL H2SO4 amber vial 40mL TSP amber vial

AG1U

AG1T

1L H2SO4 amber glass 100mL unores amber glass 1L HCl amber glass

1L Na Thiosulfate clear/amber glass

1liter unpres amber glass

BP2U BP2S

500mL unpreserved plastic

500mL HNO3 plastic

500mL NAOH plastic 1L unpreserved plastic
1L NaOH, Zn Acetate

Æ

Summa Can Terracore Kit Air Cassettes Ziploc Bag Wipe/Swab 120mL Coliform

500mL H2SO4 plastic

AG2N AG2S

AG0U AG1H AG1S

JGFU

4oz unpreserved amber wide

BP1Z BP2C BP2N

BP1U

1L H2SO4 plastic Plastic
1L NAOH plastic
1L HNO3 plastic

SP5T ZPLC

Na I hiosulfate

Air Filter

250mL Unpres Clear glass

6oz clear soil jar

250mL HCL Clear glass

AG3S AG2U

500mL unpres amber glass 500mL H2SO4 amber glass 500mL HNO3 amber glass

100mL unpres amber glass 125mL unpres amber glass 250mL unpres amber glass

BP3U BP3S BP3Z

DA A DE SE

Wipe

Drinking Water

Solid Non-aqueous Liquid OIL

Water

Matrix

125mL H2SO4 plastic

16oz unpresserved plstic

125mL HNO3 plastic

125mL unpreserved plastic 250mL NaOH, Zn Acetate 250mL H2SO4 plastic 250mL unpreserved plastic 250mL H2SO4 amber glass

BP2Z BP3C BP3F BP3N

250mL HNO3 plastic 250mL NaOH plastic 500mL NaOH, Zn Acetate

250mL HNO3 plastic - field filtered

liter unpres glass

VG9H VG9T

DG9S DG9T

12825200

Page 1 of 1



January 13, 2025

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on May 08, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

Revised Report\_rev.1 After a complaint from the client about not having a lower dilution for the 9056 Fluoride, we looked at the anion results closer. The results have been corrected.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com

Ditatos m. Wilson

1(913)563-1407 Project Manager

**Enclosures** 

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM







### **CERTIFICATIONS**

Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



### **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 60455269001 | BAT-09-CCR  | Water  | 05/07/24 11:05 | 05/08/24 08:55 |
| 60455269002 | BAT-04R-CCR | Water  | 05/07/24 12:50 | 05/08/24 08:55 |
| 60455269003 | BAT-06-CCR  | Water  | 05/07/24 15:20 | 05/08/24 08:55 |



# **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

| Lab ID      | Sample ID   | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|----------|----------|----------------------|------------|
| 60455269001 | BAT-09-CCR  | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |             | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |             | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |             | SM 2540C | ECF      | 1                    | PASI-K     |
|             |             | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60455269002 | BAT-04R-CCR | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |             | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |             | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |             | SM 2540C | ECF      | 1                    | PASI-K     |
|             |             | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60455269003 | BAT-06-CCR  | EPA 6010 | JXD      | 3                    | PASI-K     |
|             |             | EPA 6020 | JGP      | 11                   | PASI-K     |
|             |             | EPA 7470 | JXD      | 1                    | PASI-K     |
|             |             | SM 2540C | ECF      | 1                    | PASI-K     |
|             |             | EPA 9056 | AAA      | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

| Sample: BAT-09-CCR           | Lab ID: 6045    | 55269001   | Collected: 05/07/2   | 4 11:05 | Received: 05   | 5/08/24 08:55 N | Matrix: Water |     |
|------------------------------|-----------------|------------|----------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit         | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 010 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Boron                        | 2110            | ug/L       | 100                  | 1       | 05/16/24 10:02 | 05/30/24 21:49  | 7440-42-8     |     |
| Calcium                      | 186000          | ug/L       | 200                  | 1       | 05/16/24 10:02 | 05/30/24 21:49  | 7440-70-2     |     |
| Lithium                      | 231             | ug/L       | 10.0                 | 1       | 05/16/24 10:02 | 05/30/24 21:49  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth  | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-36-0     |     |
| Arsenic                      | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-38-2     |     |
| Barium                       | 10.2            | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 11:54  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-41-7     |     |
| Cadmium                      | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-43-9     |     |
| Chromium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-48-4     |     |
| Lead                         | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7439-92-1     |     |
| Molybdenum                   | 2.3             | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7439-98-7     |     |
| Selenium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7782-49-2     |     |
| Thallium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:07  | 7440-28-0     |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 170 Preparation Meth | nod: EP | A 7470         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                 | 1       | 05/20/24 12:41 | 05/21/24 12:49  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 25  | 40C                  |         |                |                 |               |     |
|                              | Pace Analytical |            |                      |         |                |                 |               |     |
| Total Dissolved Solids       | 2610            | mg/L       | 66.7                 | 1       |                | 05/09/24 10:38  |               |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 056                  |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Chloride                     | 103             | mg/L       | 10.0                 | 10      |                | 05/22/24 14:34  | 16887-00-6    |     |
| Fluoride                     | ND              | mg/L       | 0.20                 | 1       |                | 05/24/24 22:54  |               | N2  |
| Sulfate                      | 1760            | mg/L       | 200                  | 200     |                | 05/22/24 14:49  |               |     |



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

| Sample: BAT-04R-CCR          | Lab ID: 6045    | 5269002    | Collected: 05/07/2   | 4 12:50 | Received: 05   | 5/08/24 08:55 N | /latrix: Water |        |
|------------------------------|-----------------|------------|----------------------|---------|----------------|-----------------|----------------|--------|
| Parameters                   | Results         | Units      | Report Limit         | DF      | Prepared       | Analyzed        | CAS No.        | Qua    |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 010 Preparation Meth | nod: EP | A 3010         |                 |                |        |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |                |        |
| Boron                        | 739             | ug/L       | 100                  | 1       | 05/16/24 10:02 | 05/30/24 21:51  | 7440-42-8      |        |
| Calcium                      | 455000          | ug/L       | 200                  | 1       | 05/16/24 10:02 | 05/30/24 21:51  | 7440-70-2      | M1     |
| Lithium                      | 185             | ug/L       | 10.0                 | 1       | 05/16/24 10:02 | 05/30/24 21:51  | 7439-93-2      |        |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth  | nod: EP | A 3010         |                 |                |        |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |                |        |
| Antimony                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-36-0      |        |
| Arsenic                      | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-38-2      |        |
| Barium                       | 25.1            | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 11:57  | 7440-39-3      |        |
| Beryllium                    | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-41-7      |        |
| Cadmium                      | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-43-9      |        |
| Chromium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-47-3      |        |
| Cobalt                       | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-48-4      |        |
| Lead                         | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7439-92-1      |        |
| Molybdenum                   | 1.0             | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7439-98-7      |        |
| Selenium                     | 23.2            | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 11:57  | 7782-49-2      |        |
| Thallium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 15:44  | 7440-28-0      |        |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Meth  | nod: EP | A 7470         |                 |                |        |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |                |        |
| Mercury                      | ND              | ug/L       | 0.20                 | 1       | 05/20/24 12:41 | 05/21/24 12:49  | 7439-97-6      |        |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 40C                  |         |                |                 |                |        |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |                |        |
| Total Dissolved Solids       | 2210            | mg/L       | 100                  | 1       |                | 05/09/24 10:38  |                |        |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 056                  |         |                |                 |                |        |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |                |        |
| Chloride                     | 41.2            | mg/L       | 10.0                 | 10      |                | 05/22/24 16:32  | 16887-00-6     | M1     |
| Fluoride                     | ND              | mg/L       | 0.20                 | 1       |                | 05/22/24 15:03  |                | M1, N2 |
| Sulfate                      | 1550            | mg/L       | 500                  | 500     |                | 05/24/24 23:09  |                | CL     |



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

| Sample: BAT-06-CCR           | Lab ID: 6045    | 5269003    | Collected: 05/07/2   | 4 15:20 | Received: 05   | 5/08/24 08:55 N | Matrix: Water |     |
|------------------------------|-----------------|------------|----------------------|---------|----------------|-----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit         | DF      | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 010 Preparation Meth | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Boron                        | 1800            | ug/L       | 100                  | 1       | 05/16/24 10:02 | 05/30/24 21:57  | 7440-42-8     |     |
| Calcium                      | 116000          | ug/L       | 200                  | 1       | 05/16/24 10:02 | 05/30/24 21:57  | 7440-70-2     |     |
| Lithium                      | 187             | ug/L       | 10.0                 | 1       | 05/16/24 10:02 | 05/30/24 21:57  | 7439-93-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Meth  | nod: EP | A 3010         |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Antimony                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-36-0     |     |
| Arsenic                      | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-38-2     |     |
| Barium                       | 16.0            | ug/L       | 2.0                  | 2       | 05/17/24 07:40 | 06/18/24 14:50  | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-41-7     |     |
| Cadmium                      | ND              | ug/L       | 0.50                 | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-43-9     |     |
| Chromium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-48-4     |     |
| ₋ead                         | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7439-92-1     |     |
| Molybdenum                   | 8.3             | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7439-98-7     |     |
| Selenium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7782-49-2     |     |
| Thallium                     | ND              | ug/L       | 1.0                  | 1       | 05/17/24 07:40 | 06/18/24 16:13  | 7440-28-0     |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 170 Preparation Meth | nod: EP | A 7470         |                 |               |     |
| •                            | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Mercury                      | ND              | ug/L       | 0.20                 | 1       | 05/20/24 12:41 | 05/21/24 12:55  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 40C                  |         |                |                 |               |     |
|                              | Pace Analytical |            |                      |         |                |                 |               |     |
| Total Dissolved Solids       | 2390            | mg/L       | 66.7                 | 1       |                | 05/09/24 10:39  |               |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 056                  |         |                |                 |               |     |
|                              | Pace Analytical | Services - | Kansas City          |         |                |                 |               |     |
| Chloride                     | 10.9            | mg/L       | 1.0                  | 1       |                | 05/22/24 19:01  | 16887-00-6    |     |
| Fluoride                     | ND              | mg/L       | 0.20                 | 1       |                | 05/22/24 19:01  |               | N2  |
| Sulfate                      | 1 <b>550</b>    | mg/L       | 200                  | 200     |                |                 | 14808-79-8    | CL  |



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

QC Batch: 899028 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60455269001, 60455269002, 60455269003

METHOD BLANK: 3558560 Matrix: Water

Associated Lab Samples: 60455269001, 60455269002, 60455269003

Blank Reporting
Parameter Units Result Limit

ParameterUnitsResultLimitAnalyzedQualifiersMercuryug/LND0.2005/21/24 12:17

LABORATORY CONTROL SAMPLE: 3558561

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.0 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3558562 3558563

MS MSD

60455269002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND 5 101 20 Mercury ug/L 5 5.0 5.2 104 75-125 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

QC Batch: 899026 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60455269001, 60455269002, 60455269003

METHOD BLANK: 3558552 Matrix: Water

Associated Lab Samples: 60455269001, 60455269002, 60455269003

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Boron ND 100 05/30/24 21:45 ug/L Calcium ug/L ND 200 05/30/24 21:45 Lithium ug/L ND 05/30/24 21:45 10.0

LABORATORY CONTROL SAMPLE: 3558553

Date: 01/13/2025 10:01 AM

| Parameter | Units  | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers    |
|-----------|--------|----------------|---------------|--------------|-----------------|---------------|
|           | Office |                |               |              |                 | - Qualificity |
| Boron     | ug/L   | 1000           | 933           | 93           | 80-120          |               |
| Calcium   | ug/L   | 10000          | 10100         | 101          | 80-120          |               |
| Lithium   | ug/L   | 1000           | 977           | 98           | 80-120          |               |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3558 | 554   |       | 3558555 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 60455269002 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                    | ug/L     | 739         | 1000  | 1000  | 1600    | 1620   | 86    | 88    | 75-125 | 1   | 20  |      |
| Calcium                  | ug/L     | 455000      | 10000 | 10000 | 438000  | 451000 | -172  | -37   | 75-125 | 3   | 20  | M1   |
| Lithium                  | ug/L     | 185         | 1000  | 1000  | 1160    | 1170   | 98    | 99    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

QC Batch: 899027 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60455269001, 60455269002, 60455269003

METHOD BLANK: 3558556 Matrix: Water

Associated Lab Samples: 60455269001, 60455269002, 60455269003

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Antimony   | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Arsenic    | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Barium     | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Beryllium  | ug/L  | ND              | 0.50               | 06/18/24 11:48 |            |
| Cadmium    | ug/L  | ND              | 0.50               | 06/18/24 11:48 |            |
| Chromium   | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Cobalt     | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Lead       | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Molybdenum | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Selenium   | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |
| Thallium   | ug/L  | ND              | 1.0                | 06/18/24 11:48 |            |

| LABORATORY CONTROL SAMPLE: | 3558557 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                   | ug/L    | 40    | 40.1   | 100   | 80-120 |            |
| Arsenic                    | ug/L    | 40    | 41.9   | 105   | 80-120 |            |
| Barium                     | ug/L    | 40    | 39.7   | 99    | 80-120 |            |
| Beryllium                  | ug/L    | 40    | 43.0   | 108   | 80-120 |            |
| Cadmium                    | ug/L    | 40    | 42.7   | 107   | 80-120 |            |
| Chromium                   | ug/L    | 40    | 41.3   | 103   | 80-120 |            |
| Cobalt                     | ug/L    | 40    | 41.7   | 104   | 80-120 |            |
| Lead                       | ug/L    | 40    | 39.4   | 98    | 80-120 |            |
| Molybdenum                 | ug/L    | 40    | 41.4   | 103   | 80-120 |            |
| Selenium                   | ug/L    | 40    | 43.3   | 108   | 80-120 |            |
| Thallium                   | ug/L    | 40    | 37.6   | 94    | 80-120 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPLI | CATE: 3558  |             | MOD          | 3558559 |        |       |       |        |     |     |      |
|-----------------------|-------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |             | 60455269002 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units       | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony              | ug/L        | ND          | 40          | 40           | 37.8    | 38.2   | 94    | 95    | 75-125 | 1   | 20  |      |
| Arsenic               | ug/L        | ND          | 40          | 40           | 42.6    | 42.4   | 105   | 104   | 75-125 | 0   | 20  |      |
| Barium                | ug/L        | 25.1        | 40          | 40           | 63.1    | 61.6   | 95    | 91    | 75-125 | 2   | 20  |      |
| Beryllium             | ug/L        | ND          | 40          | 40           | 35.8    | 36.7   | 89    | 92    | 75-125 | 3   | 20  |      |
| Cadmium               | ug/L        | ND          | 40          | 40           | 35.2    | 34.9   | 88    | 87    | 75-125 | 1   | 20  |      |
| Chromium              | ug/L        | ND          | 40          | 40           | 39.4    | 39.7   | 97    | 97    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 3558 | 558         |              | 3558559 |        |       |       |        |     |     |      |
|-----------------------|------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |            | 60455269002 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units      | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cobalt                | ug/L       | ND          | 40          | 40           | 39.6    | 39.7   | 98    | 98    | 75-125 | 0   | 20  |      |
| Lead                  | ug/L       | ND          | 40          | 40           | 35.7    | 35.7   | 89    | 89    | 75-125 | 0   | 20  |      |
| Molybdenum            | ug/L       | 1.0         | 40          | 40           | 43.7    | 43.8   | 107   | 107   | 75-125 | 0   | 20  |      |
| Selenium              | ug/L       | 23.2        | 40          | 40           | 63.5    | 64.7   | 101   | 104   | 75-125 | 2   | 20  |      |
| Thallium              | ug/L       | ND          | 40          | 40           | 35.4    | 35.6   | 89    | 89    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

QC Batch: 899724 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60455269001, 60455269002, 60455269003

METHOD BLANK: 3561238 Matrix: Water

Associated Lab Samples: 60455269001, 60455269002, 60455269003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 05/09/24 10:34

LABORATORY CONTROL SAMPLE: 3561239

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1140 114 80-120

SAMPLE DUPLICATE: 3561240

Date: 01/13/2025 10:01 AM

60455269002 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 2210 **Total Dissolved Solids** mg/L 0 2210 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665



#### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

LABORATORY CONTROL SAMPLE:

Date: 01/13/2025 10:01 AM

QC Batch: 899321 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60455269001, 60455269002, 60455269003

METHOD BLANK: 3559773 Matrix: Water

3559774

Associated Lab Samples: 60455269001, 60455269002, 60455269003

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Chloride  | mg/L  | ND     | 1.0       | 05/22/24 09:23 |            |
| Fluoride  | mg/L  | ND     | 0.20      | 05/22/24 09:23 | N2         |
| Sulfate   | mg/L  | ND     | 1.0       | 05/22/24 09:23 |            |

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Chlorida 99 90 420

Chloride 5 4.4 88 80-120 mg/L Fluoride mg/L 2.5 2.4 98 80-120 N2 Sulfate mg/L 4.5 91 80-120 5

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3559775 3559776 MS MSD MSD MS 60455269002 Spike Spike MS MSD % Rec Max Qual Parameter Units Conc. Result % Rec % Rec **RPD** RPD Result Conc. Result Limits Chloride 41.2 50 243 15 M1 mg/L 50 163 190 298 80-120 15 Fluoride mg/L ND 2.5 2.5 4.4 4.5 172 175 80-120 1 15 M1, N2

Sulfate mg/L 1550 2500 2500 4070 4140 101 104 80-120 2 15 CL

SAMPLE DUPLICATE: 3559777 60455269002 Dup Max Parameter Units Result Result RPD RPD Qualifiers mg/L 41.2 14 15

 Chloride
 mg/L
 41.2
 35.7
 14
 15

 Fluoride
 mg/L
 ND
 ND
 15 N2

 Sulfate
 mg/L
 1550
 1360
 13
 15 CL

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

## **ANALYTE QUALIFIERS**

Date: 01/13/2025 10:01 AM

- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR-Revised Report

Pace Project No.: 60455269

Date: 01/13/2025 10:01 AM

| Lab ID      | Sample ID   | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|----------|-------------------|---------------------|
| 60455269001 | BAT-09-CCR  | EPA 3010        | 899026   | EPA 6010          | 899033              |
| 60455269002 | BAT-04R-CCR | EPA 3010        | 899026   | EPA 6010          | 899033              |
| 60455269003 | BAT-06-CCR  | EPA 3010        | 899026   | EPA 6010          | 899033              |
| 60455269001 | BAT-09-CCR  | EPA 3010        | 899027   | EPA 6020          | 899037              |
| 60455269002 | BAT-04R-CCR | EPA 3010        | 899027   | EPA 6020          | 899037              |
| 60455269003 | BAT-06-CCR  | EPA 3010        | 899027   | EPA 6020          | 899037              |
| 60455269001 | BAT-09-CCR  | EPA 7470        | 899028   | EPA 7470          | 899031              |
| 60455269002 | BAT-04R-CCR | EPA 7470        | 899028   | EPA 7470          | 899031              |
| 60455269003 | BAT-06-CCR  | EPA 7470        | 899028   | EPA 7470          | 899031              |
| 60455269001 | BAT-09-CCR  | SM 2540C        | 899724   |                   |                     |
| 60455269002 | BAT-04R-CCR | SM 2540C        | 899724   |                   |                     |
| 60455269003 | BAT-06-CCR  | SM 2540C        | 899724   |                   |                     |
| 60455269001 | BAT-09-CCR  | EPA 9056        | 899321   |                   |                     |
| 60455269002 | BAT-04R-CCR | EPA 9056        | 899321   |                   |                     |
| 60455269003 | BAT-06-CCR  | EPA 9056        | 899321   |                   |                     |

FedEx ☑ UPS □

Custody Seal on Cooler/Box Present: Yes ☑

Temperature should be above freezing to 6°C

Bubble Wrap □

VIA 🗆

As-read 2-2

Client Name: AFCOM

Courier:

Tracking #: 7146

Packing Material:

Thermometer Used:

Cooler Temperature (°C):

Chain of Custody present:

Sufficient volume:

Correct containers used:

Pace containers used:

Containers intact:

Chain of Custody relinquished:

Samples arrived within holding time:

Short Hold Time analyses (<72hr):

Rush Turn Around Time requested:

Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?

Sample labels match COC: Date / time / ID / analyses

Containers requiring pH preservation in compliance? (HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)

Potassium iodide test strip turns blue/purple? (Preserve)

Matrix:

State:

Filtered volume received for dissolved tests?

Lead acetate strip turns dark? (Record only)

Samples contain multiple phases?

Cyanide water sample checks:

Headspace in VOA vials ( >6mm):

Samples from USDA Regulated Area:

Trip Blank present:

DC# Title: ENV-FRM-LENE-0010\_Sam

Clay □

No □

Bubble Bags

(SCUR\_ESI) Revision: 3 Effective Date: 01/12/2

PEX [

Pace Shipping Label U

Type of Ice: Wet BI

☐Yes ☐No

☐Yes ☐No

□Yes □No

□Yes □No 望N/A

MN/A

N/A

Corr. Factor O\_ \ Corr

| NE-0010_Sampl                              | W0#:60452423                                              |
|--------------------------------------------|-----------------------------------------------------------|
| e Date: 01/12/202                          |                                                           |
|                                            |                                                           |
| X 🗆 ECI 🗆                                  | Pace □ Xroads □ Client □ Other □                          |
| Shipping Label Used                        |                                                           |
| Seals intact: Yes                          |                                                           |
| Foam □                                     | None □ Other <b>□ ZPL</b> C                               |
| of Ice: Wet Blue                           | Date and initials of person C/D/D/L                       |
| O_ D Correct                               | ed 2-) examining contents 14                              |
|                                            | 1-8                                                       |
| to the the the the the the the the the the |                                                           |
| ØŶes □No □N/A                              |                                                           |
| Yes No N/A                                 |                                                           |
| □Yes ➡No □N/A                              |                                                           |
| □Yes □No □N/A                              |                                                           |
| Yes ONO ON/A                               |                                                           |
| □Ves □No □N/A                              |                                                           |
|                                            |                                                           |
| Wes □No □N/A                               |                                                           |
| Ayes No N/A                                |                                                           |
| Yes No ZNA                                 |                                                           |
| Yes No N/A                                 |                                                           |
| ⊠Yes □No □N/A                              |                                                           |
| □Yes <b>☑</b> No □N/A                      |                                                           |
| ☑Yes □No □N/A                              | List sample IDs, volumes, lot #'s of preservative and the |
| 1817                                       | date/time added.                                          |
| / 10 /                                     |                                                           |
| □Yes □No                                   |                                                           |

| Additional labels attached to 5035A / TX1005 via | als in the field? □Yes | □No | □•N/A |                      |       |                                                     |
|--------------------------------------------------|------------------------|-----|-------|----------------------|-------|-----------------------------------------------------|
| Client Notification/ Resolution:                 | Copy COC to Client?    |     |       | Field Data Required? | Y / N |                                                     |
| Person Contacted: Comments/ Resolution:          | Date/Time:             |     |       | wh                   |       | start and finish times<br>oler, if >20 min, recheck |
|                                                  |                        |     |       | Sta                  | art:  | Start:                                              |

End: End: Temp: Temp: Project Manager Review: Date:



Section B

Section A

Pace Analytical

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

(COD) (P)

200

Pace Project No./ Lab I.D. DRINKING WATER SAMPLE CONDITIONS OTHER of GROUND WATER Page: Residual Chlorine (Y/N) REGULATORY AGENCY 8 RCRA 25% Requested Analysis Filtered (Y/N) TIME 5/1/29 Site Location STATE NPDES DATE UST **S240C LD2** 470 Total Mercury ACCEPTED BY / AFFILIATION SAPac 6010 Total Metals\*\* 5020 Total Metals\* 9026 CI, F, SO4 Test Test Test N/A Other Same as Section A Accounts Payable Methanol Heather Wilson Preservatives  $Na_2S_2O_3$ Sompany Name: AECOM NaOH Manager. Pace Profile #: 11033, 3 42700 HCI Invoice Information: HNO3 () DS<sup>z</sup>H Reference: Section C Unpreserved TIME ace Quote \ddress. 4 # OF CONTAINERS SAMPLE TEMP AT COLLECTION DATE TIME COMPOSITE END/GRAB ECOM DATE COLLECTED RELINQUISHED BY / AFFILIATION 1570 60709371 PRPA CCR 1250 TIME COMPOSITE NEED PO# DATE Report To: Vasanta Kalluri Sopy To: Jamie Herman Required Project Information: 6070937 1 Mackengle 5 (G=GRAB C=COMP) SAMPLE TYPE Purchase Order No.: Project Number. (see valid codes to left) MATRIX CODE Project Name: CODE DW WT SL SL OL AR AR AR TS Valid Matrix Codes DRINKING WATER
WATER
WASTE WATER
PRODUCT
SOIL/SOLID AJR OTHER TISSUE WIPE Greenwood Village, CO 80111 jamie.herman@aecom.com STANGOO ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 6200 South Quebec St Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TI SAMPLE ID Required Client Information <sup>2</sup>hone: (303) 740-2614 Required Client Information: Requested Due Date/TAT: AECOM アイト Section D \*\*B. Ca. Li Company: mail To: Address: 9 = 42 00 # MBTI Ø

F-ALL-Q-020rev.08, 12-Oct-2007

(N/Y)

Samples Intact

Cooler (Y/N)

Custody Sealed

Ice (Y/N) Received on

Сетр іп °С

DATE Signed (MM/DD/YY): 05/

SIGNATURE of SAMPLER: UNIVERSITY

PRINT Name of SAMPLER: MACK & M

SAMPLER NAME AND SIGNATURE

70-

12C1+

collected

MSMSD

Page 17 of 17

ナベ

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

# **Data Validation Report**

**Project/Site:** Platte River Power Authority – Rawhide/CCR BAT Event: First Semiannual Groundwater 2024

**AECOM Chemist**: Sawyer Hunt

**Date:** 8/6/2024 **AECOM Secondary Reviewer:** Jamie Herman Date: 8/23/2024

### **Introduction:**

This validation report documents the data review through the checklists below. Further identification and explanation of the anomaly are provided following each section of the checklist, as needed.

The data package and sample identifications discussed in this data review are summarized in Table

# **Laboratory and Sample Delivery Groups (SDGs):**

Pace Analytical Services – Lenexa, Kansas: 60452426, 60452578, 60452588, 60452675, 60452741, 60452754, 60452817, 60452841, 60455269

## **Guidance Documents:**

The data validation review was conducted in accordance with National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA November 2020), and evaluation of laboratory criteria, as applicable.

| Overal | l Assessm   | ent:  |
|--------|-------------|-------|
| Overai | 1 179969911 | ıcıı, |

|   | Data are usable without qualification.                                              |
|---|-------------------------------------------------------------------------------------|
| X | Data are usable with qualification (noted below, summarized in Table 2).            |
|   | Some or all data are unusable for any purpose (noted below, summarized in Table 2). |

# **Case Narrative Comments:**

Any case narrative comments concerning data qualification were addressed as noted in the table below.

Fluoride is not included in Pace Analytical Services laboratory in Kansas City's NELAC certification.

This data validation report includes the evaluation of data package 60452818. This data package includes the BAT-13 well, originally sampled for the Colorado Department of Public Health and Environment. This well frequently dries up and was added to this report per the AECOM project team.

Data package 60455269: The laboratory revised and reissued the data package to provide appropriate dilution results for Method 9056 associated with samples BAT-04R-CCR, BAT-06-CCR, and BAT-09-CCR. The laboratory indicated the originally reported results were potentially switched; as the analysis could not be further confirmed due to sample disposal, the revised results were selected for reporting.

The laboratory noted the continuing calibration was below the lower control limits for sulfate by Method 9056; the associated samples BAT-04R-CCR and BAT-06-CCR were qualified as estimated (J-c).

# **Data Validation Report**

**Project/Site:** Platte River Power Authority – Rawhide/CCR BAT **Event:** First Semiannual Groundwater 2024

AECOM Chemist: Sawyer Hunt AECOM Secondary Reviewer: Jamie Herman **Date:** 8/16/2024 **Date:** 8/23/2024

| Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Criteria | Comments                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Met?     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Chain of Custody & Sample Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes      | The samples were received in good condition and were consistent with the accompanying chain of custody (COC). The cooler temperatures upon receipt were within the recommended ≤6 degrees Celsius (°C) temperature range as applicable to the method.                                                                                                                                                                     |  |  |  |  |
| Holding Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes      | The analyses were conducted within the method required holding time.                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Laboratory Blanks • Method Blank (MB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No       | With the exception listed in Table 3, the target analytes were not detected or were reported at concentrations less than the minimum detectable concentration (MDC) within the method blanks.                                                                                                                                                                                                                             |  |  |  |  |
| Matrix Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No       | Matrix Spike/ Matrix Spike Duplicate (MS/MSD)                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Matrix Spike/ Matrix Spike Duplicate     Data Package 60452841 BAT-03-CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | With the exceptions listed in Table 4, the MS/MSDs performed on project specific samples met QC criteria.                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Data Package 60455269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Laboratory Duplicate                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| BAT-04R-CCR  • Laboratory Duplicate  Data Package 60455269  BAT-04R-CCR (9056)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | The laboratory duplicates performed on project specific samples met QC criteria.                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Laboratory Performance  • Laboratory Control Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes      | There was one laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) per method per analytical method, prepared and analyzed, with the exception of the calculated total radium result. The LCS/LCSD recoveries and/or RPDs were within the laboratory acceptance limits. These results are indicative of an acceptable level of accuracy and precision with respect to the analytical method. |  |  |  |  |
| Field Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No       | Field Blank                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| • Field Blank<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | A field blank was not submitted with the samples associated with this sampling event.                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| <ul> <li>Equipment Blank</li> <li>Data Packages 60452841/60452817</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Equipment Blank                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Field Duplicate     Data Packages 60452578/60452588  A.T. J. GOVEN BOX CONTROL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PRO |          | With the exception listed in Table 3, the target analytes were not detected or were reported at concentrations <mdc blank.<="" equipment="" td="" the="" within=""></mdc>                                                                                                                                                                                                                                                 |  |  |  |  |
| BAT-12-CCR/DUP-02-CCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Field Duplicate                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | The field duplicate sample results satisfied the evaluation criteria below:                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | • When both the sample and duplicate values are >5xRL acceptable sampling and analytical precision is indicated by a RPD between the results of ≤30%.                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | • Where the result for one or both analytes of the field duplicate pair is <5xRL, satisfactory precision is indicated if the absolute difference between the field duplicate results is <2xRL.                                                                                                                                                                                                                            |  |  |  |  |

# **Data Validation Report**

Project/Site: Platte River Power Authority – Rawhide/CCR BAT Event: First Semiannual Groundwater 2024

**AECOM Chemist**: Sawyer Hunt

Date: 8/16/2024 AECOM Secondary Reviewer: Jamie Herman Date: 8/23/2024

| Review                         | Criteria | Comments                                                                                                                                                                                                                                                     |
|--------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                      | Met?     |                                                                                                                                                                                                                                                              |
|                                |          | • For radiological parameters, the agreement between parent sample results and field duplicate sample results were evaluated. The duplicate error ratio (DER) met the criterion of a DER ≤2.                                                                 |
| Tracer and/or Carrier Recovery | Yes      | The sample specific recoveries were within the laboratory limits (30-110%).                                                                                                                                                                                  |
| Reporting Limits               | No       | For non-radiological parameters, several analytes were reported as non-detect at elevated reporting limits. These non-detect results will need to be evaluated by the end user of the data with respect to project objectives.                               |
|                                |          | With the exception listed in Table 5, for radiological parameters, if the associated uncertainty was greater than the reported result, then the 2 sigma ( $\sigma$ ) uncertainty multiplied by 1.65 was less than or equal to the specified detection limit. |
| Package Completeness           | Yes      | The results are usable as qualified for the project objective. The data are considered 100% complete.                                                                                                                                                        |

°C – Degrees Celsius

% – Percent

≥ – Greater Than or Equal To

≤ – Less Than or Equal To

> - Greater Than

< - Less Than

 $\pm - Plus \ or \ Minus$ 

 $\sigma-Sigma$ 

c - Calibration Issue

COC - Chain of Custody

DER - Duplicate Error Ratio

J- - Estimated Result, Bias Low

ID-Identification

LCS - Laboratory Control Sample

LCSD – Laboratory Control Sample Duplicate

MDC – Minimum Detectable Concentration

MDL - Method Detection Limit

MS - Matrix Spike

MSD – Matrix Spike Duplicate

RL – Reporting Limit

RPDs – Relative Percent Differences VOCs - Volatile Organic Compounds **Table 1: Summary of Samples** 

|                             | Table 1: Sui   | nmary of Samples             |        |              | Analyses |               |
|-----------------------------|----------------|------------------------------|--------|--------------|----------|---------------|
|                             |                |                              |        |              | Anaryses |               |
| Field Sample Identification | Sample<br>Type | Laboratory<br>Identification | Matrix | Total Metals | General  | Total Radium* |
| •                           |                | ckage 60452426               |        |              | ·        |               |
| BAT-09-CCR                  | N              | 60452426001                  | Water  |              |          | X             |
| BAT-04R-CCR                 | N              | 60452426003                  | Water  |              |          | X             |
| BAT-06-CCR                  | N              | 60452426006                  | Water  |              |          | X             |
|                             | Data Pac       | ckage 60452578               | _      |              |          |               |
| BAT-05-CCR                  | N              | 60452578001                  | Water  | X            | X        |               |
| BAT-12-CCR                  | N              | 60452578002                  | Water  | X            | X        |               |
| DUP-02-CCR                  | FD             | 60452578003                  | Water  | X            | X        |               |
| BAT-02-CCR                  | N              | 60452578004                  | Water  | X            | X        |               |
|                             | Data Pa        | ckage 60452588               |        |              |          |               |
| BAT-05-CCR                  | N              | 60452588001                  | Water  |              |          | X             |
| BAT-12-CCR                  | N              | 60452588002                  | Water  |              |          | X             |
| DUP-02-CCR                  | FD             | 60452588003                  | Water  |              |          | X             |
| BAT-02-CCR                  | N              | 60452588004                  | Water  |              |          | X             |
|                             | Data Pa        | ckage 60452675               |        |              |          |               |
| BAT-11-CCR                  | N              | 60452675001                  | Water  |              |          | X             |
| BAT-10-CCR                  | N              | 60452675002                  | Water  |              |          | X             |
| BAT-01-CCR                  | N              | 60452675003                  | Water  |              |          | X             |
|                             |                | ckage 60452741               |        | 1            | 1        |               |
| BAT-13-CCR                  | N              | 60452741001                  | Water  | X            | X        |               |
|                             |                | ckage 60452754               | T      | 1            |          |               |
| BAT-11-CCR                  | N              | 60452754001                  | Water  | X            | X        |               |
| BAT-10-CCR                  | N              | 60452754002                  | Water  | X            | X        |               |
| BAT-01-CCR                  | N              | 60452754003                  | Water  | X            | X        |               |
|                             |                | ckage 60452817               |        | T            | T        |               |
| BAT-03-CCR                  | N              | 60452817001                  | Water  |              |          | X             |
| ERB-02-CCR                  | EB             | 60452817002                  | Water  |              |          | X             |
|                             |                | ckage 60452841               | T      | 1            | T        |               |
| BAT-03-CCR                  | N              | 60452841001                  | Water  | X            | X        |               |
| ERB-02-CCR                  | EB             | 60452841002                  | Water  | X            | X        |               |
| DATE OF CCD                 |                | ckage 60455269               | 337    |              | ***      |               |
| BAT-09-CCR                  | N              | 60455269001                  | Water  | X            | X        |               |
| BAT-04R-CCR                 | N              | 60455269002                  | Water  | X            | X        |               |
| BAT-06-CCR                  | N Data Par     | 60455269003                  | Water  | X            | X        |               |
| DAT 12 CDDUE                |                | ckage 60452818               | XX7-4  |              |          | V             |
| BAT-13-CDPHE                | N              | 60452818001                  | Water  |              |          | X             |

Sample Type: -- Not analyzed for this parameter EB - Equipment Blank

FD – Field Duplicate N – Normal Sample General Chemistry – Anions: chloride, fluoride, sulfate (Method 9056), and total dissolved solids (TDS) (SM 2540C). Analyses: Total Metals – Boron, calcium, lithium (6010), antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, molybdenum, selenium, thallium (6020), mercury (7470A)

\* – Includes radium-226 (Method 903.1), radium-228 (Method 904.0), and total radium combined (TRC)

**Table 2: Summary of Qualified Data** 

| Laboratory     | Sample         | Sample | Matrix | Analytical | Analyte    | Unit  | Result | RL  | MDC   | Dilution | Qualifier | Reason |
|----------------|----------------|--------|--------|------------|------------|-------|--------|-----|-------|----------|-----------|--------|
| Identification | Identification | Type   |        | Method     |            |       |        |     |       |          |           | Code   |
| 60452841001    | BAT-03-CCR     | N      | Water  | 6020       | Barium     | ug/L  | 15.6   | 1   |       | 1        | J+        | bl     |
| 60452841001    | BAT-03-CCR     | N      | Water  | 6020       | Chromium   | ug/L  | ND     | 1   |       | 1        | UJ        | m      |
| 60455269002    | BAT-04R-CCR    | N      | Water  | 9056       | Chloride   | mg/L  | 41.2   | 10  |       | 10       | J+        | m      |
| 60455269002    | BAT-04R-CCR    | N      | Water  | 9056       | Sulfate    | mg/L  | 1550   | 500 |       | 500      | J-        | С      |
| 60452426002    | BAT-04R-CCR    | N      | Water  | 903.1      | Radium-226 | pCi/L | 0.455  |     | 0.721 | 1        | J         | V      |
| 60455269002    | BAT-06-CCR     | N      | Water  | 9056       | Sulfate    | mg/L  | 1550   | 500 |       | 500      | J-        | С      |

# Definitions

MDC Minimum Detectable Concentration

mg/L Milligrams per Liter
ug/L Micrograms per Liter
N Normal Sample
pCi/L Picocuries per Liter
RL Reporting Limit

## Qualifiers

J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J+ The result is an estimated quantity, but the result may be biased high.
J- The result is an estimated quantity, but the result may be biased low.
UJ The analyte was not detected, but the reporting limit is estimated.

## Reason Codes

bl Laboratory Blank Contamination

c Calibration Issue

m Matrix Spike/Matrix Spike Duplicate Issue

v Compound identification issue

**Table 3: Blank Outliers** 

| Blank Identification/                  | Analyte                   | Concentration         | Qualification                                                                                                                                                                                                                   |
|----------------------------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Associated Samples                     |                           |                       |                                                                                                                                                                                                                                 |
|                                        |                           | Data Package 60452841 |                                                                                                                                                                                                                                 |
| MB 3543795<br>BAT-03-CCR<br>ERB-02-CCR | Barium                    | 14.4 ug/L             | The sample result BAT-03-CCR was greater than the blank contamination but less than 10x the blank contamination; therefore it was qualified as estimated (J+ bl) to reflect the high bias indicated by the blank contamination. |
| ERB-02-CCR<br>BAT-03-CCR               | Total Dissolved<br>Solids | 16.0 mg/L             | The associated sample result for BAT-03-CCR was reported at concentrations >10x the blank contamination; therefore, qualification was not necessary.                                                                            |

<sup>± –</sup> Plus or Minus

MB – Method Blank

 $\begin{array}{l} mg/L-Milligrams~per~Liter\\ ugL-Micrograms~per~liter \end{array}$ 

Table 4: Matrix Snike/Matrix Snike Dunlicate Outliers

| Table 4. Watth Spike/Watth Spike Duplicate Outliers |          |                |         |                                          |  |  |  |  |
|-----------------------------------------------------|----------|----------------|---------|------------------------------------------|--|--|--|--|
| Matrix Spike                                        | Analyte  | Recovery       | RPD     | Qualification                            |  |  |  |  |
| Identification                                      | ·        | (Limit)        | (Limit) |                                          |  |  |  |  |
| Tuelle linearion                                    |          | (Limit)        | (Limit) |                                          |  |  |  |  |
|                                                     | _        |                |         |                                          |  |  |  |  |
|                                                     | J        | Data Package 6 | 0452841 |                                          |  |  |  |  |
| BAT-03-CCR                                          | Chromium | 73/74          | 2       | As the potential bias was low, the       |  |  |  |  |
|                                                     |          |                |         | sample result was qualified as estimated |  |  |  |  |
|                                                     |          | (75-125)       | (20)    | (UJ m).                                  |  |  |  |  |
|                                                     |          |                |         | (O3 III).                                |  |  |  |  |
|                                                     |          | Data Package 6 | 0455269 |                                          |  |  |  |  |
| BAT-04R-CCR                                         | Fluoride | 172/175        | 1       | As the potential bias was high, and the  |  |  |  |  |
|                                                     |          |                |         | associated sample result was non-        |  |  |  |  |
|                                                     |          | (80-120)       | (15)    | detected, data qualification was not     |  |  |  |  |
|                                                     |          |                |         | •                                        |  |  |  |  |
|                                                     |          |                |         | necessary.                               |  |  |  |  |
|                                                     | Chloride | 243/298        | 15      | As the potential bias was high, the      |  |  |  |  |
|                                                     | Cinoride | 2-15/270       | 13      | 1                                        |  |  |  |  |
|                                                     |          | (80-120)       | (15)    | sample result was qualified as estimated |  |  |  |  |
|                                                     |          | ()             |         | (J+m).                                   |  |  |  |  |
| ſ                                                   | 1        | I              | 1       |                                          |  |  |  |  |

mg/L – Milligrams per Liter

**Table 5: Uncertainty Outliers** 

| Associated Samples | Analyte               | Result  | 2 Sigma (σ) | MDC     | Qualification                                                                                                       |  |  |  |
|--------------------|-----------------------|---------|-------------|---------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
|                    |                       | (pCi/L) | Uncertainty | (pCi/L) |                                                                                                                     |  |  |  |
|                    | Data Package 60452426 |         |             |         |                                                                                                                     |  |  |  |
| BAT-04R-CCR        | Radium-226            | 0.455   | ± 0.457     | 0.721   | As the $2\sigma$ uncertainty multiplied by 1.65 was >MDC, the associated results were qualified as estimated (J v). |  |  |  |

MDC – Minimum Detectable Concentration

<sup>&</sup>lt; - Less than

bl - Laboratory Blank Contamination

J+ - Estimated, High Bias

ND – Non-detect

J+-Estimated, High Bias

UJ - Analyte not detected in sample, reporitng limit is estimated

m – MS/MSD issue

pCi/L - Picocuries per Liter

AECOM Environment

September/October 2024





November 20, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 11, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

Databa m. Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

**Enclosures** 

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM







## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462426

## **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



# **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462426

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 60462426001 | BAT-11-CCR | Water  | 10/10/24 09:30 | 10/11/24 09:11 |
| 60462426002 | ERB-02-CCR | Water  | 10/10/24 09:40 | 10/11/24 09:11 |
| 60462426003 | BAT-09-CCR | Water  | 10/10/24 11:20 | 10/11/24 09:11 |
| 60462426004 | BAT-12-CCR | Water  | 10/10/24 13:45 | 10/11/24 09:11 |



# **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462426

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60462426001 | BAT-11-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462426002 | ERB-02-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462426003 | BAT-09-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462426004 | BAT-12-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

| Sample: BAT-11-CCR           | Lab ID: 604                       | 52426001   | Collected: 10/10/2   | 4 09:30  | Received: 10   | /11/24 09:11 I  | Matrix: Water |     |
|------------------------------|-----------------------------------|------------|----------------------|----------|----------------|-----------------|---------------|-----|
| Parameters                   | Results                           | Units      | Report Limit         | DF       | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth                   | od: EPA 60 | 010 Preparation Meth | nod: EPA | A 3010         |                 |               |     |
|                              | Pace Analytica                    | Services - | Kansas City          |          |                |                 |               |     |
| Arsenic                      | ND                                | ug/L       | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-38-2     |     |
| Barium                       | 33.1                              | ug/L       | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-39-3     |     |
| Beryllium                    | ND                                | ug/L       | 1.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-41-7     |     |
| Boron                        | 354                               | ug/L       | 100                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-42-8     |     |
| Cadmium                      | ND                                | ug/L       | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-43-9     |     |
| Calcium                      | 92000                             | ug/L       | 200                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-70-2     |     |
| Chromium                     | ND                                | ug/L       | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-47-3     |     |
| Cobalt                       | ND                                | ug/L       | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7440-48-4     |     |
| Lead                         | ND                                | ug/L       | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7439-92-1     |     |
| _ithium                      | 65.5                              | ug/L       | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7439-93-2     |     |
| Molybdenum                   | ND                                | ug/L       | 20.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7439-98-7     |     |
| Selenium                     | ND                                | ug/L       | 15.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:17  | 7782-49-2     |     |
| 6020 MET ICPMS               | Analytical Meth                   | od: EPA 60 | 020 Preparation Meth | nod: EPA | A 3010         |                 |               |     |
|                              | Pace Analytica                    | Services - | Kansas City          |          |                |                 |               |     |
| Antimony                     | ND                                | ug/L       | 1.0                  | 1        | 10/21/24 13:42 | 11/19/24 13:58  | 7440-36-0     |     |
| Γhallium                     | ND                                | ug/L       | 1.0                  | 1        | 10/21/24 13:42 |                 |               |     |
| 7470 Mercury                 | Analytical Meth                   | od: EPA 74 | 170 Preparation Meth | nod: EPA | A 7470         |                 |               |     |
|                              | Pace Analytica                    | Services - | Kansas City          |          |                |                 |               |     |
| Mercury                      | ND                                | ug/L       | 0.20                 | 1        | 10/28/24 14:46 | 10/29/24 11:56  | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth                   | od: SM 25  | 40C                  |          |                |                 |               |     |
|                              | Pace Analytica                    |            |                      |          |                |                 |               |     |
| Total Dissolved Solids       | 732                               | mg/L       | 13.3                 | 1        |                | 10/17/24 16:03  | 1             |     |
|                              |                                   | ŭ          |                      | '        |                | 15,1172 - 10.00 | •             |     |
| 9056 IC Anions               | Analytical Meth<br>Pace Analytica |            |                      |          |                |                 |               |     |
| Chloride                     | 5.3                               | mg/L       | 1.0                  | 1        |                | 10/23/24 14:32  | 16887-00-6    |     |
| Fluoride                     | 0.28                              | mg/L       | 0.20                 | 1        |                | 10/23/24 14:32  |               |     |
| Sulfate                      | 181                               | mg/L       | 50.0                 | 50       |                | 10/23/24 14:45  |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

| Sample: ERB-02-CCR           | Lab ID: 6046                                             | 62426002     | Collected: 10/10/2   | 24 09:40 | Received: 10   | /11/24 09:11 I | Matrix: Water |     |  |  |
|------------------------------|----------------------------------------------------------|--------------|----------------------|----------|----------------|----------------|---------------|-----|--|--|
| Parameters                   | Results                                                  | Units        | Report Limit         | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |
| 6010 MET ICP                 | Analytical Meth                                          | od: EPA 60   | 010 Preparation Meth | nod: EP/ | A 3010         |                |               |     |  |  |
|                              | Pace Analytica                                           | l Services - | Kansas City          |          |                |                |               |     |  |  |
| Arsenic                      | ND                                                       | ug/L         | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-38-2     |     |  |  |
| Barium                       | ND                                                       | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-39-3     |     |  |  |
| Beryllium                    | ND                                                       | ug/L         | 1.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-41-7     |     |  |  |
| Boron                        | ND                                                       | ug/L         | 100                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-42-8     |     |  |  |
| Cadmium                      | ND                                                       | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-43-9     |     |  |  |
| Calcium                      | ND                                                       | ug/L         | 200                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-70-2     |     |  |  |
| Chromium                     | ND                                                       | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-47-3     |     |  |  |
| Cobalt                       | ND                                                       | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7440-48-4     |     |  |  |
| ₋ead                         | ND                                                       | ug/L         | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7439-92-1     |     |  |  |
| _ithium                      | ND                                                       | ug/L         | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7439-93-2     |     |  |  |
| Nolybdenum                   | ND                                                       | ug/L         | 20.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7439-98-7     |     |  |  |
| Selenium                     | ND                                                       | ug/L         | 15.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:19 | 7782-49-2     |     |  |  |
| 6020 MET ICPMS               | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |              |                      |          |                |                |               |     |  |  |
|                              | Pace Analytica                                           | l Services - | Kansas City          |          |                |                |               |     |  |  |
| Antimony                     | ND                                                       | ug/L         | 1.0                  | 1        | 10/21/24 13:42 | 11/19/24 14:01 | 7440-36-0     |     |  |  |
| Fhallium                     | ND                                                       | ug/L         | 1.0                  | 1        | 10/21/24 13:42 |                |               |     |  |  |
| 7470 Mercury                 | Analytical Meth                                          | od: EPA 74   | 170 Preparation Meth | nod: EP/ | A 7470         |                |               |     |  |  |
|                              | Pace Analytica                                           | l Services - | Kansas City          |          |                |                |               |     |  |  |
| Mercury                      | ND                                                       | ug/L         | 0.20                 | 1        | 10/28/24 14:46 | 10/29/24 11:58 | 7439-97-6     |     |  |  |
| 2540C Total Dissolved Solids | Analytical Meth                                          | od: SM 254   | 40C                  |          |                |                |               |     |  |  |
|                              | Pace Analytica                                           |              |                      |          |                |                |               |     |  |  |
| otal Dissolved Solids        | ND                                                       | mg/L         | 13.3                 | 1        |                | 10/17/24 16:03 | <b>.</b>      | PP  |  |  |
|                              |                                                          | · ·          |                      | •        |                | 10,11,2110.00  |               |     |  |  |
| 0056 IC Anions               | Analytical Meth                                          |              |                      |          |                |                |               |     |  |  |
|                              | Pace Analytica                                           | l Services - | Kansas City          |          |                |                |               |     |  |  |
| Chloride                     | ND                                                       | mg/L         | 1.0                  | 1        |                | 10/23/24 14:58 | 16887-00-6    |     |  |  |
| Fluoride                     | ND                                                       | mg/L         | 0.20                 | 1        |                | 10/23/24 14:58 |               |     |  |  |
|                              | ND                                                       | mg/L         |                      |          |                | 10/23/24 14:58 |               |     |  |  |



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

| Sample: BAT-09-CCR           | Lab ID: 604     | 62426003     | Collected: 10/10/2   | 24 11:20 | Received: 10   | /11/24 09:11 N | /latrix: Water |     |
|------------------------------|-----------------|--------------|----------------------|----------|----------------|----------------|----------------|-----|
| Parameters                   | Results         | Units        | Report Limit         | DF       | Prepared       | Analyzed       | CAS No.        | Qua |
| 6010 MET ICP                 | Analytical Meth | nod: EPA 60  | 010 Preparation Metl | nod: EP  | A 3010         |                |                |     |
|                              | Pace Analytica  | l Services - | Kansas City          |          |                |                |                |     |
| Arsenic                      | ND              | ug/L         | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-38-2      |     |
| Barium                       | 13.8            | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-39-3      |     |
| Beryllium                    | ND              | ug/L         | 1.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-41-7      |     |
| Boron                        | 2230            | ug/L         | 100                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-42-8      |     |
| Cadmium                      | ND              | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-43-9      |     |
| Calcium                      | 228000          | ug/L         | 200                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-70-2      |     |
| Chromium                     | ND              | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-47-3      |     |
| Cobalt                       | ND              | ug/L         | 5.0                  | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7440-48-4      |     |
| _ead                         | ND              | ug/L         | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7439-92-1      |     |
| ₋ithium                      | 252             | ug/L         | 10.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7439-93-2      |     |
| Molybdenum                   | ND              | ug/L         | 20.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7439-98-7      |     |
| Selenium                     | ND              | ug/L         | 15.0                 | 1        | 10/21/24 10:00 | 10/30/24 14:20 | 7782-49-2      |     |
| 6020 MET ICPMS               | Analytical Meth | nod: EPA 60  | 20 Preparation Metl  | nod: EP  | A 3010         |                |                |     |
|                              | Pace Analytica  | l Services - | Kansas City          |          |                |                |                |     |
| Antimony                     | ND              | ug/L         | 1.0                  | 1        | 10/21/24 13:42 | 11/19/24 14:05 | 7440-36-0      |     |
| Гhallium                     | ND              | ug/L         | 1.0                  | 1        |                | 11/19/24 14:05 |                |     |
| 7470 Mercury                 | Analytical Meth | nod: EPA 74  | 170 Preparation Met  | nod: EP  | A 7470         |                |                |     |
| •                            | Pace Analytica  | l Services - | Kansas City          |          |                |                |                |     |
| Mercury                      | ND              | ug/L         | 0.20                 | 1        | 10/28/24 14:46 | 10/29/24 12:00 | 7439-97-6      |     |
| 2540C Total Dissolved Solids | Analytical Meth | nod: SM 254  | 40C                  |          |                |                |                |     |
|                              | Pace Analytica  |              |                      |          |                |                |                |     |
| Total Dissolved Solids       | 3140            | mg/L         | 125                  | 1        |                | 10/17/24 16:03 |                |     |
| 9056 IC Anions               | Analytical Meth | nod: EPA 90  | 056                  |          |                |                |                |     |
|                              | Pace Analytica  | l Services - | Kansas City          |          |                |                |                |     |
| Chloride                     | 94.9            | mg/L         | 50.0                 | 50       |                | 10/23/24 15:26 | 16887-00-6     |     |
| Fluoride                     | 2.3             | mg/L         | 0.20                 | 1        |                | 10/23/24 15:13 |                |     |
| Sulfate                      | 1830            | mg/L         | 200                  | 200      |                | 10/23/24 15:38 |                |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

| Sample: BAT-12-CCR           | Lab ID: 6046                       | 2426004                                                  | Collected: 10/10/2   | 4 13:45  | Received: 10   | )/11/24 09:11  | Matrix: Water |     |  |  |  |
|------------------------------|------------------------------------|----------------------------------------------------------|----------------------|----------|----------------|----------------|---------------|-----|--|--|--|
| Parameters                   | Results                            | Units                                                    | Report Limit         | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |  |
| 6010 MET ICP                 | Analytical Meth                    | od: EPA 60                                               | 010 Preparation Meth | nod: EPA | A 3010         |                |               |     |  |  |  |
|                              | Pace Analytical                    | Services -                                               | Kansas City          |          |                |                |               |     |  |  |  |
| Arsenic                      | ND                                 | ug/L                                                     | 10.0                 | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-38-2     |     |  |  |  |
| Barium                       | 31.1                               | ug/L                                                     | 5.0                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-39-3     |     |  |  |  |
| Beryllium                    | ND                                 | ug/L                                                     | 1.0                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-41-7     |     |  |  |  |
| Boron                        | 230                                | ug/L                                                     | 100                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-42-8     |     |  |  |  |
| Cadmium                      | ND                                 | ug/L                                                     | 5.0                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-43-9     |     |  |  |  |
| Calcium                      | 111000                             | ug/L                                                     | 200                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-70-2     | M1  |  |  |  |
| Chromium                     | ND                                 | ug/L                                                     | 5.0                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-47-3     |     |  |  |  |
| Cobalt                       | ND                                 | ug/L                                                     | 5.0                  | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7440-48-4     |     |  |  |  |
| Lead                         | ND                                 | ug/L                                                     | 10.0                 | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7439-92-1     |     |  |  |  |
| Lithium                      | 92.8                               | ug/L                                                     | 10.0                 | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7439-93-2     |     |  |  |  |
| Molybdenum                   | ND                                 | ug/L                                                     | 20.0                 | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7439-98-7     |     |  |  |  |
| Selenium                     | ND                                 | ug/L                                                     | 15.0                 | 1        | 10/21/24 10:00 | 11/01/24 11:48 | 7782-49-2     |     |  |  |  |
| 6020 MET ICPMS               | Analytical Meth                    | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |                      |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                    | Services -                                               | Kansas City          |          |                |                |               |     |  |  |  |
| Antimony                     | ND                                 | ug/L                                                     | 1.0                  | 1        | 10/21/24 13:42 | 11/19/24 13:28 | 7440-36-0     |     |  |  |  |
| Thallium                     | ND                                 | ug/L                                                     | 1.0                  | 1        |                | 11/19/24 13:28 |               |     |  |  |  |
| 7470 Mercury                 | Analytical Meth                    | od: EPA 74                                               | 170 Preparation Meth | nod: EPA | A 7470         |                |               |     |  |  |  |
| •                            | Pace Analytical                    | Services -                                               | Kansas City          |          |                |                |               |     |  |  |  |
| Mercury                      | ND                                 | ug/L                                                     | 0.20                 | 1        | 10/28/24 14:46 | 10/29/24 12:02 | 7439-97-6     |     |  |  |  |
| 2540C Total Dissolved Solids | Analytical Meth                    | od: SM 254                                               | 40C                  |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                    |                                                          |                      |          |                |                |               |     |  |  |  |
| Total Dissolved Solids       | 996                                | mg/L                                                     | 20.0                 | 1        |                | 10/17/24 16:03 | <b>.</b>      |     |  |  |  |
|                              |                                    | Ŭ                                                        |                      | •        |                | 15/11/24 10:00 | •             |     |  |  |  |
| 9056 IC Anions               | Analytical Meth<br>Pace Analytical |                                                          |                      |          |                |                |               |     |  |  |  |
| Shlarida                     | ·                                  |                                                          | •                    | 10       |                | 10/02/04 10:00 | 16997.00.0    |     |  |  |  |
| Chloride                     | 168                                | mg/L                                                     | 10.0                 | 10       |                | 10/23/24 16:30 |               |     |  |  |  |
| Fluoride                     | ND                                 | mg/L                                                     | 0.20                 | 1        |                | 10/23/24 15:51 |               |     |  |  |  |
| Sulfate                      | 369                                | mg/L                                                     | 50.0                 | 50       |                | 10/23/24 16:43 | 14808-79-8    |     |  |  |  |



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

QC Batch: 914148 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

METHOD BLANK: 3619217 Matrix: Water
Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 10/29/24 11:21

LABORATORY CONTROL SAMPLE: 3619218

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 5 4.7 95 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3619219 3619220

MS MSD

60462146005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Result Conc. % Rec Limits Qual ND 5 20 Mercury ug/L 5 4.9 4.8 97 75-125

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3619221 3619222

MS MSD

60462426004 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual ND 5 5 4.7 93 92 Mercury 4.6 75-125 20 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

QC Batch: 913290 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

METHOD BLANK: 3615924 Matrix: Water
Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

|            |       | Blank  | Reporting |                |            |
|------------|-------|--------|-----------|----------------|------------|
| Parameter  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Arsenic    | ug/L  | ND     | 10.0      | 10/30/24 13:56 |            |
| Barium     | ug/L  | ND     | 5.0       | 10/30/24 13:56 |            |
| Beryllium  | ug/L  | ND     | 1.0       | 10/30/24 13:56 |            |
| Boron      | ug/L  | ND     | 100       | 10/30/24 13:56 |            |
| Cadmium    | ug/L  | ND     | 5.0       | 10/30/24 13:56 |            |
| Calcium    | ug/L  | ND     | 200       | 10/30/24 13:56 |            |
| Chromium   | ug/L  | ND     | 5.0       | 10/30/24 13:56 |            |
| Cobalt     | ug/L  | ND     | 5.0       | 10/30/24 13:56 |            |
| Lead       | ug/L  | ND     | 10.0      | 10/30/24 13:56 |            |
| Lithium    | ug/L  | ND     | 10.0      | 10/30/24 13:56 |            |
| Molybdenum | ug/L  | ND     | 20.0      | 10/30/24 13:56 |            |
| Selenium   | ug/L  | ND     | 15.0      | 10/30/24 13:56 |            |

| LABORATORY CONTROL SAMPLE: | 3615925 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Arsenic                    | ug/L    | 1000  | 957    | 96    | 80-120 |            |
| Barium                     | ug/L    | 1000  | 1010   | 101   | 80-120 |            |
| Beryllium                  | ug/L    | 1000  | 1030   | 103   | 80-120 |            |
| Boron                      | ug/L    | 1000  | 965    | 96    | 80-120 |            |
| Cadmium                    | ug/L    | 1000  | 1030   | 103   | 80-120 |            |
| Calcium                    | ug/L    | 10000 | 10400  | 104   | 80-120 |            |
| Chromium                   | ug/L    | 1000  | 1050   | 105   | 80-120 |            |
| Cobalt                     | ug/L    | 1000  | 1070   | 107   | 80-120 |            |
| Lead                       | ug/L    | 1000  | 1040   | 104   | 80-120 |            |
| Lithium                    | ug/L    | 1000  | 988    | 99    | 80-120 |            |
| Molybdenum                 | ug/L    | 1000  | 1050   | 105   | 80-120 |            |
| Selenium                   | ug/L    | 1000  | 1030   | 103   | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3615926 |             |       |       |        |        |       |       |        |     |     |      |
|--------------------------|------------------------------------------------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|                          |                                                |             | MS    | MSD   |        |        |       |       |        |     |     |      |
|                          |                                                | 60462426004 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units                                          | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Arsenic                  | ug/L                                           | ND          | 1000  | 1000  | 999    | 1020   | 100   | 102   | 75-125 | 3   | 20  |      |
| Barium                   | ug/L                                           | 31.1        | 1000  | 1000  | 1040   | 1060   | 100   | 103   | 75-125 | 3   | 20  |      |
| Beryllium                | ug/L                                           | ND          | 1000  | 1000  | 1050   | 1070   | 105   | 107   | 75-125 | 2   | 20  |      |
| Boron                    | ug/L                                           | 230         | 1000  | 1000  | 1210   | 1240   | 98    | 101   | 75-125 | 3   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

| MATRIX SPIKE & MATRIX | SPIKE DUPLI | CATE: 3615            | 3615927              |                       |              |               |             |              |                 |     |            |      |
|-----------------------|-------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter             | 0<br>Units  | 60462426004<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Cadmium               | ug/L        | ND                    | 1000                 | 1000                  | 1010         | 1030          | 101         | 103          | 75-125          | 2   | 20         |      |
| Calcium               | ug/L        | 111000                | 10000                | 10000                 | 116000       | 117000        | 50          | 68           | 75-125          | 2   | 20         | M1   |
| Chromium              | ug/L        | ND                    | 1000                 | 1000                  | 1030         | 1060          | 103         | 106          | 75-125          | 2   | 20         |      |
| Cobalt                | ug/L        | ND                    | 1000                 | 1000                  | 1030         | 1060          | 103         | 106          | 75-125          | 3   | 20         |      |
| Lead                  | ug/L        | ND                    | 1000                 | 1000                  | 999          | 1020          | 100         | 102          | 75-125          | 2   | 20         |      |
| Lithium               | ug/L        | 92.8                  | 1000                 | 1000                  | 1120         | 1140          | 103         | 105          | 75-125          | 2   | 20         |      |
| Molybdenum            | ug/L        | ND                    | 1000                 | 1000                  | 1070         | 1100          | 106         | 109          | 75-125          | 3   | 20         |      |
| Selenium              | ug/L        | ND                    | 1000                 | 1000                  | 1050         | 1090          | 105         | 108          | 75-125          | 3   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

QC Batch: 913342 Analysis Method: EPA 6020 QC Batch Method: EPA 3010 Analysis Description: 6020 MET

> Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

METHOD BLANK: Matrix: Water Associated Lab Samples:

60462426001, 60462426002, 60462426003, 60462426004 Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed ND 1.0 11/19/24 12:46 ug/L

Antimony Thallium ND 1.0 11/19/24 12:46 ug/L

LABORATORY CONTROL SAMPLE: 3616117

Date: 11/20/2024 02:25 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Antimony 102 102 80-120 ug/L 100 Thallium 100 100 100 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3616118 3616119 MS MSD 60462426004 Spike Spike MS MSD MS MSD % Rec Max Result Parameter Units Result Conc. Conc. Result % Rec % Rec Limits **RPD** RPD Qual Antimony ug/L ND 100 100 95.2 92.3 95 92 75-125 3 20 Thallium ND 100 100 95.6 96 75-125 2 20 ug/L 93.4 93

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3616120 3616121 MS MSD 60462435004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec **RPD RPD** Qual Limits 2 20 **Antimony** ug/L ND 100 100 95.6 93.7 95 93 75-125 Thallium ug/L ND 100 100 100 99.0 100 99 75-125 1 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

QC Batch: 912953 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

METHOD BLANK: 3614560 Matrix: Water

Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 10/17/24 16:02

LABORATORY CONTROL SAMPLE: 3614561

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 1000 100 80-120

SAMPLE DUPLICATE: 3614562

60462426004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 996 **Total Dissolved Solids** mg/L 2 976 10

SAMPLE DUPLICATE: 3614563

Date: 11/20/2024 02:25 PM

60462435004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 960 950 10 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462426

QC Batch: 913561 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

METHOD BLANK: 3616728 Matrix: Water
Associated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

ssociated Lab Samples: 60462426001, 60462426002, 60462426003, 60462426004

Blank Reporting

| Parameter | Units | Result | Limit | Analyzed       | Qualifiers |
|-----------|-------|--------|-------|----------------|------------|
| Chloride  | mg/L  | ND     | 1.0   | 10/22/24 21:56 |            |
| Fluoride  | mg/L  | ND     | 0.20  | 10/22/24 21:56 |            |
| Sulfate   | mg/L  | ND     | 1.0   | 10/22/24 21:56 |            |

LABORATORY CONTROL SAMPLE: 3616729

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Chloride  | mg/L  |                | 4.9           | 98           | 80-120          |            |
| Fluoride  | mg/L  | 2.5            | 2.4           | 97           | 80-120          |            |
| Sulfate   | mg/L  | 5              | 4.9           | 98           | 80-120          |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 3616           | 730                  |                       | 3616731      |               |             |              |                 |     |            |      |
|-----------------------|------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter             | Units      | 60462302001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Chloride              | mg/L       | 178                   | 500                  | 500                   | 576          | 575           | 80          | 79           | 80-120          | 0   | 15         | M1   |
| Fluoride              | mg/L       | 4.2                   | 2.5                  | 2.5                   | 6.7          | 6.8           | 101         | 103          | 80-120          | 0   | 15         |      |
| Sulfate               | mg/L       | 4140                  | 5000                 | 5000                  | 8790         | 8840          | 93          | 94           | 80-120          | 1   | 15         |      |

SAMPLE DUPLICATE: 3616732

Date: 11/20/2024 02:25 PM

|           |       | 60462302002 | Dup    |     | Max |            |
|-----------|-------|-------------|--------|-----|-----|------------|
| Parameter | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride  | mg/L  | 176         | 176    | 0   | 15  |            |
| Fluoride  | mg/L  | 0.71        | 0.76   | 7   | 15  |            |
| Sulfate   | mg/L  | 3210        | 3340   | 4   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462426

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

## **ANALYTE QUALIFIERS**

Date: 11/20/2024 02:25 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

PP The mass of dried residue obtained did not meet the test method requirements based on volume used.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462426

Date: 11/20/2024 02:25 PM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60462426001 | BAT-11-CCR | EPA 3010        | 913290   | EPA 6010          | 913328              |
| 60462426002 | ERB-02-CCR | EPA 3010        | 913290   | EPA 6010          | 913328              |
| 60462426003 | BAT-09-CCR | EPA 3010        | 913290   | EPA 6010          | 913328              |
| 60462426004 | BAT-12-CCR | EPA 3010        | 913290   | EPA 6010          | 913328              |
| 60462426001 | BAT-11-CCR | EPA 3010        | 913342   | EPA 6020          | 913408              |
| 60462426002 | ERB-02-CCR | EPA 3010        | 913342   | EPA 6020          | 913408              |
| 60462426003 | BAT-09-CCR | EPA 3010        | 913342   | EPA 6020          | 913408              |
| 60462426004 | BAT-12-CCR | EPA 3010        | 913342   | EPA 6020          | 913408              |
| 60462426001 | BAT-11-CCR | EPA 7470        | 914148   | EPA 7470          | 914239              |
| 60462426002 | ERB-02-CCR | EPA 7470        | 914148   | EPA 7470          | 914239              |
| 60462426003 | BAT-09-CCR | EPA 7470        | 914148   | EPA 7470          | 914239              |
| 60462426004 | BAT-12-CCR | EPA 7470        | 914148   | EPA 7470          | 914239              |
| 60462426001 | BAT-11-CCR | SM 2540C        | 912953   |                   |                     |
| 60462426002 | ERB-02-CCR | SM 2540C        | 912953   |                   |                     |
| 60462426003 | BAT-09-CCR | SM 2540C        | 912953   |                   |                     |
| 60462426004 | BAT-12-CCR | SM 2540C        | 912953   |                   |                     |
| 60462426001 | BAT-11-CCR | EPA 9056        | 913561   |                   |                     |
| 60462426002 | ERB-02-CCR | EPA 9056        | 913561   |                   |                     |
| 60462426003 | BAT-09-CCR | EPA 9056        | 913561   |                   |                     |
| 60462426004 | BAT-12-CCR | EPA 9056        | 913561   |                   |                     |

DC#\_Title: ENV-FRM-LENE-0010\_Sample C

(SCUR ESI)



Revision: 3 Effective Date: 01/12/2022 Client Name: UPS Courier: VIA 🗆 Clay PEX □ ECI 🗆 Pace □ Xroads ☐ Client ☐ Other Tracking #: 6450 182 Pace Shipping Label Used? Yes No M Custody Seal on Cooler/Box Present: Yes No □ Seals intact: Yes No □ Bubble Wrap □ Bubble Bags Foam **Packing Material:** None □ Other Type of Ice: (Wet) Thermometer Used: Blue None Date and initials of person As-read 6.4 Corr. Factor OL | Corrected OL Cooler Temperature (°C): examining contents: Temperature should be above freezing to 6°C Yes □No □N/A Chain of Custody present: □No □N/A Chain of Custody relinquished: □No □N/A Samples arrived within holding time: □N/A Short Hold Time analyses (<72hr): □N/A Rush Turn Around Time requested: □No □N/A Sufficient volume: ✓Yes □No □N/A Correct containers used: □No □N/A Pace containers used: ☑Yes ☐No □N/A Containers intact: ☐Yes ☑No □N/A Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs? □N/A Filtered volume received for dissolved tests? ✓Yes □No □N/A Sample labels match COC: Date / time / ID / analyses ☐Yes ☑No □N/A Samples contain multiple phases? Matrix: List sample IDs, volumes, lot #'s of preservative and the Containers requiring pH preservation in compliance? ✓Yes □No □N/A date/time added. (HNO<sub>3</sub>, H<sub>2</sub>\$O<sub>4</sub>, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) LOT#: X8+2 (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: ☐Yes ☐No Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve) ☐Yes ☐No ☐Yes ☐No Trip Blank present: Headspace in VOA vials ( >6mm): ☐Yes ☐No EN/A ☐Yes ☑No □N/A Samples from USDA Regulated Area: State: Additional labels attached to 5035A / TX1005 vials in the field? □N/A **Client Notification/ Resolution:** Copy COC to Client? Field Data Required? Y / N Temp Log: Record start and finish times Person Contacted: Date/Time: when unpacking cooler, if >20 min, recheck Comments/ Resolution: sample temps.

Project Manager Review:

Start:

End:

Temp:

Start:

End:

Temp:

Date:

BATU)

Pace Analytical

**K**2

TODY / Analytical Request Document CHAIN-OF-C

The Chain-of-Custody is a ... GAL DOCUMENT, All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. DRINKING WATER SCR. SAMPLE CONDITIONS OTHER MS/MSD GROUND WATER Residual Chlorine (Y/N) 2222 Щ REGULATORY AGENCY 00 RCRA TIME Requested Analysis Filtered (Y/N) Site Location STATE: NPDES DATE UST 2540C TDS 470 Total Mercury ACCEPTED BY / AFFILIATION \*\*slateM letoT 0108 5020 Total Metals\* Z 1026 CI, F, SO4 N/A Analysis Test тэчлС Same as Section A Accounts Payable BUTTLE Methanol Heather Wilson Preservatives <sub>E</sub>O<sub>S</sub>S<sub>S</sub>bN AECOM HOBN 'ace Profile # 11033\_3 42700 HCI HNO3 3 ompany Name: POS2H Pace Quote Reference: Pace Project Section C TIME Unpreserved 1700 Attention. Address: ww # OF CONTAINERS 42/01/01 SAMPLE TEMP AT COLLECTION DATE 318 0460 60209274 PRPA CCR 6 0731363 10/10/24 0930 02/1 60731303 COMPOSITE END/GRAB DATE COLLECTED  $\geq$ AFCOM RELINQUISHED BY / AFFILIATION TIME  $\geqslant$ COMPOSITE urchase Order No NEED PO# DATE Report To Vasanta Kalluri Copy To: Jamie Herman Required Project Information Challer P SAMPLE TYPE (G=GRAB C=COMP) 5 Project Number: (see valid codes to left) MATRIX CODE roject Name: Section B DRINKING WATER DW
WATER WT
WASTE WATER WW
PRODUCT P
SOIL/SOLID SL Valid Matrix Codes SL VP VP VP TS Greenwood Village, CO 80111 STANDARP jamie.herman@aecom.com ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 6200 South Quebec St 'Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TI ERB-01 - CCE BAT-09-CCK 5AT-12-CCR SAMPLE ID BAT- 11 - CCE Section D Required Client Information hone: (303) 740-2614 Required Client Information Requested Due Date/TAT: Section A отралу: B Ca Li ddress; mail To: 위 Ξ 12 # MBTI ø 00 6 m

(N/A)

Samples Intaci

Cooler (Y/N)

Received on Ice (Y/N)

J. ul dwa1

DATE Signed | 11/10/24

Olivia Halinsk

SIGNATURE OF SAMPLER:

SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:

Page 18 of 19

F-ALL-Q-020rev:08, 12-Oct-2007

1L Na Thiosulfate clear/amber glass 4oz unpreserved amber wide 250mL H2SO4 amber glass 500mL H2SO4 amber glass 500mL unpres amber glass 125mL unpres amber glass 100mL unores amber glass 1L HCl amber glass 250mL unpres amber glass 100mL unpres amber glass 500mL HNO3 amber glass 1liter unpres amber glass 1L H2SO4 amber glass **∀C32** 8oz clear soil jar 4oz clear soil jar 2oz clear soil jar **Yesn** 007 31303 NESA MO#: 60462426 **H**19∀ WGKU WGFU WG2U AG0U AG1H AG1S AG1T AG1U AG2N AG3S AG2U AG2U AG3U JGFU AG4U Bein Glass DC9B DC9M 40mL unpreserved clear vial 250mL Unpres Clear glass 40mL amber unpreserved 40mL bisulfate clear vial 40mL HCl amber voa vial 40mL H2SO4 amber vial 40mL Na Thio amber via 40mL Na Thio. clear vial 1liter H2SO4 clear glass 250mL HCL Clear glass DC9N 40mL MeOH clear vial 40mL TSP amber vial 40mL HCI clear vial 1liter unpres glass 16oz clear soil jar N69/ Client: Site DC90 D<sub>C</sub> Work Order Number

Container Codes

17

=

10

00

O

7

120mL Coliform Na Thiosulfate

Wipe/Swab Ziploc Bag Air Cassettes Terracore Kit Summa Can

Air Filter

ΑF OR

unpreserved plastic

1L H2SO4 plastic

1L NAOH plastic 1L HNO3 plastic

1L NaOH, Zn Acetate 500mL NAOH plastic

BP1Z BP2B **BP2N** BP2S BP2U

DG9Q DG9M

DG9S DG9T Dean /G9H VG9U BG1U ВСЗН

/G9T

BG1S

**ZPLC** SP51

Non-aqueous Liquid OIL

Drinking Water

3

125mL unpreserved plastic

16oz unpresserved plstic

Due Date: 11/01/24

CLIENT: RECOM CO

PM: HMW

125mL H2SO4 plastic

125mL HNO3 plastic

250mL NaOH. Zn Acetate

Wipe

Matrix

Water

250mL HNO3 plastic - field filtered

BP2Z BP3B BP3F BP3F BP3N

250mL unpreserved plastic

250mL HNO3 plastic 250mL NaOH plastic

250mL H2SO4 plastic

BP3U BP3S BP3Z BP4U

500mL unpreserved plastic

500mL H2SO4 plastic

500mL HNO3 plastic

500mL NaOH, Zn Acetate

Solid

Other

SPLC

WPDU

**BP3Z** 

BP3B

**BP35** 

**BP3F** 

**BP3N** 

**BP1N** 

BP3U

BP2U

UIAB

Medn

MCKN

neen

**∀**C2N

**∀**e¢∩

H69/

XintelV

COC Line Item

4 S 9

e

Notes

Profile/EZ#

DC#\_Title: ENV-FRM-LENE-0001 v07\_Sample Container Count Effective Date: 7/12/2024

M

Pace® Analytical Services, LLC

Qualtrax ID: 30422





November 04, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462512

## Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 11, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

Databa m. Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: AECOM, AECOM CO Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

## Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

KY WW Permit #: KY0000221

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Ohio EPA Rad Approval: #41249

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

| Lab ID      | Sample ID      | Matrix | Date Collected | Date Received  |
|-------------|----------------|--------|----------------|----------------|
| 60462508007 | BAT-11-CCR     | Water  | 10/10/24 09:30 | 10/11/24 09:05 |
| 60462508008 | ERB-02-CCR     | Water  | 10/10/24 09:40 | 10/11/24 09:05 |
| 60462508009 | BAT-09-CCR     | Water  | 10/10/24 11:20 | 10/11/24 09:05 |
| 60462508010 | BAT-12-CCR     | Water  | 10/10/24 13:45 | 10/11/24 09:05 |
| 60462508011 | BAT-12-CCR MS  | Water  | 10/10/24 13:45 | 10/11/24 09:05 |
| 60462508012 | BAT-12-CCR MSD | Water  | 10/10/24 13:45 | 10/11/24 09:05 |



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

| Lab ID      | Sample ID      | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|----------------|--------------------------|----------|----------------------|------------|
| 60462508007 | BAT-11-CCR     | EPA 903.1                | <br>LL1  | 1                    | PASI-PA    |
|             |                | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462508008 | ERB-02-CCR     | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |                | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462508009 | BAT-09-CCR     | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |                | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462508010 | BAT-12-CCR     | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |                | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |                | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462508011 | BAT-12-CCR MS  | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |                | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
| 60462508012 | BAT-12-CCR MSD | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |                | EPA 904.0                | JJS1     | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: 60731303 PRPA CCR

Pace Project No.: 60462512

Sample: BAT-11-CCR Lab ID: 60462508007 Collected: 10/10/24 09:30 Received: 10/11/24 09:05 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • The sampler's name and signature were not listed on the COC.
• MS/MSD not labeled on bottles; needed updated COC/IRWO - received 10/15/24.

|              | ,                        |                                      |       |                |            |      |
|--------------|--------------------------|--------------------------------------|-------|----------------|------------|------|
| Parameters   | Method                   | Act ± Unc (MDC) Carr Trac            | Units | Analyzed       | CAS No.    | Qual |
|              | Pace Analytica           | ll Services - Greensburg             |       | •              |            |      |
| Radium-226   | EPA 903.1                | 0.122 ± 0.653 (1.22)<br>C:NA T:93%   | pCi/L | 10/29/24 14:22 | 13982-63-3 |      |
|              | Pace Analytica           | ll Services - Greensburg             |       |                |            |      |
| Radium-228   | EPA 904.0                | 0.625 ± 0.348 (0.614)<br>C:83% T:91% | pCi/L | 10/30/24 14:18 | 15262-20-1 |      |
|              | Pace Analytica           | ll Services - Greensburg             |       |                |            |      |
| Total Radium | Total Radium Calculation | 0.747 ± 1.00 (1.83)                  | pCi/L | 10/31/24 15:39 | 7440-14-4  |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462512

| Sample: ERB-02-CCR<br>PWS: | Lab ID: 6046<br>Site ID:    | <b>2508008</b> Collected: 10/10/24 09:40 Sample Type: | Received: | 10/11/24 09:05 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | -0.551 ± 0.533 (1.21)<br>C:NA T:93%                   | pCi/L     | 10/29/24 14:49 | 9 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.397 ± 0.318 (0.628)<br>C:83% T:91%                  | pCi/L     | 10/30/24 14:18 | 3 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.397 ± 0.851 (1.84)                                  | pCi/L     | 10/31/24 15:39 | 9 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462512

| Sample: BAT-09-CCR<br>PWS: | Lab ID: 6046<br>Site ID: | <b>2508009</b> Collected: 10/10/24 11:20 Sample Type: | Received: | 10/11/24 09:05 | Matrix: Water |      |
|----------------------------|--------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                   | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                | 0.650 ± 0.410 (0.176)<br>C:NA T:86%                   | pCi/L     | 10/29/24 14:4  | 9 13982-63-3  |      |
|                            | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                | 1.22 ± 0.458 (0.674)<br>C:83% T:87%                   | pCi/L     | 10/30/24 14:18 | 8 15262-20-1  |      |
|                            | Pace Analytical          | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium Calculation | 1.87 ± 0.868 (0.850)                                  | pCi/L     | 10/31/24 15:39 | 9 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462512

| Sample: BAT-12-CCR<br>PWS: | <b>Lab ID: 6046250</b> Site ID: | O8010 Collected: 10/10/24 13:45<br>Sample Type: | Received: | 10/11/24 09:05 | Matrix: Water |      |
|----------------------------|---------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                          | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Ser             | rvices - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                       | 0.470 ± 0.297 (0.127)<br>C:NA T:88%             | pCi/L     | 10/29/24 14:49 | 9 13982-63-3  |      |
|                            | Pace Analytical Ser             | rvices - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                       | 0.000364 ± 0.266 (0.630)<br>C:84% T:87%         | pCi/L     | 10/30/24 14:18 | 8 15262-20-1  |      |
|                            | Pace Analytical Ser             | rvices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation     | 0.470 ± 0.563 (0.757)                           | pCi/L     | 10/31/24 15:39 | 9 7440-14-4   |      |



Radium-228

## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

Lab ID: 60462508011 Sample: BAT-12-CCR MS Collected: 10/10/24 13:45 Received: 10/11/24 09:05 Matrix: Water

PWS: Site ID: Sample Type:

EPA 904.0

Method Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Analyzed Qual Pace Analytical Services - Greensburg EPA 903.1 107.31 %REC ± NA (NA) Radium-226 pCi/L 10/29/24 14:49 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg

pCi/L

10/30/24 14:18 15262-20-1

64.04 %REC ± NA (NA)

C:NA T:NA



Project: 60731303 PRPA CCR

Pace Project No.: 60462512

Sample: BAT-12-CCR MSD Lab ID: 60462508012 Collected: 10/10/24 13:45 Received: 10/11/24 09:05 Matrix: Water

PWS: Site ID: Sample Type:

Pace Analytical Services - Greensburg

Radium-228 EPA 904.0 **79.68 %REC 21.76RPD ±** pCi/L 10/30/24 14:18 15262-20-1

NA (NA) C:NA T:NA



## **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

QC Batch: 703258 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60462508007, 60462508008, 60462508009, 60462508010, 60462508011, 60462508012

METHOD BLANK: 3424648 Matrix: Water

Associated Lab Samples: 60462508007, 60462508008, 60462508009, 60462508010, 60462508011, 60462508012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.655 (1.06) C:NA T:33%
 pCi/L
 10/29/24 14:26

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

QC Batch: 703259 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60462508007, 60462508008, 60462508009, 60462508010, 60462508011, 60462508012

METHOD BLANK: 3424650 Matrix: Water

Associated Lab Samples: 60462508007, 60462508008, 60462508009, 60462508010, 60462508011, 60462508012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.564 ± 0.375 (0.711) C:82% T:87%
 pCi/L
 10/30/24 14:17

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 11/04/2024 12:21 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462512

Date: 11/04/2024 12:21 PM

| Lab ID      | Sample ID      | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|----------------|--------------------------|----------|-------------------|---------------------|
| 60462508007 | BAT-11-CCR     | EPA 903.1                | 703258   |                   |                     |
| 60462508008 | ERB-02-CCR     | EPA 903.1                | 703258   |                   |                     |
| 60462508009 | BAT-09-CCR     | EPA 903.1                | 703258   |                   |                     |
| 60462508010 | BAT-12-CCR     | EPA 903.1                | 703258   |                   |                     |
| 60462508011 | BAT-12-CCR MS  | EPA 903.1                | 703258   |                   |                     |
| 60462508012 | BAT-12-CCR MSD | EPA 903.1                | 703258   |                   |                     |
| 60462508007 | BAT-11-CCR     | EPA 904.0                | 703259   |                   |                     |
| 60462508008 | ERB-02-CCR     | EPA 904.0                | 703259   |                   |                     |
| 60462508009 | BAT-09-CCR     | EPA 904.0                | 703259   |                   |                     |
| 60462508010 | BAT-12-CCR     | EPA 904.0                | 703259   |                   |                     |
| 60462508011 | BAT-12-CCR MS  | EPA 904.0                | 703259   |                   |                     |
| 60462508012 | BAT-12-CCR MSD | EPA 904.0                | 703259   |                   |                     |
| 60462508007 | BAT-11-CCR     | Total Radium Calculation | 706618   |                   |                     |
| 60462508008 | ERB-02-CCR     | Total Radium Calculation | 706618   |                   |                     |
| 60462508009 | BAT-09-CCR     | Total Radium Calculation | 706618   |                   |                     |
| 60462508010 | BAT-12-CCR     | Total Radium Calculation | 706618   |                   |                     |

LUK DIII III

Pace Analytical

CHAIN-OF-CUS I UDY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. DRINKING WATER OTHER ō NS/M5D GROUND WATER Page: Residual Chlorine (Y/N) ZZZ REGULATORY AGENCY 8 RCRA Requested Analysis Filtered (Y/N) Site Location STATE L NPDES □ UST Sum Radium-226 & 228 ACCEPTED BY / AFFILIATION otal Radium-228 Ż Total Radium-226 ↓Analysis Test N/A Same as Section A Other Pace Cuote 73141
Reference:
Pace Project Heather Wilson Manager:
Pace Profile #: 11033, 8 Accounts Payable Methanol Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Company Name: AECOM HOEN HCI HNO3 NN H<sup>2</sup>SO Section C Address: Attention: Unpreserved TIME # OF CONTAINERS 9 SAMPLE TEMP AT COLLECTION 130 DATE TIME 040 0690 Helill 01 CONTROL PRPA GORNIE COR COLLECTED DATE Project Number: 607084768 00731363 RELINQUISHED BY / AFFILIATION TIME START Jurchase Order No.: 1599461 DATE Report To: Vasanta Kalluri Sopy To: Jamie Herman Section B Required Project Information (G=GRAB C=COMP) 6 SAMPLE TYPE roject Name; (see valid codes to left) **BUOD XINTAM** Valid Matrix Codes MATRIX CODE DRIHKINS WATER IN WATER WASTE WATER WASTE WATER WASTE SOULSOLD SOULSOLD Greenwood Village, CO 80111 iamie, herman@aecom.com ADDITIONAL COMMENTS 15 Day TAT 6200 South Quebec St (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE BAT-12-CCR 3AT-09-CCR SAMPLE ID BAT-11-CCR RB-62-CCR Section D Required Clent Information (303) 740-2614 Section A Required Client Information: Requested Due Date/TAT: AECOM Company: Email To: Address: 6 80 ITEM # 7 ۲ 3 4 2 9 10 7

DATE Signed (MM/DD/YY): MIIDSK NIVIA PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

SAMPLER NAME AND SIGNATURE

F-ALL-Q-020rev.08, 12-Oct-2007

(YW) Samples Intact

Cooler (Y/N)

Custody Seale

(NIY) BOI

Received on

Temp in °C

SAMPLE CONDITIONS

905 TIME

10/11/24

hoh

1760

NZ/01/01

AECOM

DATE

2 Updated 1840/1000 recented 10113/107 vm coment

| 2                               | Internal Transfer Chain of Custody                                                                        | ir Chain        | Ofo      | Listody                                                                                |                                                                                                                     |                |      |                      |                      |           |           |            |            |                    |                       | -                 | $\mathcal{C}$ |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------|------|----------------------|----------------------|-----------|-----------|------------|------------|--------------------|-----------------------|-------------------|---------------|
|                                 |                                                                                                           | =               | ) [<br>] |                                                                                        | :                                                                                                                   |                |      | i                    |                      |           |           |            |            |                    |                       | /                 | カカでの          |
|                                 |                                                                                                           |                 |          | Rush Multiplier                                                                        | tiplierX                                                                                                            |                |      | Stat                 | State Of Origin: CO  | igin:     | င္ပု      |            | [          |                    |                       | _                 | なってなっ         |
|                                 |                                                                                                           |                 | 22       |                                                                                        | Samples Pre-Logged into eCOC                                                                                        | nto eCOC       |      | Cert                 | Cert. Needed:        |           | ×         | S          | ×          |                    |                       | _                 |               |
| Š                               | Workorder: 60462512                                                                                       | Workorder Name: | r Name:  |                                                                                        | 3 PRPACCE                                                                                                           | ~              |      | OWI                  | Owner Received Date: | eived     | Date      |            | 10/11/2024 |                    | Results Requested By: | sted By:          | 11/1/2024     |
| Rep                             | Report To                                                                                                 |                 |          | Subcontract To                                                                         | To                                                                                                                  |                |      |                      |                      |           |           |            | Request    | Requested Analysis | sis                   |                   |               |
| Hei<br>Par<br>960<br>Ler<br>Phr | Heather Wilson<br>Pace Analytical Kansas<br>9608 Loiret Blvd.<br>Lenexa, KS 66219<br>Phone 1(913)563-1407 |                 |          | Pace Analytical<br>1638 Roseytow<br>Suites 2,3, & 4<br>Greensburg, PA<br>Phone (724)85 | Pace Analytical Pittsburgh<br>1638 Roseytown Road<br>Suites 2,3, & 4<br>Greensburg, PA 15601<br>Phone (724)850-5600 | urgh<br>d<br>1 |      |                      |                      | 3SS-muibe | 8SS-muibe | muibe.A mi |            |                    |                       |                   |               |
|                                 |                                                                                                           |                 |          |                                                                                        |                                                                                                                     |                | Pre  | Preserved Containers | intainers            | otal Ra   | s A leto  | otal Su    |            |                    |                       |                   |               |
| Item                            | Sample ID                                                                                                 | Samp            | e        | ae<br>L                                                                                | Lab ID                                                                                                              | Matrix         | EONH |                      |                      |           | L         | L          |            |                    |                       |                   | LAB USE ONLY  |
| -                               | BAT-11-CCR                                                                                                | PS              | 10/10    | 10/10/2024 09:30 60462508007                                                           | 60462508007                                                                                                         | Water          | 2    |                      |                      | ×         | ×         | ×          |            |                    |                       |                   | 700           |
| 7                               | ERB-02-CCR                                                                                                | PS              | 10/10    | 10/10/2024 09:40                                                                       | 60462508008                                                                                                         | Water          | 2    |                      |                      | ×         | ×         | ×          |            |                    |                       |                   | 208           |
| က                               | BAT-09-CCR                                                                                                | PS              | 10/10    | 10/10/2024 11:20 60462508009                                                           | 60462508009                                                                                                         | Water          | 2    |                      |                      | ×         | ×         | ×          |            |                    |                       |                   | 6 00          |
| 4                               | BAT-12-CCR                                                                                                | PS              | 10/10    | 10/10/2024 13:45                                                                       | 60462508010                                                                                                         | Water          | 2    |                      |                      | ×         | ×         | ×          |            |                    |                       |                   | 010           |
| rC                              | BAT-12-CCR MS                                                                                             | PS              | 10/10    | 10/10/2024 13:45 60462508011                                                           | 60462508011                                                                                                         | Water          | 2    |                      |                      | ×         | ×         | ×          |            |                    |                       |                   | 110           |
| 9                               | BAT-12-CCR MSD                                                                                            | PS              | 10/10    | 10/10/2024 13:45 60462508012                                                           | 60462508012                                                                                                         | Water          | 2    |                      |                      | ×         | ×         | ×          |            |                    |                       |                   | 210           |
|                                 |                                                                                                           |                 |          |                                                                                        |                                                                                                                     |                |      |                      |                      |           |           |            |            |                    | Comments              |                   |               |
| Tra                             | Transfers Released By                                                                                     |                 |          | Date/Time                                                                              | Received By                                                                                                         | >              |      |                      | Date/Time            | ime       |           |            |            |                    |                       |                   |               |
| -                               |                                                                                                           |                 |          |                                                                                        | Inde                                                                                                                | 2 Mes          | 13   |                      | 42/11/01             | h2/       | 9:        | 9:05       |            |                    |                       |                   |               |
| 7                               |                                                                                                           |                 |          |                                                                                        |                                                                                                                     |                |      |                      |                      |           |           |            |            |                    |                       |                   |               |
| က                               |                                                                                                           |                 |          |                                                                                        |                                                                                                                     |                |      |                      |                      |           | $\vdash$  |            |            |                    |                       |                   |               |
| Č                               | Cooler Temperature on Receipt                                                                             | Paraint /       | ړ        | Tall C                                                                                 | Custody Soal                                                                                                        | 7              |      | Po                   | Received on Ice      | 201 00    | >         | ) r        | (Z         | L                  | Samples               | Samples Intact (V | Z.            |

This chain of custody is considered complete as is since this information is available in the owner laboratory.



FMT-ALL-C-002rev.00 24March2009

<sup>\*\*\*</sup>In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

|                      | DC# Title: ENV-FRM                                     | 1-GBI           | JR-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88       | v07_Sample            | Condition Upon Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|--------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Greensburg                                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | 00706211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                    | Gleensburg                                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | WO#: 30726214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pace.                | Effective Date: 01/04/202                              | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | Due Date: 11/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client Name:         | AECOM                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | CLIENT: PACE_60_LEKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | x UPS USPS Client                                      | ПСо             | mmerc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ial [    | Pace Othe             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Courier: Fed E       | 14.22 LUSA 773                                         | 0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | Examined By: QS 10114104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tracking Number      | 1: 4033 6450 773                                       | _               | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro |          |                       | TYES   No Labeled By: P5 10/15/124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Custody Seal on      | - I In Dunnanti                                        | 100 11          | ۷o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sea      | ils Intact:           | Temped By: PS 10115124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thermometer Us       | ed: Ty                                                 | pe of I         | ce: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vet      | Blue (Notie)          | °C Final Temp:°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cooler Temperat      | ed: Ty ure: Observed Temp                              |                 | _•C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cor      | rection Factor:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temp should be above | e freezing to 6°C                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                    |                                                        |                 | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LALI     | pH paper L<br>1001 04 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comments:            |                                                        | Yes             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/       | 10010-1               | Lupdated IRWOLCOC 10/15/24 Via Pri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody     | Present                                                | /               | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        | 2.                    | L OPONICAL TITLESTONE TO THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE C |
| Chain of Custody     | Filled Out:                                            | _               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | 5 1014124             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -Were client of      | orrections present on GOL                              | -               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-       | 3.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain of Custody     | Relinquished                                           | /               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | 4.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler Name & S     | Signature on COC:                                      | /               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | +                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Labels mat    | tch COC:                                               |                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | me Imen               | ) NOT labeled on bottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -Includes date       | /time/ID                                               |                 | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | -14011406             | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Matrix:              |                                                        |                 | 00.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Samples Arrived w    | ithin Hold Time:                                       |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 7.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Short Hold Time A    | nalysis (<72hr                                         |                 | L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| remaining):          |                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 8.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rush Turn Around     | Time Requested:                                        |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | 9.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sufficient Volume:   |                                                        | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 10.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Correct Containers   | Used:                                                  | 1               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -Pace Containe       | rs Used                                                | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 11.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Containers Intact:   | 1150                                                   | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /        | 12.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Orthophosphate fie   | id filtered:                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /        | 13.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hex Cr Aqueous san   | nples field littered.                                  | $\neg \uparrow$ | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | 14:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Organic Samples Chi  | ecked for dichlorination<br>eived for dissolved tests: |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /        | 15:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filtered volume rece | ed for preservation:                                   | /               | Marine Commence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 16.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All containers check | coliform TOC 0&G.                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | PHCD                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| exceptions: VOA      | , coliform, TOC, O&G,<br>n, non-aqueous matrix         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1710                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phenolics, Rado      | n, non-aductors meaning                                | 1               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Initial when          | Date/Time of Preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| All containers meet  | method preservation                                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv$ | Lot# of added         | Picsersans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| requirements:        |                                                        |                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Preservative          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eacht /n: Headspace  | in VOA Vials (> 6mm)                                   |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 17.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 624.1: Headspace in  | VOA Vials (0mm)                                        |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | 18.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Radon: Headspace in  |                                                        | $\dashv$        | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 19.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 1                                                      | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | Trip blank            | custody seal present? YES or NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trip Blank Present:  | d a DE mrom/hr                                         | <del>,  </del>  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dashv$ | Initial when PS       | Date: /// 24 Survey Meler SN: 25014380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rad Samples Screene  | 1 1 1                                                  | -               | 0, 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | completed 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comments: 🚁 N        | veded updated CO                                       | C/1             | awu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office.

PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Qualtrax ID: 55680

Page 1 of 1

CUR BAT PA

Face Analytical

CHAIN-OF-CUS I ODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

DRINKING WATER OTHER of OTHER GROUND WATER Page: 8 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) Site Location NPDES STATE: TSU T Same as Section A Pace Guote 73141
Reference:
Pace Project Heather Wilson Manager:
Pace Profice #: 11033, 8 Accounts Payable Company Name: AECOM Invoice Information; Attention: Acco Section C Address. Project Name: 621054118 PRPA 6406148 CCZ Project Number: 601054148 60131303 urchase Order No.: 1599461 Report To: Vasanta Kalluri Copy To: Jamie Herman Section B Roquired Project Information: Greenwood Village, CO 80111 jamie.herman@aecom.com 15 Day TAT 6200 South Quebec St Phone: (303) 740-2614 Required Client Information: Requested Due Date/TAT: AECOM Section A Email To: 4ddress:

| 0             | DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL. | Sample IDs MUST BE UNIQUE TISSUE TS                                | BAT-11-CCR | ERB-02-CCR | 8AT-09-CCR | BAT-12-CCR | ADDITIONAL COMMENTS           | <i>A</i>  | JO#:30726214    | PM: MAR Due Date: 11/01/24 CLIENT: PACE_60_LEKS |
|---------------|----------------------------------------------------------|--------------------------------------------------------------------|------------|------------|------------|------------|-------------------------------|-----------|-----------------|-------------------------------------------------|
| _             | ee valid codes                                           |                                                                    | MTG        |            |            |            | RELINGUI                      | m 2400    |                 | 01/24                                           |
|               | COMPOSITE                                                | DATE                                                               |            | _          |            | €          | RELINQUISHED BY / AFFILIATION |           |                 |                                                 |
| COLLECTE      | SITE                                                     | TIME                                                               | 1          | _          |            | <b>→</b>   | <b>VFFILIATION</b>            | AECOM     | SAMPLER NAM     | g   20                                          |
| CIED          | COMPOSITE                                                | DATE                                                               | 10)11/24 0 | 9          | -          | 1          | 100                           |           | NAME AN         | PRINT Name of SAMPLER:<br>SIGNATURE of SAMPLER: |
|               |                                                          | D TA 9MPLE TEMP AT                                                 | 0430       | 0460       | 021        | 346        | DATE                          | 10 110 24 | E AND SIGNATURE | lame of SAMPLER:<br>URE of SAMPLER:             |
|               | S                                                        | # OF CONTAINERS                                                    | 2          | 2          | 7          | 9          | TIME                          | 994       |                 | 100                                             |
| Pre           |                                                          | HMO <sup>3</sup><br>H <sup>5</sup> 2O <sup>4</sup>                 | 1          | 2          | 7          | 0          | iii                           | 0         | +               | ≥0%                                             |
| Preservatives |                                                          | HCI<br>MgOH                                                        |            |            |            |            |                               | 1/2       |                 | <u> </u>                                        |
| sə            |                                                          | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Methanol<br>Other | F          |            |            |            | ACCEPTE                       | 7         |                 | Niki                                            |
| 人             |                                                          | JesT aisylsis Test<br>Total Radium-22                              | _          | _<br> ×    | īΧ         | ×          | D BY / AF                     | N         |                 |                                                 |
|               | 8                                                        | SS-muibsЯ lstoT<br>SS-muibsЯ mu8                                   | ×          | X          | X          | XX         | ACCEPTED BY / AFFILIATION     | 0         |                 | DATE Signed (MM/DD/YY);                         |
|               |                                                          |                                                                    |            | E          |            |            | 70                            | 101       |                 | KZ) 01/01                                       |
|               |                                                          |                                                                    |            |            |            |            | DATE                          | 5 4211101 |                 | N2                                              |
|               |                                                          |                                                                    |            |            |            |            | TIME                          | 905       |                 |                                                 |
|               | (N/N)                                                    | Residual Chlorine                                                  | 2          | z          | Z          | 2          |                               |           | +               | ni qmaT                                         |
|               |                                                          | Pace Pro                                                           |            |            |            | NS/MSE     | SAMPLEC                       | >         | (1              | Received Ice (Y/N                               |
|               |                                                          | Pace Project No./ Lab I.D.                                         |            |            |            | 2          | SAMPLE CONDITIONS             | 2-        | (N/             | Cooler (Y                                       |

## Pace Analytical

## Quality Control Sample Performance Assessment

LL1 10/17/2024 Ra-226 Test

81838 DW Analyst: Date: Batch ID: Matrix:

60462508010 60462508011

60462508004 60462508005 60462508006

Sample I.D. Sample MS I.D.

Sample MSD I.D.

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): MS Target Conc.(pCi/l., g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):

Spike Volume Used in MSD (mL):

10/10/2024

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS/MSD

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2 10/10/2024 60462508012

23-063

23-063 32.294 0.20 0.20 0.652 9.910

32.294 0.20 0.20 0.656 9.849 0.463 0.463 0.463 0.292 11.039 11.039 11.039 11.303 0.914 -1.393 0.914 0.014 0.0292 0.0292 0.0292 0.0304 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.03

| ank Assessment                      |         |  |
|-------------------------------------|---------|--|
| MB Sample ID                        | 3424648 |  |
| MB concentration:                   | 0.000   |  |
| M/B Counting Uncertainty:           | 0.655   |  |
| MB MDC:                             | 1.062   |  |
| MB Numerical Performance Indicator. | 00.00   |  |
| MB Status vs Numerical Indicator.   | ¥N<br>X |  |
| MR Status vs MDC                    | Dass    |  |

Method Bla

Laboratory (

| Control Sample Assessment                    | CSD (Y or N)? |
|----------------------------------------------|---------------|
|                                              | LCS81838      |
| Count Date:                                  | 10/29/2024    |
| Spike I.D.:                                  | 23-063        |
| Spike Concentration (pCi/mL):                | 32.294        |
| Volume Used (mL):                            | 0.10          |
| Aliquot Volume (L, g, F):                    | 0.654         |
| Target Conc. (pCi/L, g, F):                  | 4.936         |
| Uncertainty (Calculated):                    | 0.232         |
| Result (pCi/L, g, F):                        | 5.076         |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F): | 1.014         |
| Numerical Performance Indicator:             | 0.26          |
| Percent Recovery:                            | 102.83%       |
| Status vs Numerical Indicator:               | N/A           |
| Status vs Recovery:                          | Pass          |
| Upper % Recovery Limits:                     | 133%          |
| Lower % Recovery Limits:                     | 73%           |

|                  | - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                           | 20.00       | 2           |
|------------------|-------------------------------------------------------------------|-------------|-------------|
|                  | MSD Aliquot (L, g, F):                                            | 0.654       | 0.657       |
|                  | MSD Target Conc. (pCi/L, g, F):                                   | 9.879       | 9.838       |
|                  | MS Spike Uncertainty (calculated):                                | 0.466       | 0.463       |
| z                | MSD Spike Uncertainty (calculated):                               | 0.464       | 0.462       |
| LCSD81838        | Sample Result.                                                    | -0.132      | 0.470       |
|                  | Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.464       | 0.292       |
|                  | Sample Matrix Spike Result:                                       | 9.564       | 11.039      |
|                  | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1.321       | 1.443       |
|                  | Sample Matrix Spike Duplicate Result:                             | 10.782      | 9.300       |
|                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.488       | 1.303       |
|                  | MS Numerical Performance Indicator.                               | -0.285      | 0.914       |
|                  | MSD Numerical Performance Indicator.                              | 1.247       | -1.399      |
|                  | MS Percent Recovery:                                              | 97.83%      | 107.31%     |
|                  | MSD Percent Recovery:                                             | 110.48%     | 89.75%      |
|                  | MS Status vs Numerical Indicator:                                 | N/A         | N/A         |
|                  | MSD Status vs Numerical Indicator:                                | N/A         | N/A         |
|                  | MS Status vs Recovery:                                            | Pass        | Pass        |
|                  | MSD Status vs Recovery:                                           | Pass        | Pass        |
|                  | MS/MSD Upper % Recovery Limits:                                   | 136%        | 136%        |
|                  | MS/MSD Lower % Recovery Limits:                                   | 71%         | 71%         |
|                  |                                                                   |             |             |
|                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment             |             |             |
| Enter Duplicate  | Sample I.D.                                                       | 60462508004 | 60462508010 |
| sample IDs if    | Sample MS I.D.                                                    | 60462508005 | 60462508011 |
| other than       | Sample MSD I.D.                                                   | 60462508006 | 60462508012 |
| LCS/LCSD in      | Sample Matrix Spike Result:                                       | 9.564       | 11.039      |
| the space below. | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1.321       | 1.443       |
|                  | Sample Matrix Spike Duplicate Result:                             | 10.782      | 9.300       |
|                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.488       | 1.303       |
|                  | Duplicate Numerical Performance Indicator:                        | -1.200      | 1.754       |
|                  | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:          | 12.14%      | 17.82%      |
|                  | MS/ MSD Duplicate Status vs Numerical Indicator.                  | N/A         | N/A         |
|                  | MS/ MSD Duplicate Status vs RPD:                                  | Pass        | Pass        |
|                  | % RPD Limit                                                       | 32%         | 32%         |

Sample I.D.

Duplicate Sample I.D.
Sample Result (pCiVL. g. F):
Sample Result Counting Uncertainty (pCiVL. g. F):
Sample Duplicate Result (pCiVL. g. F):
Sample Duplicate Result (pCiVL. g. F):
Are sample and/or duplicate results below R.I.

Duplicate Sample Assessment

See Below ##

Duplicate RPD:

Duplicate Numerical Performance Indicator

|                                                                                | licate results are below the RL.                                                                                   |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit; | ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL. |

Comments:

LU 10 31.24

REH 10/30/24

Arizona DHES requires qualification for any AZ DW samples reported where the QC does not meet the recommended limits of the Manual for the Certification of Labs Analyzing Drinking Waters, 5th Edition, section 7.7 of Chapter VI.

Page 19 of 20

# **Quality Control Sample Performance Assessment**

Ra-228

Test:

Pace Analytical"

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2 10/10/2024

MS/MSD 1 10/10/2024

|                                        |                         | 9           | _              | 9               |                                |                                                      |                               |                                |                       |                                     | _                                 | _                               |                              |
|----------------------------------------|-------------------------|-------------|----------------|-----------------|--------------------------------|------------------------------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------------------|-----------------------------------|---------------------------------|------------------------------|
| Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D. | Sample MS I.D. | Sample MSD I.D. | Spike I.D.:                    | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F):       | MSD Aliquot (L, g, F):            | MSD Target Conc. (pCi/L, g, F): | Mental Colors Andrews Colors |
|                                        |                         |             |                |                 |                                |                                                      |                               |                                |                       |                                     |                                   |                                 |                              |
|                                        |                         |             |                |                 |                                |                                                      |                               |                                |                       |                                     |                                   |                                 |                              |
| JJS1                                   | 10/24/2024              | 81839       | W              |                 |                                | 3424650                                              | 0.564                         | 0.375                          | 0.711                 | 2.95                                | Warning                           | Pass                            |                              |
| Analyst:                               | Date:                   | Worklist:   | Matrix:        |                 |                                | MB Sample ID                                         | MB concentration:             | M/B 2 Sigma CSU:               | MB MDC:               | MB Numerical Performance Indicator: | MB Status vs Numerical Indicator: | MB Status vs. MDC:              |                              |
| -                                      |                         |             |                |                 | <b>Method Blank Assessment</b> |                                                      |                               |                                |                       |                                     |                                   |                                 |                              |

| 6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Spike Volume Used in MS (mL): Spike Volume Used in MS (mL): Spike Volume Used in MS (mL): Spike Volume Used in MS (mL): MS Target Conc. (pCi/L. g, F): MSD Target Conc. (pCi/L. g, F): MSD Target Conc. (pCi/L. g, F): MSD Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Sample Result 2 Sigma CSU (pCi/L. g, F): Sample Matrix Spike Result Sample Matrix Spike Result MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Numerical Performance Indicator: MSD Status vs Numerical Indicator: MS Status vs Numerical Indicator: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Recovery: MSD Status vs Rec |
| MS/MSD Decay Corrected Spike Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge Volge V |
| N<br>LCSD81839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

LCS81839 10/30/2024 23-043 34-763 0.10 0.821 4.233 0.207 2.588 0.662 4.65 61.13%

Aliquot Volume (L, g, F): Farget Conc. (pCi/L, g, F):

Uncertainty (Calculated):

Volume Used (mL):

LCS/LCSD 2 Sigma CSU (pCi/L, g, F).

Numerical Performance Indicator:

A/N

Percent Recovery: Status vs Numerical Indicator:

Upper % Recovery Limits: Lower % Recovery Limits:

Status vs Recovery

LCSD (Y or N)?

Laboratory Control Sample Assessment

Count Date: Spike I.D.:

Decay Corrected Spike Concentration (pCi/mL):

| Matrix Spike/Matr           |                                                                                                                                                      | Matrix S                                      | Based on the                                              | Σ                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|
|                             | Enter Duplicate<br>sample IDs if<br>other than<br>LCS/LCSD in<br>the space below.                                                                    |                                               |                                                           |                                                                                |
|                             |                                                                                                                                                      | See Below ##                                  |                                                           |                                                                                |
| Duplicate Sample Assessment | Sample I.D.:  Duplicate Sample I.D.:  Sample Result (OCIVL, g, F):  Sample Result 2 Sigma CSU (pCIVL, g, F):  Sample Duplicate Result (pCIVL, g, F): | Are sample and/or duplicate results below RL? | Duplicate Numerical Performance Indicator: Duplicate RPD: | Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit: |

|         | Matrix Spike/Matrix Spike Duplicate Sample Assessment    |             |             |
|---------|----------------------------------------------------------|-------------|-------------|
| ate     | Sample 1.D.                                              | 60462508004 | 60462508010 |
| <u></u> | Sample MS 1.D.                                           | 60462508005 | 60462508011 |
| _       | Sample MSD I.D.                                          | 60462508006 | 60462508012 |
| .⊆      | Sample Matrix Spike Result:                              | 7.736       | 5.588       |
| low.    | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.574       | 1.210       |
| Ī       | Sample Matrix Spike Duplicate Result:                    | 6.838       | 6.896       |
|         | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 1.410       | 1.450       |
| Г       | Duplicate Numerical Performance Indicator:               | 0.833       | -1.357      |
|         | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | 14.30%      | 21.76%      |
|         | MS/ MSD Duplicate Status vs Numerical Indicator:         | Pass        | Pass        |
|         | MS/ MSD Duplicate Status vs RPD:                         | Pass        | Pass        |
|         | % RPD Limit:                                             | 36%         | 36%         |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

18-15-01

1 of 1

Ra-228 (ENV-FRM-GBUR-0295 03).xls





November 25, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson heather.wilson@pacelabs.com

Databa m. Wilson

1(913)563-1407 Project Manager

Enclosures

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM







## **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

## **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



## **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |  |
|-------------|------------|--------|----------------|----------------|--|
| 60462558001 | BAT-05-CCR | Water  | 10/14/24 09:35 | 10/15/24 09:10 |  |
| 60462558002 | BAT-06-CCR | Water  | 10/14/24 11:45 | 10/15/24 09:10 |  |
| 60462558003 | BAT-01-CCR | Water  | 10/14/24 14:15 | 10/15/24 09:10 |  |



## **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60462558001 | BAT-05-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462558002 | BAT-06-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462558003 | BAT-01-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JGP      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

| Sample: BAT-05-CCR           | Lab ID: 6046    | 2558001    | Collected: 10/14  | 24 09:35 | Received: 10   | /15/24 09:10   | Matrix: Water |     |
|------------------------------|-----------------|------------|-------------------|----------|----------------|----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 10 Preparation Me | thod: EP | A 3010         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City       |          |                |                |               |     |
| Arsenic                      | ND              | ug/L       | 10.0              | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-38-2     |     |
| Barium                       | 16.6            | ug/L       | 5.0               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 1.0               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-41-7     |     |
| Boron                        | 1170            | ug/L       | 100               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-42-8     |     |
| Cadmium                      | ND              | ug/L       | 5.0               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-43-9     |     |
| Calcium                      | 453000          | ug/L       | 200               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-70-2     |     |
| Chromium                     | ND              | ug/L       | 5.0               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-47-3     |     |
| Cobalt                       | 6.2             | ug/L       | 5.0               | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7440-48-4     |     |
| Lead                         | ND              | ug/L       | 10.0              | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7439-92-1     |     |
| _ithium                      | 231             | ug/L       | 10.0              | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7439-93-2     |     |
| Molybdenum                   | ND              | ug/L       | 20.0              | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7439-98-7     |     |
| Selenium                     | ND              | ug/L       | 15.0              | 1        | 10/21/24 13:42 | 11/02/24 01:56 | 7782-49-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Me | thod: EP | A 3010         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City       |          |                |                |               |     |
| Antimony                     | ND              | ug/L       | 1.0               | 1        | 10/30/24 09:18 | 11/19/24 15:48 | 3 7440-36-0   |     |
| Thallium                     | ND              | ug/L       | 1.0               | 1        | 10/30/24 09:18 |                |               |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Me | thod: EP | A 7470         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City       |          |                |                |               |     |
| Mercury                      | ND              | ug/L       | 0.20              | 1        | 10/31/24 09:28 | 10/31/24 14:06 | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 10C               |          |                |                |               |     |
|                              | Pace Analytical |            |                   |          |                |                |               |     |
| Total Dissolved Solids       | 4350            | mg/L       | 125               | 1        |                | 10/17/24 15:31 | I             |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 56                |          |                |                |               |     |
|                              | Pace Analytical |            |                   |          |                |                |               |     |
| Chloride                     | 53.2            | mg/L       | 10.0              | 10       |                | 10/23/24 17:08 | 3 16887-00-6  |     |
| Fluoride                     | 1.4             | mg/L       | 0.20              | 1        |                | 10/23/24 16:56 |               |     |
|                              | 2370            | mg/L       |                   |          |                | 10/23/24 17:2  |               |     |



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

| Sample: BAT-06-CCR           | Lab ID: 6046    | 2558002    | Collected: 10/14/  | 24 11:45 | Received: 10   | /15/24 09:10   | Matrix: Water |     |
|------------------------------|-----------------|------------|--------------------|----------|----------------|----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 10 Preparation Met | hod: EP  | A 3010         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City        |          |                |                |               |     |
| Arsenic                      | ND              | ug/L       | 10.0               | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-38-2   |     |
| Barium                       | 22.8            | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-39-3   |     |
| Beryllium                    | ND              | ug/L       | 1.0                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-41-7   |     |
| Boron                        | 1810            | ug/L       | 100                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-42-8   |     |
| Cadmium                      | ND              | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 7440-43-9     |     |
| Calcium                      | 106000          | ug/L       | 200                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-70-2   |     |
| Chromium                     | ND              | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-47-3   |     |
| Cobalt                       | ND              | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 3 7440-48-4   |     |
| ₋ead                         | ND              | ug/L       | 10.0               | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 7439-92-1     |     |
| _ithium                      | 173             | ug/L       | 10.0               | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 7439-93-2     |     |
| Molybdenum                   | ND              | ug/L       | 20.0               | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 7439-98-7     |     |
| Selenium                     | ND              | ug/L       | 15.0               | 1        | 10/21/24 13:42 | 11/02/24 01:58 | 7782-49-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Met | hod: EP  | A 3010         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City        |          |                |                |               |     |
| Antimony                     | ND              | ug/L       | 1.0                | 1        | 10/22/24 15:06 | 11/12/24 16:57 | 7440-36-0     |     |
| Гhallium                     | ND              | ug/L       | 1.0                | 1        | 10/22/24 15:06 |                |               |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Met | hod: EP  | A 7470         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City        |          |                |                |               |     |
| Mercury                      | ND              | ug/L       | 0.20               | 1        | 11/01/24 10:47 | 11/01/24 13:43 | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 10C                |          |                |                |               |     |
|                              | Pace Analytical |            |                    |          |                |                |               |     |
| Total Dissolved Solids       | 2480            | mg/L       | 100                | 1        |                | 10/17/24 15:32 | 2             |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 56                 |          |                |                |               |     |
|                              | Pace Analytical |            |                    |          |                |                |               |     |
| Chloride                     | 11.7            | mg/L       | 1.0                | 1        |                | 10/23/24 17:34 | 1 16887-00-6  |     |
| Fluoride                     | 1.4             | mg/L       | 0.20               | 1        |                | 10/23/24 17:34 |               |     |
| Sulfate                      | 1540            | mg/L       | 200                | -        |                |                |               |     |



## **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

| Sample: BAT-01-CCR           | Lab ID: 6046    | 2558003    | Collected: 10/14/2 | 24 14:15 | Received: 10   | /15/24 09:10 I | Matrix: Water |     |
|------------------------------|-----------------|------------|--------------------|----------|----------------|----------------|---------------|-----|
| Parameters                   | Results         | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010 MET ICP                 | Analytical Meth | od: EPA 60 | 10 Preparation Met | hod: EP/ | A 3010         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City        |          |                |                |               |     |
| Arsenic                      | ND              | ug/L       | 10.0               | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-38-2     |     |
| Barium                       | 30.8            | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-39-3     |     |
| Beryllium                    | ND              | ug/L       | 1.0                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-41-7     |     |
| Boron                        | 1600            | ug/L       | 100                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-42-8     |     |
| Cadmium                      | ND              | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-43-9     |     |
| Calcium                      | 104000          | ug/L       | 200                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-70-2     |     |
| Chromium                     | ND              | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-47-3     |     |
| Cobalt                       | ND              | ug/L       | 5.0                | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7440-48-4     |     |
| _ead                         | ND              | ug/L       | 10.0               | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7439-92-1     |     |
| _ithium                      | 177             | ug/L       | 10.0               | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7439-93-2     |     |
| Molybdenum                   | ND              | ug/L       | 20.0               | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7439-98-7     |     |
| Selenium                     | ND              | ug/L       | 15.0               | 1        | 10/21/24 13:42 | 11/02/24 02:00 | 7782-49-2     |     |
| 6020 MET ICPMS               | Analytical Meth | od: EPA 60 | 20 Preparation Met | hod: EP/ | A 3010         |                |               |     |
|                              | Pace Analytical | Services - | Kansas City        |          |                |                |               |     |
| Antimony                     | ND              | ug/L       | 1.0                | 1        | 10/22/24 15:06 | 11/12/24 16:59 | 7440-36-0     |     |
| Thallium                     | ND              | ug/L       | 1.0                | 1        | 10/22/24 15:06 |                |               |     |
| 7470 Mercury                 | Analytical Meth | od: EPA 74 | 70 Preparation Met | hod: EP/ | A 7470         |                |               |     |
| -                            | Pace Analytical | Services - | Kansas City        |          |                |                |               |     |
| Mercury                      | ND              | ug/L       | 0.20               | 1        | 11/01/24 10:47 | 11/01/24 13:50 | 7439-97-6     |     |
| 2540C Total Dissolved Solids | Analytical Meth | od: SM 254 | 40C                |          |                |                |               |     |
|                              | Pace Analytical |            |                    |          |                |                |               |     |
| Total Dissolved Solids       | 1850            | mg/L       | 66.7               | 1        |                | 10/17/24 15:33 | 3             |     |
| 9056 IC Anions               | Analytical Meth | od: EPA 90 | 956                |          |                |                |               |     |
|                              | Pace Analytical |            |                    |          |                |                |               |     |
| Chloride                     | 393             | mg/L       | 50.0               | 50       |                | 10/23/24 18:26 | 16887-00-6    |     |
| Fluoride                     | 0.90            | mg/L       | 0.20               | 1        |                | 10/23/24 18:13 |               |     |
|                              | 675             | mg/L       | 0.20               | •        |                |                |               |     |



Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

QC Batch: 914620 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462558001

METHOD BLANK: 3621126 Matrix: Water

Associated Lab Samples: 60462558001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 10/31/24 13:50

LABORATORY CONTROL SAMPLE: 3621127

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.2 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3621128 3621129

MS MSD

60462558001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 5 4.7 20 Mercury ug/L 5 4.4 89 95 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

QC Batch: 914830 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462558002, 60462558003

METHOD BLANK: 3621878 Matrix: Water

Associated Lab Samples: 60462558002, 60462558003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 11/01/24 13:38

LABORATORY CONTROL SAMPLE: 3621879

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.2 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3621880 3621881

MS MSD

60462558002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 5 100 20 Mercury ug/L 5 5.0 5.3 106 75-125 6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

QC Batch: 913331 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462558001, 60462558002, 60462558003

METHOD BLANK: 3616069 Matrix: Water

Associated Lab Samples: 60462558001, 60462558002, 60462558003

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Arsenic    | ug/L  | ND              | 10.0               | 11/02/24 01:47 |            |
| Barium     | ug/L  | ND              | 5.0                | 11/02/24 01:47 |            |
| Beryllium  | ug/L  | ND              | 1.0                | 11/02/24 01:47 |            |
| Boron      | ug/L  | ND              | 100                | 11/02/24 01:47 |            |
| Cadmium    | ug/L  | ND              | 5.0                | 11/02/24 01:47 |            |
| Calcium    | ug/L  | ND              | 200                | 11/02/24 01:47 |            |
| Chromium   | ug/L  | ND              | 5.0                | 11/02/24 01:47 |            |
| Cobalt     | ug/L  | ND              | 5.0                | 11/02/24 01:47 |            |
| Lead       | ug/L  | ND              | 10.0               | 11/02/24 01:47 |            |
| Lithium    | ug/L  | ND              | 10.0               | 11/02/24 01:47 |            |
| Molybdenum | ug/L  | ND              | 20.0               | 11/02/24 01:47 |            |
| Selenium   | ug/L  | ND              | 15.0               | 11/02/24 01:47 |            |

| LABORATORY CONTROL SAMPLE: | 3616070 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Arsenic                    | ug/L    | 1000  | 920    | 92    | 80-120 |            |
| Barium                     | ug/L    | 1000  | 994    | 99    | 80-120 |            |
| Beryllium                  | ug/L    | 1000  | 1010   | 101   | 80-120 |            |
| Boron                      | ug/L    | 1000  | 955    | 95    | 80-120 |            |
| Cadmium                    | ug/L    | 1000  | 1010   | 101   | 80-120 |            |
| Calcium                    | ug/L    | 10000 | 10200  | 102   | 80-120 |            |
| Chromium                   | ug/L    | 1000  | 1030   | 103   | 80-120 |            |
| Cobalt                     | ug/L    | 1000  | 1050   | 105   | 80-120 |            |
| Lead                       | ug/L    | 1000  | 1050   | 105   | 80-120 |            |
| Lithium                    | ug/L    | 1000  | 972    | 97    | 80-120 |            |
| Molybdenum                 | ug/L    | 1000  | 1020   | 102   | 80-120 |            |
| Selenium                   | ug/L    | 1000  | 975    | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3616071 3616072 |       |             |       |       |        |        |       |       |        |     |     |      |
|--------------------------------------------------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|                                                        |       |             | MS    | MSD   |        |        |       |       |        |     |     |      |
|                                                        |       | 60462435004 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                                              | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Arsenic                                                | ug/L  | ND          | 1000  | 1000  | 961    | 961    | 96    | 96    | 75-125 | 0   | 20  |      |
| Barium                                                 | ug/L  | 30.1        | 1000  | 1000  | 1030   | 1030   | 100   | 100   | 75-125 | 0   | 20  |      |
| Beryllium                                              | ug/L  | ND          | 1000  | 1000  | 1030   | 1010   | 103   | 101   | 75-125 | 1   | 20  |      |
| Boron                                                  | ug/L  | 215         | 1000  | 1000  | 1200   | 1190   | 99    | 98    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

| MATRIX SPIKE & MATRIX | SPIKE DUPLI | CATE: 3616  | • • •       |              | 3616072 |        |       |       |        |     |     |      |
|-----------------------|-------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |             | 60462435004 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units       | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium               | ug/L        | ND          | 1000        | 1000         | 1000    | 993    | 100   | 99    | 75-125 | 1   | 20  |      |
| Calcium               | ug/L        | 97500       | 10000       | 10000        | 110000  | 108000 | 125   | 101   | 75-125 | 2   | 20  |      |
| Chromium              | ug/L        | ND          | 1000        | 1000         | 1030    | 1010   | 103   | 101   | 75-125 | 2   | 20  |      |
| Cobalt                | ug/L        | ND          | 1000        | 1000         | 1020    | 1020   | 102   | 102   | 75-125 | 1   | 20  |      |
| Lead                  | ug/L        | ND          | 1000        | 1000         | 1010    | 1010   | 101   | 101   | 75-125 | 0   | 20  |      |
| Lithium               | ug/L        | 83.2        | 1000        | 1000         | 1070    | 1060   | 99    | 98    | 75-125 | 0   | 20  |      |
| Molybdenum            | ug/L        | ND          | 1000        | 1000         | 1040    | 1030   | 104   | 103   | 75-125 | 1   | 20  |      |
| Selenium              | ug/L        | ND          | 1000        | 1000         | 1000    | 1000   | 100   | 100   | 75-125 | 0   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Thallium

Date: 11/25/2024 12:58 PM

## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

QC Batch: 913390 Analysis Method: EPA 6020 QC Batch Method: EPA 3010 Analysis Description: 6020 MET

> Laboratory: Pace Analytical Services - Kansas City

60462558002, 60462558003 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60462558002, 60462558003

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Antimony ND 1.0 11/12/24 16:11 ug/L ND 1.0 11/12/24 16:11 ug/L

LABORATORY CONTROL SAMPLE: 3616196

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Antimony 40 38.3 96 80-120 ug/L ug/L Thallium 40 39.2 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3616197 3616198 MS MSD 60462719006 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Antimony ug/L 0.20J 40 40 38.5 38.5 96 75-125 0 20 Thallium ND 40 40 38.7 38.6 97 96 75-125 0 20 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Antimony

Thallium

Date: 11/25/2024 12:58 PM

### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

QC Batch: 914434 QC Batch Method: EPA 3010 Analysis Method: EPA 6020
Analysis Description: 6020 MET

6020 MET
Pace Analytical Services - Kansas City

Associated Lab Samples: 60462558001

METHOD BLANK: 3620398 Matrix: Water

Associated Lab Samples: 60462558001

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed ND 1.0 11/19/24 15:43 ug/L ND 1.0 11/19/24 15:43 ug/L

Laboratory:

LABORATORY CONTROL SAMPLE: 3620399

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Antimony 40 35.4 88 80-120 ug/L Thallium ug/L 40 43.7 109 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3620400 3620401 MS MSD 60462558001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Antimony ug/L ND 40 40 35.9 36.2 89 75-125 20 Thallium ug/L ND 40 40 42.4 42.2 106 105 75-125 0 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

QC Batch: 913310 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462558001, 60462558002, 60462558003

METHOD BLANK: 3616004 Matrix: Water

Associated Lab Samples: 60462558001, 60462558002, 60462558003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 10/17/24 15:27

LABORATORY CONTROL SAMPLE: 3616005

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 997 100 80-120

SAMPLE DUPLICATE: 3616007

60462775003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1160 **Total Dissolved Solids** mg/L 1140 2 10

SAMPLE DUPLICATE: 3616220

Date: 11/25/2024 12:58 PM

60462533002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 Total Dissolved Solids 2890 mg/L 2840 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

QC Batch: 913561 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462558001, 60462558002, 60462558003

METHOD BLANK: 3616728 Matrix: Water

Associated Lab Samples: 60462558001, 60462558002, 60462558003

| Parameter | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|--------------------|----------------|------------|
| Chloride  | mg/L  | ND ND           | 1.0                | 10/22/24 21:56 |            |
| Fluoride  | mg/L  | ND              | 0.20               | 10/22/24 21:56 |            |
| Sulfate   | ma/L  | ND              | 1.0                | 10/22/24 21:56 |            |

LABORATORY CONTROL SAMPLE: 3616729 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 4.9 98 mg/L 5 80-120 Fluoride 2.5 2.4 97 80-120 mg/L Sulfate 4.9 98 mg/L 5 80-120

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3616 | 730   |       | 3616731 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 60462302001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L     | 178         | 500   | 500   | 576     | 575    | 80    | 79    | 80-120 | 0   | 15  | M1   |
| Fluoride                 | mg/L     | 4.2         | 2.5   | 2.5   | 6.7     | 6.8    | 101   | 103   | 80-120 | 0   | 15  |      |
| Sulfate                  | mg/L     | 4140        | 5000  | 5000  | 8790    | 8840   | 93    | 94    | 80-120 | 1   | 15  |      |

SAMPLE DUPLICATE: 3616732 60462302002 Dup Max Parameter Units Result Result RPD RPD Qualifiers Chloride mg/L 176 176 0 15 Fluoride mg/L 0.71 0.76 7 15 Sulfate mg/L 3210 3340 4 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 11/25/2024 12:58 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462558

Date: 11/25/2024 12:58 PM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60462558001 | BAT-05-CCR | EPA 3010        | 913331   | EPA 6010          | 913409              |
| 60462558002 | BAT-06-CCR | EPA 3010        | 913331   | EPA 6010          | 913409              |
| 60462558003 | BAT-01-CCR | EPA 3010        | 913331   | EPA 6010          | 913409              |
| 60462558001 | BAT-05-CCR | EPA 3010        | 914434   | EPA 6020          | 914518              |
| 60462558002 | BAT-06-CCR | EPA 3010        | 913390   | EPA 6020          | 913555              |
| 60462558003 | BAT-01-CCR | EPA 3010        | 913390   | EPA 6020          | 913555              |
| 60462558001 | BAT-05-CCR | EPA 7470        | 914620   | EPA 7470          | 914635              |
| 60462558002 | BAT-06-CCR | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462558003 | BAT-01-CCR | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462558001 | BAT-05-CCR | SM 2540C        | 913310   |                   |                     |
| 60462558002 | BAT-06-CCR | SM 2540C        | 913310   |                   |                     |
| 60462558003 | BAT-01-CCR | SM 2540C        | 913310   |                   |                     |
| 60462558001 | BAT-05-CCR | EPA 9056        | 913561   |                   |                     |
| 60462558002 | BAT-06-CCR | EPA 9056        | 913561   |                   |                     |
| 60462558003 | BAT-01-CCR | EPA 9056        | 913561   |                   |                     |



Pace MALVITAL SERVICES

DC#\_Title: ENV-FRM-LENE-0009\_Sample

| ANALYTICAL SERVICE                                                | Revision: 2                   | Effective Date: 01/12/2022 | Issued By: Lenexa                              |               |
|-------------------------------------------------------------------|-------------------------------|----------------------------|------------------------------------------------|---------------|
| Client Name:                                                      | AECOM                         |                            | <u>JL</u>                                      |               |
|                                                                   | 1                             | Pace Shipping Label Used?  | ace                                            |               |
|                                                                   | bble Wrap   Bubble E          |                            | None ☐ Other □                                 |               |
| <u> </u>                                                          |                               | ype of Ice; Well Blue None | Note in Strict in                              |               |
|                                                                   |                               | Factor _ O· Corrected      | 2.4/1.9 Date and initials of examining content |               |
| Temperature should be above to                                    |                               |                            | PVIOLIS                                        | hy            |
| Chain of Custody present:                                         |                               | ZYes □No □N/A              | <i></i>                                        |               |
| Chain of Custody relinquish                                       | ed:                           | Yes □No □N/A               |                                                |               |
| Samples arrived within hold                                       | ing time:                     | ZYes □No □N/A              |                                                |               |
| Short Hold Time analyses                                          | (<72hr):                      | □Yes No □N/A               |                                                |               |
| Rush Turn Around Time re                                          |                               | □Yes ØNo □N/A              |                                                |               |
| Sufficient volume:                                                |                               | ØYes □No □N/A              |                                                |               |
| Correct containers used:                                          |                               | ✓Yes □No □N/A              |                                                |               |
| Pace containers used:                                             |                               | ☐Yes ☐No ☐N/A              |                                                |               |
| Containers intact:                                                |                               | ŽÍYes □No □N/A             |                                                |               |
| Unpreserved 5035A / TX100                                         | 05/1006 soils frozen in 48hrs | s? □Yes □No ☑N/A           |                                                |               |
| Filtered volume received for                                      |                               | □Yes □No □N/A              |                                                |               |
| Sample labels match COC:                                          |                               | AYes □No □N/A              |                                                |               |
| Samples contain multiple ph                                       |                               | T □Yes ☑No □N/A            |                                                |               |
| Containers requiring pH pre                                       |                               | ZYes □No □N/A List         | t sample IDs, volumes, lot #'s of preserv      | ative and the |
| HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 | 1700 1700 1700 170            | Belon-                     | e/time added.                                  |               |
| Exceptions: VOA, Micro, O&G<br>Cyanide water sample check         |                               | LOT#: 8E717                |                                                |               |
| ead acetate strip turns dark                                      |                               | □Yes □No                   |                                                |               |
| Potassium iodide test strip to                                    | urns blue/purple? (Preserve)  | Yes No                     |                                                |               |
| Frip Blank present:                                               |                               | □Yes □No □N/A              |                                                |               |
| Headspace in VOA vials ( >6                                       | 6mm):                         | □Yes □No □N/A              |                                                |               |
| Samples from USDA Regula                                          | nted Area: State:             | □Yes □No □N/A              |                                                |               |
|                                                                   | 5035A / TX1005 vials in the   |                            |                                                |               |
| Client Notification/ Resolu                                       |                               | COC to Client? Y / N       | Field Data Required? Y / N                     |               |
| Person Contacted:                                                 |                               | Date/Time:                 | _                                              |               |
| Comments/ Resolution:                                             |                               |                            |                                                |               |
|                                                                   |                               |                            |                                                |               |
| Project Manager Review:                                           |                               | Date:                      |                                                |               |

CHAIN-OF-CI -ODY / Analytical Request Document

Pace lytical

AL DOCUMENT. All relevant fields must be completed accurately, The Chain-of-Custody is

.67558 Project No./ Lab I.D. (N/A) DR!NKING WATER Sel Samples intact SAMPLE CONDITIONS OTHER of Cooler (Y/N) Sustody Sealer Ice (Y/V) Received on GROUND WATER Page: Residual Chlorine (Y/N) 222 2.5 à О° пі qmөТ REGULATORY AGENCY 00 RCRA 8/0 Requested Analysis Filtered (Y/N) TIME STATE: Site Location R/h1/01 10/15 NPDES DATE UST S240C LDS VIDO Total Mercury DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 6010 Total Metals\*\* \*sla19M latoT 0208 8026 CI, F, SO4 Ż Analysis Test N/A Same as Section A отрес Accounts Payable Methanol Heather Wilson Olivia Helinski Preservatives <sub>E</sub>O<sub>S</sub>S<sub>S</sub>bN AECOM HOBN 11033, 42700 HCI nation HNO<sup>3</sup> company Name Manager Pace Profile #: OS2H Reference. Pace Project Section C ace Quote Unpreserved TIME Address NUN 78 # OF CONTAINERS 5 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION h2/h1/01 DATE 68-09371 PRPA CCR 60731303 1915 10/14/27 0935 602131363 COLLECTED MECON RELINQUISHED BY / AFFILIATION TIME COMPOSITE urchase Order No. NEED PO # DATE Report To Vasanta Kalluri Jamie Herman 50709371 Ranh Required Project Information (G=GRAB C=COMP) **34YT 3J4MAS** roject Number (see valid codes to left) **BOOD XIRTAM** roject Name: Section B oby To Valid Matrix Codes SL OC TS DRINKING WATER
WATER
WASTE WATER
PRODUCT
SOIUSOLID Greenwood Village, CO 80111 STANDARD jamie herman@aecom.com ADDITIONAL COMMENTS 6200 South Quebec St (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Cd, Cr, Co, Pb, Mo, Se, TI BAT-06-CCR BAT-01-CCR SAMPLE ID BAT-05-CCR Required Client Information hone: (303) 740-2614 Required Client Information Requested Due Date/TAT: Section D \*Sb, As, Ba, Be, Section A Company. mail To: B. Ca. LI Address 우 Ξ 12 # MBTI 7 က LO. 9 ~ 00 0 Page 19 of 20

'Important Note, By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev 08, 12-Oct-2007

Pace® Analytical Services, LLC

MECOM

Client:

Site

Profile/EZ#

Notes

Other SPLC MPDU **BP3Z** 8648 **BP3S** Bb3E **BP3N** BP1N DP3U BP2U Urqa Medn MCKN **JGFU** AG5U V64U ¥G32 **NZSA** NEIU **H**ID∀ Bein **DC9B** DC9M DG90 NG9N DC90 DC9H H6Đ∧ Matrix COC Line Item Containe 10 Ξ 12 4 3 9 7 ∞ ന တ

| MGKU         Boz clear soil jar         BP1B         1L NAOH plastic         I P5T           MGSU         2oz clear soil jar         BP1N         1L HNO3 plastic         ZPLC           MG2U         2oz clear soil jar         BP1S         1L HSO3 plastic         ZPLC           JGFU         4oz unpreserved amber wide         BP1Z         1L MOH, Zn Acetate         ZPLC           I         AG0U         100mL unores amber glass         BP2B         500mL NAOH plastic         R           AG1H         1L HZSO4 amber glass         BP2B         500mL NAOH plastic         U           AG1         1L IL Na Thiosulfate clear/amber glass         BP2B         500mL HNO3 plastic         U           AG2N         500mL HNO3 amber glass         BP2B         500mL NAOH plastic         U           AG2N         500mL HXSO4 amber glass         BP3B         250mL NAOH plastic         NAL           AG2N         500mL HXSO4 amber glass         BP3B         250mL NAOH plastic         NAL           AG2U         500mL LASO4 amber glass         BP3B         250mL HNO3 plastic         NAL           AG2U         500mL unpres amber glass         BP3B         250mL LASO4 plastic         DA           AG3U         250mL unpreserved plastic         BP4N         <                                                                                                                                                                                                                          |      |                             | Glass |                                     |      | Plastic                             |        | Misc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|-------|-------------------------------------|------|-------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40mL HCI amber voa vial         WGFU         40z clear soil jar         BPTN         11 HNO3 plastic         SP5T           1 40mL McOH olear vial         WGEU         2cz clear soil jar         BPTS         11 H2SO4 plastic         ZPLC           4 0mL McOH olear vial         JGFU         4cz unpreserved amber wide         BPTU         11 LNDH_ZCA damber vial         AF           4 0mL Na Thio amber vial         AG1H         11 LHCI amber glass         BP2B         500mL NAOH plastic         C           4 0mL Na Thio amber vial         AG1H         11 LHZSO4 amber glass         BP2B         500mL NAOH plastic         R           4 0mL Na Thio amber vial         AG1T         11 LHZSO4 amber glass         BP2B         500mL NAOH plastic         U           4 0mL Na Thio amber vial         AG1T         11 LNa Thiosulfate clear/amber glass         BP2B         500mL Unpreserved plastic         U           4 0mL Worth clear vial         AG2T         500mL HNO3 amber glass         BP2D         500mL Unpreserved plastic         NA           1 liter unpres glass         AG2S         500mL HNO3 plastic         SOmL HNO3 plastic         NA           2 50mL HCL Clear glass         AG3U         500mL unpreserved plastic         NA         NA           2 50mL Unprese Clear glass         AG3U         100m                                                                                                                                                        | G9B  | 40mL bisulfate clear vial   | WGKU  | 8oz clear soil jar                  | BP1B | 1L NAOH plastic                     | _      | Wipe/Swab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40mL MeOH clear vial         WG2U         2oz clear soil jar         BP1S         1L H2SO4 plastic         ZPLC           40mL TSP amber vial         JGFU         4oz unpreserved amber wide         BP1U         1L unpreserved plastic         AF           40mL TSP amber vial         AG1H         1L H2SO4 amber glass         BP1Z         500mL NAOH plastic         C           40mL ATRIO amber vial         AG1H         1L H2SO4 amber glass         BP2B         500mL NAOH plastic         U           40mL HCI clear vial         AG1T         1L Na Thiosulfate clear/amber glass         BP2N         500mL NAOH plastic         U           40mL HCI clear vial         AG1U         1fliter unpres amber glass         BP2D         500mL NAOH, Zn Acetate           40mL Na Thio. clear vial         AG2N         500mL HNO3 amber glass         BP2D         500mL NAOH, Zn Acetate           40mL unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP2D         500mL NAOH, Zn Acetate           1flier unpreserved clear vial         AG2N         500mL H2SO4 amber glass         BP3E         250mL HNO3 plastic         NAL           250mL Unpres All vial         AG3S         250mL H2SO4 amber glass         BP3E         250mL H000A         NAL           350mL Unpres Clear glass         AG3U         250mL un                                                                                                                                               | G9H  | 40mL HCI amber voa vial     | WGFU  | 4oz clear soil jar                  | BP1N | 1L HNO3 plastic                     | SP5T   | 120mL Coliform Na Thiosulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4 Oml. TSP amber vial         JGFU         4oz unpreserved amber wide         BP1U         1L unpreserved plastic         AF           4 Oml. H2SO4 amber vial         AG0U         100mL unores amber glass         BP2B         500mL NAOH plastic         C           4 Oml. Na Thio amber vial         AG1H         1L H2SO4 amber glass         BP2B         500mL NAOH plastic         N           4 Oml. Amber unpreserved         AG1T         1L H2SO4 amber glass         BP2B         500mL NAOH plastic         U           4 Oml. Locar vial         AG1T         1L Na Thiosulfate clear/amber glass         BP2B         500mL H2SO4 plastic         U           4 Oml. Locar vial         AG2N         1 Ilter unpres amber glass         BP2D         500mL H2SO4 plastic         U           4 Oml. Locar vial         AG2N         500mL HNO3 amber glass         BP2D         500mL NaOH, Zh Acetate         WT           4 Oml. Locar glass         AG2N         500mL H2SO4 amber glass         BP3B         250mL NAOH, Zh Acetate         WT           1 flier unpres glass         AG3S         250mL H2SO4 amber glass         BP3N         250mL HNO3 plastic         OL           2 floar Locar glass         AG3U         250mL unpreseaved plastic         OL         OL           2 floar Locar glass         AG3U <t< td=""><td>G9M</td><td>40mL MeOH clear vial</td><td>WG2U</td><td>2oz clear soil jar</td><td>BP1S</td><td>1L H2SO4 plastic</td><td>ZPLC</td><td>Ziploc Bag</td></t<> | G9M  | 40mL MeOH clear vial        | WG2U  | 2oz clear soil jar                  | BP1S | 1L H2SO4 plastic                    | ZPLC   | Ziploc Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40mL H2SO4 amber vial         AG0U         100mL unores amber glass         BP1Z         11 NaOH, Zn Acetate         C           40mL Na Thio amber vial         AG1H         11 HCl amber glass         BP2B         500mL NAOH plastic         R           40mL amber unpreserved         AG1T         11 L H2SO4 amber glass         BP2N         500mL HNO3 plastic         U           40mL Na Thio. clear vial         AG1T         11 L Na Thiosulfate clear/amber glass         BP2D         500mL NaOH, Zn Acetate         U           40mL Unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP2D         500mL NaOH, Zn Acetate         MT           40mL Unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP3D         250mL NaOH, Zn Acetate         MT           40mL Locar glass         AG2N         500mL HXSO4 amber glass         BP3B         250mL HNO3 plastic         MT           1 liter unpres glass         AG3S         250mL H2SO4 amber glass         BP3B         250mL HNO3 plastic         MT           2 50mL HCL Clear glass         AG3U         500mL unpres amber glass         BP3B         250mL Unpreserved plastic         NAL           2 50mL Unpreserved plastic         AG4U         1125mL unpreserved plastic         DW           AG5U         500mL unpreserved glass                                                                                                                                               | G90  | 40mL TSP amber vial         | JGFU  | 4oz unpreserved amber wide          | BP1U | 1L unpreserved plastic              | AF     | Air Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40mL Na Thio amber vial         AG1H         1L HCI amber glass         BP2B         500mL NAOH plastic         R           40mL amber unpreserved         AG1S         1L H2SO4 amber glass         BP2N         500mL HNO3 plastic         U           40mL HCI clear vial         AG1T         1L Na Thiosulfate clear/amber glass         BP2S         500mL H2SO4 plastic         U           40mL Na Thio. clear vial         AG2U         1liter unpres amber glass         BP2D         500mL naOH, Zn Acetate         ACCA           40mL unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP3E         500mL naOH, Zn Acetate         ACCA           40mL unpreserved clear vial         AG2N         500mL H2SO4 amber glass         BP3E         500mL NaOH, Zn Acetate         ACCA           40mL unpreserved clear vial         AG2S         500mL H2SO4 amber glass         BP3E         250mL HNO3 plastic         SL           550mL HCL Clear glass         AG3U         500mL unpres amber glass         BP3D         250mL HNO3 plastic         NAL           J 16c clear soil jar         AG3U         125mL unpreserved plastic         DW           AG3U         100mL unpres amber glass         BP3Z         250mL HNO3 plastic         DW           AG3U         100mL unpres amber glass         BP4N         <                                                                                                                                                    | G9S  | 40mL H2SO4 amber vial       | AG0U  | 100mL unores amber glass            | BP1Z | 1L NaOH, Zn Acetate                 | ပ      | Air Cassettes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40mL amber unpreserved         AG1S         1L H2SO4 amber glass         BP2N         500mL HNO3 plastic         U           40mL HCl clear vial         AG1T         1L Na Thiosulfate clear/amber glass         BP2S         500mL H2SO4 plastic         P           40mL No Thio. clear vial         AG1U         1 liter unpres amber glass         BP2U         500mL unpreserved plastic         AG2N           40mL unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP3B         250mL NaOH, Zn Acetate         AG2N           1 liter H2SO4 clear glass         AG2S         500mL H2SO4 amber glass         BP3B         250mL NaOH plastic         MT           250mL HCL Clear glass         AG3S         250mL H2SO4 amber glass         BP3B         250mL HNO3 plastic         NAL           250mL HCL Clear glass         AG3U         250mL unpres amber glass         BP3B         250mL HNO3 plastic         NAL           J foor clear soil jar         AG4U         125mL unpres amber glass         BP3C         250mL HOA glastic         NAP           BP4U         125mL HNO3 plastic         BP4D         125mL HNO3 plastic         DW           BP4S         125mL HNO3 plastic         BP4S         125mL HNO3 plastic         BP4S                                                                                                                                                                                                                               | G9T  | 40mL Na Thio amber vial     | AG1H  | 1L HCl amber glass                  | BP2B | 500mL NAOH plastic                  | 2      | Terracore Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40mL HCl clear vial         AG1T         1L Na Thiosulfate clear/amber glass         BP2S         500mL H2SO4 plastic           40mL Na Thio. clear vial         AG1U         1liter unpres amber glass         BP2L         500mL unpreserved plastic           40mL unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP2Z         500mL NaOH, Zn Acetate           1 liter H2SO4 clear glass         AG2S         500mL H2SO4 amber glass         BP3B         250mL NaOH plastic         WT           250mL HCL Clear glass         AG3S         250mL H2SO4 amber glass         BP3B         250mL HNO3 plastic         SL           250mL HCL Clear glass         AG2U         500mL unpres amber glass         BP3D         250mL HNO3 plastic         NAL           J f6oz clear soil jar         AG3U         250mL unpres amber glass         BP3D         250mL H2SO4 plastic         DW           J f6oz clear soil jar         AG4U         125mL unpres amber glass         BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         BP4N         125mL HNO3 plastic         BW         BP4N         125mL H2SO4 plastic           BP4S         125mL H2SO4 plastic         BP4S         125mL H2SO4 plastic         BP4S         125mL H2SO4 plastic                                                                                                                                                                                  | G9N  | 40mL amber unpreserved      | AG1S  | 1L H2SO4 amber glass                | BP2N | 500mL HNO3 plastic                  | )<br>D | Summa Can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40mL Na Thio. clear vial         AG1U         Iliter unpres amber glass         BP2U         500mL unpreserved plastic           40mL unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP2Z         500mL NaOH, Zn Acetate           1 liter H2SO4 clear glass         AG2S         500mL H2SO4 amber glass         BP3B         250mL NaOH plastic         WT           250mL HCL Clear glass         AG3S         250mL H2SO4 amber glass         BP3F         250mL HNO3 plastic         SL           250mL HCL Clear glass         AG2U         500mL unpres amber glass         BP3N         250mL HNO3 plastic         NAL           J f6oz clear soil jar         AG3U         250mL unpres amber glass         BP3D         250mL H2SO4 plastic         OL           J f6oz clear soil jar         AG4U         125mL unpres amber glass         BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         BP4U         125mL HNO3 plastic         DW           BP4S         125mL H2SO4 plastic         BP4S         125mL H2SO4 plastic         DW                                                                                                                                                                                                                                                                                                                                                                                         | G9H  | 40mL HCl clear vial         | AG1T  | 1L Na Thiosulfate clear/amber glass | BP2S | 500mL H2SO4 plastic                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40mL unpreserved clear vial         AG2N         500mL HNO3 amber glass         BP2Z         500mL NaOH, Zn Acetate           1 liter H2SO4 clear glass         AG2S         500mL H2SO4 amber glass         BP3B         250mL NaOH plastic         WT           250mL H2SO4 clear glass         AG3S         250mL H2SO4 amber glass         BP3F         250mL HNO3 plastic - field filtered         WT           250mL HCL Clear glass         AG2U         500mL unpres amber glass         BP3N         250mL HNO3 plastic         NAL           J 16oz clear soil jar         AG3U         250mL unpres amber glass         BP3D         250mL H2SO4 plastic         OL           J 16oz clear soil jar         AG4U         125mL unpres amber glass         BP3Z         250mL NaOH, Zn Acetate         WP           BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         BP4N         125mL HNO3 plastic           BP4S         125mL H2SO4 plastic         BP4S         125mL H2SO4 plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G9T  | 40mL Na Thio. clear vial    | AG1U  | 1liter unpres amber glass           | BP2U | 500mL unpreserved plastic           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iliter H2SO4 clear glass         AG2S         500mL H2SO4 amber glass         BP3B         250mL NaOH plastic         WT           1 liter unpres glass         AG3S         250mL H2SO4 amber glass         BP3F         250mL HNO3 plastic - field filtered         WT           250mL HCL Clear glass         AG2U         500mL unpres amber glass         BP3N         250mL HNO3 plastic         NAL           250mL Unpres Clear glass         AG3U         250mL unpres amber glass         BP3U         250mL H2SO4 plastic         OL           J 16oz clear soil jar         AG4U         125mL unpres amber glass         BP3Z         250mL NaOH, Zn Acetate         WP           AG5U         100mL unpres amber glass         BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         BP4         125mL HNO3 plastic         BW           BP4S         125mL H2SO4 plastic         WPDU         16oz unpresserved plstic         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G9U  | 40mL unpreserved clear vial | AG2N  | 500mL HNO3 amber glass              | BP2Z | 500mL NaOH, Zn Acetate              |        | A PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |
| 1liter unpres glass         AG3S         250mL H2SO4 amber glass         BP3F         250mL HNO3 plastic - field filtered         WT           250mL HCL Clear glass         AG2U         500mL unpres amber glass         BP3N         250mL HNO3 plastic         SL           250mL Unpres Clear glass         AG3U         250mL unpres amber glass         BP3U         250mL unpreserved plastic         NAL           J 16oz clear soil jar         AG4U         125mL unpres amber glass         BP3S         250mL NaOH, Zn Acetate         WP           BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         DW           BP4S         125mL HNO3 plastic         BW           BP4S         125mL H2SO4 plastic         WPDU           WPDU         16oz unpresserved plstic         WPDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 318  | 1liter H2SO4 clear glass    | AG2S  |                                     | BP3B | 250mL NaOH plastic                  | Г      | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 250mL HCL Clear glass         AG2U         500mL unpres amber glass         BP3N         250mL HNO3 plastic         SL           250mL Unpres Clear glass         AG3U         250mL unpres amber glass         BP3U         250mL unpreserved plastic         NAL           J         16oz clear soil jar         AG4U         125mL unpres amber glass         BP3Z         250mL NaOH, Zn Acetate         WP           AG5U         100mL unpres amber glass         BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         DW           BP4S         125mL HNO3 plastic         BW           BP4S         125mL H2SO4 plastic         WPDU           WPDU         16oz unpresserved plstic         AVPDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310  | 1liter unpres glass         | AG3S  | 250mL H2SO4 amber glass             | BP3F | 250mL HNO3 plastic - field filtered | ₩      | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 250mL Unpres Clear glass         AG3U         250mL unpres amber glass         BP3U         250mL unpreserved plastic         NAL           J         16oz clear soil jar         AG4U         125mL unpres amber glass         BP3Z         250mL H2SO4 plastic         OL           AG5U         100mL unpres amber glass         BP3Z         250mL NaOH, Zn Acetate         WP           BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         DW           BP4S         125mL H2SO4 plastic         WPDU           WPDU         16oz unpresserved plstic         AVPDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33H  | 250mL HCL Clear glass       | AG2U  | 500mL unpres amber glass            | BP3N | 250mL HNO3 plastic                  | SL     | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J 16oz clear soil jar         AG4U         125mL unpres amber glass         BP3Z         250mL H2SO4 plastic         OL           AG5U         100mL unpres amber glass         BP3Z         250mL NaOH, Zn Acetate         WP           BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         DW           BP4S         125mL H2SO4 plastic         WPDU           WPDU         16oz unpresserved plstic         APPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 330  | 250mL Unpres Clear glass    | AG3U  | 250mL unpres amber glass            | BP3U | 250mL unpreserved plastic           | NAL    | Non-aqueous Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| JobmL unpres amber glass         BP3Z         250mL NaOH, Zn Acetate         WP           BP4U         125mL unpreserved plastic         DW           BP4N         125mL HNO3 plastic         BP4S           BP4S         125mL H2SO4 plastic           WPDU         16oz unpresserved plstic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /GDU | 16oz clear soil jar         | AG4U  | 125mL unpres amber glass            | BP3S | 250mL H2SO4 plastic                 | O<br>O | OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 125mL unpreserved plastic DW 125mL HNO3 plastic 125mL H2SO4 plastic J6oz unpresserved plstic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                             | AG5U  | 100mL unpres amber glass            | BP3Z | 250mL NaOH, Zn Acetate              | WP     | Wipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                             |       |                                     | BP4U | 125mL unpreserved plastic           | DW     | Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                             |       |                                     | BP4N | 125mL HNO3 plastic                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                             |       |                                     | BP4S | 125mL H2SO4 plastic                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | į                           |       |                                     | WPDU | 16oz unpresserved plstic            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Work Order Number:

(Don/62 858





November 06, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462579

### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson heather.wilson@pacelabs.com

Databa m. Wilson

1(913)563-1407 Project Manager

Enclosures

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM







### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221

KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



### **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |  |
|-------------|------------|--------|----------------|----------------|--|
| 60462579001 | BAT-05-CCR | Water  | 10/14/24 09:35 | 10/15/24 09:40 |  |
| 60462579002 | BAT-06-CCR | Water  | 10/14/24 11:45 | 10/15/24 09:40 |  |
| 60462579003 | BAT-01-CCR | Water  | 10/14/24 14:15 | 10/15/24 09:40 |  |



### **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

| Lab ID      | Sample ID  | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|--------------------------|----------|----------------------|------------|
| 60462579001 | BAT-05-CCR | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462579002 | BAT-06-CCR | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462579003 | BAT-01-CCR | EPA 903.1                | CLM      | 1                    | PASI-PA    |
|             |            | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |            | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

| Sample: BAT-05-CCR<br>PWS: | <b>Lab ID: 60462579</b><br>Site ID: | 001 Collected: 10/14/24 09:35<br>Sample Type: | Received: | 10/15/24 09:40 | Matrix: Water |      |
|----------------------------|-------------------------------------|-----------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                              | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Serv                | ices - Greensburg                             |           |                |               |      |
| Radium-226                 |                                     | 0.641 ± 0.633 (1.01)<br>C:NA T:87%            | pCi/L     | 10/31/24 14:13 | 3 13982-63-3  |      |
|                            | Pace Analytical Serv                | ices - Greensburg                             |           |                |               |      |
| Radium-228                 |                                     | 0.709 ± 0.364 (0.623)<br>C:80% T:86%          | pCi/L     | 10/31/24 11:24 | 15262-20-1    |      |
|                            | Pace Analytical Serv                | ices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation         | 1.35 ± 0.997 (1.63)                           | pCi/L     | 11/01/24 14:21 | 7440-14-4     |      |



### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

| Sample: BAT-06-CCR<br>PWS: | Lab ID: 6046<br>Site ID:    | <b>2579002</b> Collected: 10/14/24 11:45 Sample Type: | Received: | 10/15/24 09:40 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.559 ± 0.681 (1.13)<br>C:NA T:101%                   | pCi/L     | 11/05/24 11:44 | 13982-63-3    |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.373 ± 0.344 (0.695)<br>C:77% T:83%                  | pCi/L     | 10/31/24 11:24 | 4 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.932 ± 1.03 (1.83)                                   | pCi/L     | 11/05/24 16:3  | 8 7440-14-4   |      |



### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

| Sample: BAT-01-CCR<br>PWS: | <b>Lab ID: 6046</b> . Site ID: | 2579003 Collected: 10/14/24 14:15<br>Sample Type: | Received: | 10/15/24 09:40 | Matrix: Water |      |
|----------------------------|--------------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                         | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical                | Services - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                      | 0.642 ± 0.405 (0.174)<br>C:NA T:89%               | pCi/L     | 10/31/24 14:27 | 7 13982-63-3  |      |
|                            | Pace Analytical                | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                      | 0.524 ± 0.369 (0.706)<br>C:77% T:84%              | pCi/L     | 10/31/24 11:24 | 15262-20-1    |      |
|                            | Pace Analytical                | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation    | 1.17 ± 0.774 (0.880)                              | pCi/L     | 11/01/24 14:21 | 7440-14-4     |      |



### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

QC Batch: 703576 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60462579001, 60462579002, 60462579003

METHOD BLANK: 3426166 Matrix: Water

Associated Lab Samples: 60462579001, 60462579002, 60462579003

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.278 ± 0.305 (0.632) C:74% T:91%
 pCi/L
 10/31/24 11:23

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

QC Batch: 703575 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60462579001, 60462579002, 60462579003

METHOD BLANK: 3426164 Matrix: Water

Associated Lab Samples: 60462579001, 60462579002, 60462579003

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.340 ± 0.335 (0.510) C:NA T:95%
 pCi/L
 10/31/24 14:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 11/06/2024 09:01 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462579

Date: 11/06/2024 09:01 AM

| Lab ID      | Sample ID  | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|--------------------------|----------|-------------------|---------------------|
| 60462579001 | BAT-05-CCR | EPA 903.1                | 703575   |                   | ,                   |
| 60462579002 | BAT-06-CCR | EPA 903.1                | 703575   |                   |                     |
| 60462579003 | BAT-01-CCR | EPA 903.1                | 703575   |                   |                     |
| 60462579001 | BAT-05-CCR | EPA 904.0                | 703576   |                   |                     |
| 60462579002 | BAT-06-CCR | EPA 904.0                | 703576   |                   |                     |
| 60462579003 | BAT-01-CCR | EPA 904.0                | 703576   |                   |                     |
| 60462579001 | BAT-05-CCR | Total Radium Calculation | 706823   |                   |                     |
| 60462579002 | BAT-06-CCR | Total Radium Calculation | 707492   |                   |                     |
| 60462579003 | BAT-01-CCR | Total Radium Calculation | 706823   |                   |                     |

Pace Analytical"

### CHAIN-OF-CUS I ODY / Analytical Request Document

The Chain-of-Gustody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

200 200 100 Pace Project No./ Lab I.D. SCR. DRINKING WATER SAMPLE CONDITIONS OTHER ō GROUND WATER Page: Residual Chlorine (Y/N) ZZZ REGULATORY AGENCY 00 RCRA 046 Requested Analysis Filtered (Y/N) TIME Site Location STATE: H2/5/101 NPDES DATE LIST Sum Radium-226 & 228 ACCEPTED BY / AFFILIATION 82S-muibeA lato Fotal Radium-226 **1** N / A Analysis Test Same as Section A Other Accounts Payable Heather Wilson Methanol Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Company Name: AECOM Pace Quote 73141
Reference:
Pace Project Heather Wi NaOH HCI H<sub>1</sub>ONH 11/11 PSSC4 Section C Attention: Address: Unpreserved TIME 1700 # OF CONTAINERS 2 6 2 SAMPLE TEMP AT COLLECTION 42/H/01 DATE 0935 INS TIME 1415 CCR 10/12/20 COLLECTED DATE RELINQUISHED BY / AFFILIATION MECOM TIME START Purchase Order No.: 1599461 DATE Report To: Vasanta Kalluri Sopy To: Jamie Herman Required Project Information: anda (G=GRAB C=COMP) Ф SAMPLE TYPE Project Number. Project Name: (see valid codes to left) E MATRIX CODE Section B 0 Greenwood Village, CO 80111 jamie.herman@aecom.com ADDITIONAL COMMENTS 15 Day TAT 6200 South Quebec St (A-Z, 0-91,-) Sample IDs MUST BE UNIQUE Fax: SAMPLE ID BAT-05-CCK PAT-06- CCR BAJ-01-CCR Section D Required Clent Information (303) 740-2614 Section A Required Client Information: Requested Due Date/TAT: AECOM Company: Address: Email To: 3 2 9 80 10 F 15 7 o

F-ALL-Q-020rev.08, 12-Oct-2007

Samples Intact (V/V)

Cooler (Y/N)

(N/A) ear

Received on

J. ui dwaT

h2/h1/01

DATE Signed (MM/DD/YY):

PRINT Name of SAMPLER: OTIVED, HELLINSKI

SAMPLER NAME AND SIGNATURE

SIGNATURE OF SAMPLER: Collins

Important Noto: By signing this form you are accepting Pace's NET 30 day payment lerins and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Page 12 of 18

| DC#_Title: EN                                                        | IV-FRM-G     | BU            | R-00        | 88 v     | v07_Sample Condition Upon Receipt-         |
|----------------------------------------------------------------------|--------------|---------------|-------------|----------|--------------------------------------------|
| Greensburg                                                           | <u>at</u>    |               |             |          |                                            |
| Pace Effective Date: 0                                               | 1/04/2024    |               |             |          |                                            |
| AULIVITICAL SERVICES                                                 |              |               |             | -        | Project #:                                 |
| Client Name: AECOM                                                   |              |               |             |          |                                            |
| Courier: Fed Ex UPS USPS                                             | □ Client □ ( | om            | merci       | ial 🗆    | Pace Other Initial / Date                  |
| Tracking Number: 7146 2                                              | 331 7        | 27            | 29          |          | Examined By: 210/15/3                      |
| Tracking Number: 7770 2                                              | 011          | •             |             |          | 8/10/15/                                   |
| Custody Seal on Cooler/Box Presen<br>Thermometer Used:               | t: Yes       | □N<br>of Ic   | o<br>e: V   | vet      | Blue Mone                                  |
| Cooler Temperature: Observed T                                       |              |               |             | Corr     | rection Factor: °C Final Temp: °           |
| Temp should be above freezing to 6°C                                 |              |               |             |          |                                            |
| Temp should be above meaning                                         |              |               |             |          | pH paper Lot# D.P.D. Residual Chlorine Lot |
| Comments:                                                            | Y            | es            | No          | NA       | A 10D1041 -                                |
| Chain of Custody Present                                             |              | /             |             |          | 1.                                         |
| Chain of Custody Filled Out:                                         |              | $\overline{}$ | -           |          | 2.                                         |
| -Were client corrections present                                     | on COC       |               |             | 1        |                                            |
| Chain of Custody Relinquished                                        |              | /             | _           |          | 3.                                         |
| Sampler Name & Signature on COC:                                     |              |               |             |          | 4.                                         |
| Sample Labels match COC:                                             |              |               |             |          | 5.                                         |
| -Includes date/time/ID                                               | _            |               |             | er anno  |                                            |
| Matrix:                                                              | Wī           |               |             |          | 4                                          |
|                                                                      |              |               |             |          | 6.                                         |
| Samples Arrived within Hold Time:                                    |              |               |             |          | 7.                                         |
| Short Hold Time Analysis (<72hr                                      |              |               |             |          |                                            |
| remaining): Rush Turn Around Time Requested:                         |              |               |             |          | 8.                                         |
| Sufficient Volume:                                                   |              | 7             |             |          | 9.                                         |
| Correct Containers Used:                                             |              | -             |             |          | 10.                                        |
| -Pace Containers Used                                                |              | 7             |             |          |                                            |
| Containers Intact:                                                   |              | 7             |             |          | 11.                                        |
| Orthophosphate field filtered:                                       |              |               |             |          | 12.                                        |
| Hex Cr Aqueous samples field filtered                                | :            | $\neg$        |             | /        | 13.                                        |
| Organic Samples checked for dichlorin                                | nation       |               | 1           | /        | 14:                                        |
| Filtered volume received for dissolved                               | tests:       |               | 1           | _        | 15:                                        |
| All containers checked for preservation                              | on:          |               |             |          | 16.                                        |
| exceptions: VOA, coliform, TOC, C<br>Phenolics, Radon, non-aqueous m | )&G,         |               |             |          | pHZ                                        |
|                                                                      |              | 7             | $\neg \tau$ | _        | Initial when Date/Time of                  |
| All containers meet method preserva<br>requirements:                 |              | 1             |             | $\dashv$ | completed Preservation                     |
|                                                                      |              |               |             |          | Preservative                               |
| 8260C/D: Headspace in VOA Vials (> 6                                 | mm)          |               |             |          | 17.                                        |
| 524.1: Headspace in VOA Vials (0mm)                                  |              |               |             |          | 18.                                        |
| Radon: Headspace in RAD Vials (0mm)                                  |              |               |             |          | 19.                                        |
| rip Blank Present:                                                   |              | I             |             | 1        | Trip blank custody seal present? YES or NO |
| and Samples Screened <.05 mrem/hr.                                   |              | -             |             |          | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    |
| ad Samples Screened <.05 Illieniyiii.                                |              |               |             |          | completed SN. 2017 380                     |

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Qualtrax ID: 55680

# Internal Transfer Chain of Custody ————

| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S   |                          |                                                                                             |                    | Rush Multiplier                               | IltiplierX                                                                         |          | 0,        | State Of Origin: CO | ii.                                                                                                             | 0                  |                |                 | Pa | Jace  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|------------------------------------------------------------------------------------|----------|-----------|---------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------|----|-------|
| Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract To Pace Analytical Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   Subcontract Pittsburgh   | Mo                       | rkorder: 60462579                                                                           | III<br>Workorder N |                                               | Pre-Logged i                                                                       | nto eCO0 |           | Sert. Needed        | Ш!<br>                                                                                                          | Yes                | ×              |                 | ı  |       |
| Pace Analytical Pittsburgh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rep                      | ort To                                                                                      |                    | Į.                                            | To                                                                                 |          |           | Jwner Recei         | ved L                                                                                                           | ate:               | 10/15/2024     | Results Request |    | /2024 |
| 1638 Roseytown Road   Suites 2.3, & 4   Greensburg, PA 15601     Sample   Collect   Phone (724)850-5600     Sample   Collect   Type   Date/Time   Lab ID   Matrix   FS   10/14/2024 11:45   60462579002   Water   2   X   X   X   X   X     FS   10/14/2024 14:15   60462579003   Water   2   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                             |                    |                                               |                                                                                    |          |           |                     |                                                                                                                 | THE REAL PROPERTY. | Requested A    | nalysis         |    |       |
| Sample Collect         Collect         Matrix         Sample Date/Time         Lab ID         Matrix         Matrix         Sample Date/Time         Lab ID         Matrix         Matrix         Sample Date/Time         Lab ID         Mater         Date/Time         Lab ID         Mater         Date/Time         Lab ID         Mater         Date/Time         Lab ID         Mater         Date/Time         Lab ID         Lab I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pac<br>960<br>960<br>Pho | ither Wilson<br>e Analytical Kansas<br>8 Loiret Blvd.<br>exa, KS 66219<br>ne 1(913)563-1407 |                    | Pace A<br>1638 R<br>Suites<br>Greens<br>Phone | nalytical Pittsbu<br>toseytown Road<br>2,3, & 4<br>sburg, PA 1560<br>(724)850-5600 | fg" -    | Preserved | Containers          | 200 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May 100 May |                    |                |                 |    |       |
| Sample Date/Time         Lab ID         Matrix         \$\frac{2}{2}\$         X X X X         X X X X         A X X X X         A X X X X         A X X X X X         A X X X X X X X         A X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                             |                    |                                               |                                                                                    |          |           |                     |                                                                                                                 | -                  |                |                 |    |       |
| PS         10/14/2024 08:35 60462579001         Water         2         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Item                     | Sample ID                                                                                   | Sample<br>Type     | Collect<br>Date/Time                          | Lab ID                                                                             | Matrix   | EONH      |                     |                                                                                                                 |                    |                |                 | 91 | > 100 |
| PS         10/14/2024 11:45         60462579002         Water         2         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X <t< td=""><td>~</td><td>BAT-05-CCR</td><td>PS</td><td>10/14/2024 09:35</td><td>60462579001</td><td>Water</td><td>2</td><td></td><td>-</td><td>+</td><td></td><td></td><td></td><td>1 2 1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                        | BAT-05-CCR                                                                                  | PS                 | 10/14/2024 09:35                              | 60462579001                                                                        | Water    | 2         |                     | -                                                                                                               | +                  |                |                 |    | 1 2 1 |
| PS   10/14/2024 14:15   60462579003   Water   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                        | BAT-06-CCR                                                                                  | PS                 | 10/14/2024 11:45                              | 60462579002                                                                        | Water    | 2         |                     | +                                                                                                               | +                  |                |                 |    | 300   |
| Date/Time Received By Date/Time IR-30 *Rad QC sheets required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                        | BAT-01-CCR                                                                                  | PS                 | 10/14/2024 14:15                              | 60462579003                                                                        | Water    | 2         |                     | +                                                                                                               | -                  |                |                 |    | 250   |
| Date/Time Received By    Date/Time   Received By   Date/Time   IR-30 *Rad QC sheets required   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   IR-30   Page   I | 4                        |                                                                                             |                    |                                               |                                                                                    |          |           |                     | +                                                                                                               | +                  |                |                 |    | 563   |
| Date/Time Received By Date/Time IR-30 *Rad QC sheets require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                        |                                                                                             |                    |                                               |                                                                                    |          |           |                     | $\perp$                                                                                                         | +                  |                |                 |    |       |
| Date/Time Received By Date/Time IR-30 *Rad QC sheets required By Sate/Time Ind/974 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | -                                                                                           |                    |                                               |                                                                                    |          |           |                     |                                                                                                                 |                    |                | Comments        |    |       |
| and highly - 10/19/19 mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tran                     |                                                                                             |                    | Date/Time                                     | Received By                                                                        |          |           | Date/Tim            | ٥                                                                                                               | IR-30 *R           | ad QC sheets r | eauired         |    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |                                                                                             |                    |                                               | narz                                                                               | 1        | 11/1/2    | 10/1494             | OTHE                                                                                                            |                    |                |                 |    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                        |                                                                                             |                    |                                               |                                                                                    | D        |           | 100                 | -                                                                                                               |                    |                |                 |    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                        |                                                                                             |                    |                                               |                                                                                    |          |           | +                   | T                                                                                                               |                    |                |                 |    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                        | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                     |                    | ŀ                                             |                                                                                    |          |           |                     | 1                                                                                                               |                    |                |                 | (  |       |

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document This chain of custody is considered complete as is since this information is available in the owner laboratory.



Page 1 of 1

CHAIN-OF-CUS I ODY / Analytical Re

Section C

Required Project Information

Section B

Section A Required Client Information:

Face Analytical

とよい

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields m

MO#: 30726549

PM: MAR

Due Date: 11/05/24 CLIENT: PACE\_60\_LEKS

200 200 00 Pace Project No./ Lab I.D. SCR. DRINKING WATER SAMPLE CONDITIONS OTHER o 4 L GROUND WATER Page: Residual Chlorine (Y/N) Z REGULATORY AGENCY 00 RCRA 046 Requested Analysis Filtered (Y/N) TIME STATE Site Location NPDES H251/01 DATE UST L 8SS & 8SS-mulbsA mus ACCEPTED BY / AFFILIATION otal Radium-228 Otal Radium-226 N/A JasaT sisylanA I Same as Section A Other Accounts Payable Methanol Heather Wilson Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Company Name: AECOM Pace Project Heather Wi Manager: Pace Profeet: 11033, 8 HOBN 73141 HCI nvoice Information: HNO3 2 PS2H Pace Quote Attention: ddress: Unpreserved TIME 1700 # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION 42/h1/01 DATE 0935 111/15 TIME 1415 COMPOSITE CCR 四三月 COLLECTED DATE CONTRACTOR CONTRACTOR RELINQUISHED BY / AFFILIATION 2 answ IAECOM TIME START 1599461 DATE Report To: Vasanta Kalluri Copy To: Jamie Herman Purchase Order No.: (G=GRAB C=COMP) SAMPLE TYPE Ф Project Number. MATRIX CODE Project Name: Greenwood Village, CO 80111 jamie.herman@aecom.com ADDITIONAL COMMENTS 6200 South Quebec St 15 Day TAT (A-Z, 0-91,-) Sample IDs MUST BE UNIQUE SAMPLEID BAT-05-CCK PAT-06- CCR BAT-01-CCK Section D Required Client Information Phone: (303) 740-2614 Requested Due Date/TAT: AECOM Sompany: 4ddress: Email To: 6 ITEM # 2 9 60 10 H 12

F-ALL-Q-020rev.08, 12-Oct-2007

Samples Intaci

Cooler (Y/N) Sustody Seale

ICB (Y/N)

Received on

J. ni qmaT

h2/h1/01

DATE Signed (MM/DD/YY):

PRINT Name of SAMPLER: ONVIN HELLINSKI

SIGNATURE OF SAMPLER: Collection

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

Page 15 of 18

| DC#_Title: ENV-FR Greensburg                                                 | M-GB          | JR-00        | )88 v | 07_Sample Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W0#:30726549                                  |
|------------------------------------------------------------------------------|---------------|--------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Pace Effective Date: 01/04/20                                                | 24            |              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM: MAR Due Date: 11/<br>CLIENT: PACE_60_LEKS |
| Client Name: $AFCOM$                                                         |               |              |       | Prc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THEE_60_LEKS                                  |
|                                                                              |               |              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial / Date                                |
| Courier:   Fed Ex   UPS   USPS   Clier                                       | nt ∐CQ        | mmerc<br>79  | ial 📙 | Pace Uther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Examined By: 210/15/24                        |
| Tracking Number: 7/46 238/                                                   | ,,,           | / /          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61:01:50                                      |
| Custody Seal on Cooler/Box Present: Thermometer Used:                        | Yes 🗆 Type of | No<br>Ice: \ | Net   | s Intact: Yes<br>Blue None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temped By:                                    |
| Cooler Temperature: Observed Temp                                            |               | _∘C          | Corr  | ection Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ec Filial Temp=c                              |
| Temp should be above freezing to 6°C                                         |               | _            |       | pH paper Lot#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D.P.D. Residual Chlorine Lot #                |
| Comments:                                                                    | Yes           | No           | NA    | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                               |
| Chain of Custody Present                                                     | _/            |              | +-    | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Chain of Custody Filled Out:                                                 |               | 1            | 1     | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| -Were client corrections present on CO                                       | C             |              | -     | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Chain of Custody Relinquished                                                |               | -            | +-    | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Sampler Name & Signature on COC:                                             |               | _            | -     | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Sample Labels match COC:                                                     |               | 1            |       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| -Includes date/time/ID                                                       | NT            |              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U <sup>2</sup>                                |
| 1.0.2000 (10.00)                                                             | <i>\(\)</i>   | 4            | _     | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Samples Arrived within Hold Time:                                            | _             | -            |       | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Short Hold Time Analysis (<72hr                                              | 1             | /            |       | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| remaining):                                                                  | +             |              | _     | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Rush Turn Around Time Requested:                                             | +             |              |       | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Sufficient Volume: Correct Containers Used:                                  |               |              |       | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| -Pace Containers Used                                                        |               |              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| Containers Intact:                                                           |               | -            |       | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| Orthophosphate field filtered:                                               |               |              |       | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| Hex Cr Aqueous samples field filtered:                                       |               |              |       | 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| Organic Samples checked for dichlorination                                   |               |              |       | 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| Filtered volume received for dissolved tests:                                |               |              | /     | 15:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| All containers checked for preservation:                                     |               |              |       | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                             |
| exceptions: VOA, coliform, TOC, O&G,<br>Phenolics, Radon, non-aqueous matrix |               |              |       | PHZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                             |
| All containers meet method preservation                                      |               |              |       | Initial when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time of                                  |
| requirements:                                                                |               |              |       | Lot# of added Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Preservation                                  |
| 260C/D: Headspace in VOA Vials (> 6mm)                                       |               |              |       | 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| 24.1: Headspace in VOA Vials (0mm)                                           |               |              | -     | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| adon: Headspace in RAD Vials (0mm)                                           |               |              |       | 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
| ip Blank Present:                                                            |               |              | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ody seal present? YES or NO                   |
| ad Samples Screened <.05 mrem/hr.                                            |               |              |       | Initial when completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: 10/15/24 Survey Meter 4380              |
| omments:                                                                     |               |              |       | - Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
|                                                                              |               |              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Qualtrax ID: 55680

### **Quality Control Sample Performance Assessment**

| Must    |        |
|---------|--------|
| Analyst |        |
| ₹       |        |
|         |        |
|         |        |
|         | 9      |
|         | Ra-226 |

Pace Analytical"

| :       |                | ı |  |
|---------|----------------|---|--|
|         |                |   |  |
| 17/1    |                | ı |  |
|         | 5              | i |  |
| 1       | ĕ              |   |  |
| 4       |                | 4 |  |
| 11-4-11 |                |   |  |
|         |                | ı |  |
| 1       | 9              |   |  |
| ť       | į              | 1 |  |
| 4 17    | Ì              | i |  |
| -       | THE ALL FIELDS | ı |  |
| i       | ì              | ı |  |
| 10.00   | >              |   |  |
| 1       |                |   |  |
| į       | ì              | ۱ |  |
| 7       | 5              | ١ |  |
|         |                |   |  |
| 1       |                | 1 |  |
| 1       |                | 1 |  |
| 4       | į              |   |  |
|         |                |   |  |
|         |                |   |  |
|         |                |   |  |
|         |                |   |  |
|         |                |   |  |
|         |                |   |  |

|                                              |                |           | Analyst Must manually Enter All Fleius mignifeld in Tellow.       | renow.      |          |
|----------------------------------------------|----------------|-----------|-------------------------------------------------------------------|-------------|----------|
| rw.pecelsdos.com Test:                       | Ra-226         |           |                                                                   | CC.         |          |
| Analyst:                                     | CLM            |           | Sample Matrix Spike Control Assessment                            | MS/MSD 1    | MS/MSD 2 |
| Date:                                        |                |           | Sample Collection Date:                                           | 10/14/2024  |          |
| Batch ID:                                    | 81854          |           | Sample I.D.                                                       | 50384959002 |          |
| Wallx.                                       | <b>^</b>       |           | Sample MSD LD.                                                    | 50384959004 |          |
| essment                                      |                |           | Spike I.D.:                                                       | 23-063      |          |
| MB Sample ID                                 | 3426164        |           | MS/MSD Decay Corrected Spike Concentration (pCi/mL):              | 32.294      |          |
| MB concentration:                            | 0.340          |           | Spike Valume Used in MS (mL):                                     | 0.20        |          |
| M/B Counting Uncertainty:                    | 0.333          |           | Spike Volume Used in MSD (mL):                                    | 0.20        |          |
| MB MDC:                                      | 0.510          |           | MS Aliquot (L, g, F):                                             | 0.652       |          |
| MB Numerical Performance Indicator.          | 2:00           |           | MS Target Conc.(pCi/l., g, F):                                    | 9.905       |          |
| MB Status vs Numerical Indicator:            | N/A            |           | MSD Aliquot (L, g, F):                                            | 0.651       |          |
| MB Status vs. MDC:                           | Pass           |           | MSD Target Conc. (pCi/L, g, F):                                   | 9.920       |          |
|                                              |                |           | MS Spike Uncertainty (calculated):                                | 0.466       |          |
| ol Sample Assessment                         | LCSD (Y or N)? | z         | MSD Spike Uncertainty (calculated):                               | 0.466       |          |
|                                              | LCS81854       | LCSD81854 | Sample Result:                                                    | 0.129       |          |
| Count Date:                                  | 10/31/2024     |           | Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.367       |          |
| Spike I.D.:                                  | 23-063         |           | Sample Matrix Spike Result:                                       | 10.566      |          |
| Spike Concentration (pCi/mL):                | 32.294         |           | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1.513       |          |
| Volume Used (mL):                            | 0.10           |           | Sample Matrix Spike Duplicate Result:                             | 8.774       |          |
| Aliquot Volume (L, g, F):                    | 0.652          |           | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 1.336       |          |
| Target Conc. (pCi/L, g, F):                  | 4.954          |           | MS Numerical Performance Indicator:                               | 0.641       |          |
| Uncertainty (Calculated):                    | 0.233          |           | MSD Numerical Performance Indicator.                              | -1.711      |          |
| Result (pCi/L, g, F):                        | 5.693          |           | MS Percent Recovery:                                              | 105.37%     |          |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F): | 1.081          |           | MSD Percent Recovery:                                             | 87.14%      |          |
| Numerical Performance Indicator:             | 1.31           |           | MS Status vs Numerical Indicator.                                 | N/A         |          |
| Percent Recovery:                            | 114.92%        |           | MSD Status vs Numerical Indicator:                                | N/A         |          |
| Chafrie or Alimonian Indicator               | VIV            |           | MO Status ve Decovery                                             | 0350        |          |

Method Blank Assessment

Laboratory Control Sample Assessment

| N/A<br>Pass<br>Pass<br>136%<br>71%                                                                                                               | 50384959002<br>50384959003<br>50384959004<br>10.568<br>1.513<br>8.774<br>1.336<br>1.740<br>18.94%<br>NIA<br>NIA<br>PASS<br>32%                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSD Status vs Numerical Indicator. MS Status vs Recovery: MSD Status vs Recovery: MSMSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: | Matrix Spilke/Matrix Spike Duplicate Sample Assessment Sample I.D. Sample MS I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result Matrix Spike Duplicate Result Matrix Spike Duplicate Result Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Inmit |
|                                                                                                                                                  | Enter Duplicate sample IDs if other than LCS/LCSD in the space below.                                                                                                                                                                                                                                                                                                                                                                    |
| 114.92%<br>N/A<br>Pass<br>133%<br>73%                                                                                                            | See Below ##                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Percent Recovery: Status vs Numerical Indicator: Status vs Recovery: Upper % Recovery Limits: Lower % Recovery Limits:                           | Duplicate Sample Assessment  Sample I.D.:  Duplicate Sample I.D.:  Sample Result (pCi/L. g, F):  Sample Duplicate Result (pCi/L. g, F):  Sample Duplicate Result (pCi/L. g, F):  Are sample and/or duplicate results below RL?  Duplicate Numerical Performance Indicator:  Duplicate Status vs Numerical Indicator:  Duplicate Status vs RPD:  Duplicate Status vs RPD:  Duplicate Status vs RPD:  Duplicate Status vs RPD:             |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

### REH 10/31/24

Arizona DHES requires qualification for any AZ DW samples reported where the QC does not meet the recommended limits of the Manual for the Certification of Labs Analyzing Drinking Waters, 5th Edition, section 7.7 of Chapter VI.

Page 17 of 18

## **Quality Control Sample Performance Assessment**

Pace Analytical

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2

50384959002 50384959003 50384959004

Sample I.D. Sample MS I.D.

Sample MSD I.D. Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL):

Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F):
MSD Aliquot (L, g, F):
MSD Target Conc. (pCi/L, g, F):

10/14/2024 MS/MSD

Sample Collection Date:

Sample Matrix Spike Control Assessment

23-043 34.948 0.20 0.20 0.802 8.714 0.427 0.427 0.427 0.367 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 1.933 8.709

Sample Result 2 Sigma CSU (pCi/L, g, F): Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):

Sample Matrix Spike Result

Sample Matrix Spike Duplicate Result:

Sample Result:

MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated): Pass

Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):
MS Numerical Performance Indicator:
MSD Numerical Performance Indicator:

MS Percent Recovery. MSD Percent Recovery: MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MS Status vs Recovery. MSD Status vs Recovery. MS/MSD Upper % Recovery Limits MS/MSD Lower % Recovery Limits

Ra-228 VAL 10/25/2024 81855 WT Worklist: Matrix: Analyst: Date:

| John Diank Assessment               |         |
|-------------------------------------|---------|
| Method Digili Assessingli           |         |
| MB Sample ID                        | 3426166 |
| MB concentration:                   | 0.278   |
| M/B 2 Sigma CSU:                    | 0.305   |
| MB MDC:                             | 0.632   |
| MB Numerical Performance Indicator: | 1.79    |
| MB Status vs Numerical Indicator:   | Pass    |
| MB Status vs. MDC:                  | Pass    |

-aboratory

| z                         | LCSD81855 |             |             |                                               |                   |                           |                             |                           |                       |                                     |                                  |                   |                                |                     |                          |                          |
|---------------------------|-----------|-------------|-------------|-----------------------------------------------|-------------------|---------------------------|-----------------------------|---------------------------|-----------------------|-------------------------------------|----------------------------------|-------------------|--------------------------------|---------------------|--------------------------|--------------------------|
| LCSD (Y or N)?            | LCS81855  | 10/31/2024  | 23-043      | 34.753                                        | 0.10              | 0.818                     | 4.250                       | 0.208                     | 3.954                 | 0.941                               | 09.0                             | 93.03%            | A/A                            | Pass                | 135%                     | %09                      |
| Control Sample Assessment |           | Count Date: | Spike I.D.: | Decay Corrected Spike Concentration (pCi/mL): | Volume Used (mL): | Aliquot Volume (L, g, F): | Target Conc. (pCi/L, g, F): | Uncertainty (Calculated): | Result (pCi/L, g, F): | LCS/LCSD 2 Sigma CSU (pCi/L, g, F): | Numerical Performance Indicator: | Percent Recovery: | Status vs Numerical Indicator: | Status vs Recovery: | Upper % Recovery Limits: | Lower % Recovery Limits: |

|                                                       | 50384959002     | 50384959003<br>50384959004        | 9.578                       | 1.933                                          | 7.407                                 | 1.509                                                    | 1.736                                      | 25.28%                                                   | Pass                                             | Pass                             | 36%          |
|-------------------------------------------------------|-----------------|-----------------------------------|-----------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.<br>Sample MSD I.D. | Sample Matrix Spike Result: | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | S BBD I imit |
|                                                       | Enter Duplicate | sample IDs if<br>other than       | LCS/LCSD in                 | the space below.                               |                                       |                                                          |                                            |                                                          |                                                  |                                  |              |

See Below ##

Sample Result (pCi/L, g, F):
Sample Result Z Sigma CSU (pCi/L, g, F):
Sample Duplicate Result (pCi/L, g, F):
Sample Duplicate Result Z Sigma CSU (pCi/L, g, F):
Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator.

**Duplicate RPD:** 

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD: % RPD Limit:

Sample I.D.: Duplicate Sample I.D.

**Juplicate Sample Assessment** 

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ra-228\_81855\_W Ra-228 (ENV-FRM-GBUR-0295 03).xls





November 25, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 16, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson heather.wilson@pacelabs.com

Databa m. Wilson

1(913)563-1407 Project Manager

Enclosures

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



### **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 60462655001 | BAT-13-CCR | Water  | 10/15/24 08:40 | 10/16/24 09:07 |
| 60462655002 | BAT-02-CCR | Water  | 10/15/24 10:55 | 10/16/24 09:07 |
| 60462655003 | BAT-03-CCR | Water  | 10/15/24 13:15 | 10/16/24 09:07 |
| 60462655004 | BAT-10-CCR | Water  | 10/15/24 14:45 | 10/16/24 09:07 |



### **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 60462655001 | BAT-13-CCR | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462655002 | BAT-02-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JXD      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462655003 | BAT-03-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JXD      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462655004 | BAT-10-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|             |            | EPA 6020 | JXD      | 2                    | PASI-K     |
|             |            | EPA 7470 | MLD      | 1                    | PASI-K     |
|             |            | SM 2540C | TML      | 1                    | PASI-K     |
|             |            | EPA 9056 | AAA      | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

| Sample: BAT-13-CCR | Lab ID: 604     | 62655001     | Collected: 10/15/2 | 24 08:40 | Received: 1 | 0/16/24 09:07  | Matrix: Water |      |
|--------------------|-----------------|--------------|--------------------|----------|-------------|----------------|---------------|------|
| Parameters         | Results         | Units        | Report Limit       | DF       | Prepared    | Analyzed       | CAS No.       | Qual |
| 9056 IC Anions     | Analytical Metl | nod: EPA 90  | 56                 |          |             |                |               |      |
|                    | Pace Analytica  | I Services - | Kansas City        |          |             |                |               |      |
| Chloride           | 25.8            | mg/L         | 10.0               | 10       |             | 10/23/24 19:17 | 7 16887-00-6  |      |
| Fluoride           | 2.2             | mg/L         | 0.20               | 1        |             | 10/23/24 19:04 | 1 16984-48-8  |      |
| Sulfate            | 2370            | mg/L         | 200                | 200      |             | 10/23/24 19:29 | 14808-79-8    |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

| Sample: BAT-02-CCR           | Lab ID: 6046                                             | 2655002    | Collected: 10/15/2 | 24 10:55 | Received: 10   | /16/24 09:07 N | Matrix: Water |     |  |  |  |
|------------------------------|----------------------------------------------------------|------------|--------------------|----------|----------------|----------------|---------------|-----|--|--|--|
| Parameters                   | Results                                                  | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |  |
| 6010 MET ICP                 | Analytical Method: EPA 6010 Preparation Method: EPA 3010 |            |                    |          |                |                |               |     |  |  |  |
|                              | Pace Analytical Services - Kansas City                   |            |                    |          |                |                |               |     |  |  |  |
| Arsenic                      | ND                                                       | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-38-2     |     |  |  |  |
| Barium                       | 13.8                                                     | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-39-3     |     |  |  |  |
| Beryllium                    | ND                                                       | ug/L       | 1.0                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-41-7     |     |  |  |  |
| Boron                        | 1130                                                     | ug/L       | 100                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-42-8     |     |  |  |  |
| Cadmium                      | ND                                                       | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-43-9     |     |  |  |  |
| Calcium                      | 359000                                                   | ug/L       | 200                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-70-2     |     |  |  |  |
| Chromium                     | ND                                                       | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-47-3     |     |  |  |  |
| Cobalt                       | ND                                                       | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7440-48-4     |     |  |  |  |
| Lead                         | ND                                                       | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7439-92-1     |     |  |  |  |
| Lithium                      | 197                                                      | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7439-93-2     |     |  |  |  |
| Molybdenum                   | ND                                                       | ug/L       | 20.0               | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7439-98-7     |     |  |  |  |
| Selenium                     | ND                                                       | ug/L       | 15.0               | 1        | 10/24/24 11:57 | 11/01/24 22:00 | 7782-49-2     |     |  |  |  |
| 6020 MET ICPMS               | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |            |                    |          |                |                |               |     |  |  |  |
|                              | Pace Analytical Services - Kansas City                   |            |                    |          |                |                |               |     |  |  |  |
| Antimony                     | ND                                                       | ug/L       | 1.0                | 1        | 10/24/24 14:28 | 11/23/24 15:53 | 7440-36-0     |     |  |  |  |
| Thallium                     | ND                                                       | ug/L       | 1.0                | 1        |                | 11/23/24 15:53 |               |     |  |  |  |
| 7470 Mercury                 | Analytical Method: EPA 7470 Preparation Method: EPA 7470 |            |                    |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                                          | Services - | Kansas City        |          |                |                |               |     |  |  |  |
| Mercury                      | ND                                                       | ug/L       | 0.20               | 1        | 11/01/24 10:47 | 11/01/24 13:52 | 7439-97-6     |     |  |  |  |
| 2540C Total Dissolved Solids | Analytical Meth                                          | od: SM 254 | 40C                |          |                |                |               |     |  |  |  |
|                              | Pace Analytical Services - Kansas City                   |            |                    |          |                |                |               |     |  |  |  |
| Total Dissolved Solids       | 3010                                                     | mg/L       | 100                | 1        |                | 10/17/24 15:46 |               |     |  |  |  |
| 9056 IC Anions               | Analytical Meth                                          | od: EPA 90 | 056                |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                                          | Services - | Kansas City        |          |                |                |               |     |  |  |  |
| Chloride                     | 181                                                      | mg/L       | 50.0               | 50       |                | 10/23/24 19:55 | 16887-00-6    |     |  |  |  |
| Fluoride                     | 0.51                                                     | mg/L       | 0.20               | 1        |                | 10/23/24 19:42 | 16984-48-8    |     |  |  |  |
| Sulfate                      | 1400                                                     | mg/L       | 200                | 200      |                | 10/23/24 20:08 |               |     |  |  |  |



Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

| Sample: BAT-03-CCR           | Lab ID: 6046                                             | 2655003    | Collected: 10/15/2 | 24 13:15 | Received: 10   | /16/24 09:07   | Matrix: Water |     |  |  |  |  |
|------------------------------|----------------------------------------------------------|------------|--------------------|----------|----------------|----------------|---------------|-----|--|--|--|--|
| Parameters                   | Results                                                  | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |  |  |
| 6010 MET ICP                 | Analytical Method: EPA 6010 Preparation Method: EPA 3010 |            |                    |          |                |                |               |     |  |  |  |  |
|                              | Pace Analytical Services - Kansas City                   |            |                    |          |                |                |               |     |  |  |  |  |
| Arsenic                      | ND                                                       | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 2 7440-38-2   |     |  |  |  |  |
| Barium                       | 34.6                                                     | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 7440-39-3     |     |  |  |  |  |
| Beryllium                    | ND                                                       | ug/L       | 1.0                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 2 7440-41-7   |     |  |  |  |  |
| Boron                        | 1220                                                     | ug/L       | 100                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 7440-42-8     |     |  |  |  |  |
| Cadmium                      | ND                                                       | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 2 7440-43-9   |     |  |  |  |  |
| Calcium                      | 442000                                                   | ug/L       | 200                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 2 7440-70-2   |     |  |  |  |  |
| Chromium                     | ND                                                       | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 2 7440-47-3   |     |  |  |  |  |
| Cobalt                       | ND                                                       | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 7440-48-4     |     |  |  |  |  |
| _ead                         | ND                                                       | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 7439-92-1     |     |  |  |  |  |
| _ithium                      | 264                                                      | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 7439-93-2     |     |  |  |  |  |
| Molybdenum                   | ND                                                       | ug/L       | 20.0               | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 2 7439-98-7   |     |  |  |  |  |
| Selenium                     | ND                                                       | ug/L       | 15.0               | 1        | 10/24/24 11:57 | 11/01/24 22:02 | 7782-49-2     |     |  |  |  |  |
| 6020 MET ICPMS               | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |            |                    |          |                |                |               |     |  |  |  |  |
|                              | Pace Analytical Services - Kansas City                   |            |                    |          |                |                |               |     |  |  |  |  |
| Antimony                     | ND                                                       | ug/L       | 1.0                | 1        | 10/24/24 14:28 | 11/23/24 15:56 | 7440-36-0     |     |  |  |  |  |
| Fhallium                     | ND                                                       | ug/L       | 1.0                | 1        | 10/24/24 14:28 |                |               |     |  |  |  |  |
| 7470 Mercury                 | Analytical Method: EPA 7470 Preparation Method: EPA 7470 |            |                    |          |                |                |               |     |  |  |  |  |
|                              | Pace Analytical                                          | Services - | Kansas City        |          |                |                |               |     |  |  |  |  |
| Mercury                      | ND                                                       | ug/L       | 0.20               | 1        | 11/01/24 10:47 | 11/01/24 13:54 | 7439-97-6     |     |  |  |  |  |
| 2540C Total Dissolved Solids | Analytical Meth                                          | od: SM 254 | 10C                |          |                |                |               |     |  |  |  |  |
|                              | Pace Analytical                                          |            |                    |          |                |                |               |     |  |  |  |  |
| Total Dissolved Solids       | 4340                                                     | mg/L       | 125                | 1        |                | 10/17/24 15:46 | 6             |     |  |  |  |  |
| 9056 IC Anions               | Analytical Meth                                          | od: EPA 90 | 56                 |          |                |                |               |     |  |  |  |  |
|                              | Pace Analytical                                          |            |                    |          |                |                |               |     |  |  |  |  |
| Chloride                     | 14.3                                                     | mg/L       | 1.0                | 1        |                | 10/23/24 20:21 | 1 16887-00-6  |     |  |  |  |  |
| Fluoride                     | 0.92                                                     | mg/L       | 0.20               | 1        |                | 10/23/24 20:21 |               |     |  |  |  |  |
|                              | 2180                                                     | mg/L       |                    | 200      |                |                | 7 14808-79-8  |     |  |  |  |  |



Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

| Sample: BAT-10-CCR           | Lab ID: 6046                                             | 2655004      | Collected: 10/15 | 24 14:45 | Received: 10   | /16/24 09:07 N | Matrix: Water |     |  |  |  |
|------------------------------|----------------------------------------------------------|--------------|------------------|----------|----------------|----------------|---------------|-----|--|--|--|
| Parameters                   | Results                                                  | Units        | Report Limit     | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |  |
| 6010 MET ICP                 | Analytical Method: EPA 6010 Preparation Method: EPA 3010 |              |                  |          |                |                |               |     |  |  |  |
|                              | Pace Analytical Services - Kansas City                   |              |                  |          |                |                |               |     |  |  |  |
| Arsenic                      | ND                                                       | ug/L         | 10.0             | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-38-2     |     |  |  |  |
| Barium                       | 15.1                                                     | ug/L         | 5.0              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-39-3     |     |  |  |  |
| Beryllium                    | ND                                                       | ug/L         | 1.0              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-41-7     |     |  |  |  |
| Boron                        | 819                                                      | ug/L         | 100              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-42-8     |     |  |  |  |
| Cadmium                      | ND                                                       | ug/L         | 5.0              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-43-9     |     |  |  |  |
| Calcium                      | 404000                                                   | ug/L         | 200              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-70-2     |     |  |  |  |
| Chromium                     | ND                                                       | ug/L         | 5.0              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-47-3     |     |  |  |  |
| Cobalt                       | ND                                                       | ug/L         | 5.0              | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7440-48-4     |     |  |  |  |
| ₋ead                         | ND                                                       | ug/L         | 10.0             | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7439-92-1     |     |  |  |  |
| Lithium                      | 213                                                      | ug/L         | 10.0             | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7439-93-2     |     |  |  |  |
| Nolybdenum                   | ND                                                       | ug/L         | 20.0             | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7439-98-7     |     |  |  |  |
| Selenium                     | 175                                                      | ug/L         | 15.0             | 1        | 10/24/24 11:57 | 11/01/24 22:04 | 7782-49-2     |     |  |  |  |
| 6020 MET ICPMS               | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |              |                  |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                                          | Services - I | Kansas City      |          |                |                |               |     |  |  |  |
| Antimony                     | ND                                                       | ug/L         | 1.0              | 1        | 10/24/24 14:28 | 11/23/24 15:59 | 7440-36-0     |     |  |  |  |
| hallium -                    | ND                                                       | ug/L         | 1.0              | 1        |                | 11/23/24 15:59 |               |     |  |  |  |
| 470 Mercury                  | Analytical Method: EPA 7470 Preparation Method: EPA 7470 |              |                  |          |                |                |               |     |  |  |  |
| •                            | Pace Analytical                                          | Services - I | Kansas City      |          |                |                |               |     |  |  |  |
| Mercury                      | ND                                                       | ug/L         | 0.20             | 1        | 11/01/24 10:47 | 11/01/24 13:57 | 7439-97-6     |     |  |  |  |
| 2540C Total Dissolved Solids | Analytical Meth                                          | od: SM 254   | 0C               |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                                          |              |                  |          |                |                |               |     |  |  |  |
| Total Dissolved Solids       | 4060                                                     | mg/L         | 125              | 1        |                | 10/17/24 15:47 |               |     |  |  |  |
| 0056 IC Anions               | Analytical Meth                                          | od: EPA 905  | 56               |          |                |                |               |     |  |  |  |
|                              | Pace Analytical                                          | Services - I | Kansas City      |          |                |                |               |     |  |  |  |
| Chloride                     | 23.4                                                     | mg/L         | 2.0              | 2        |                | 10/23/24 21:38 | 16887-00-6    |     |  |  |  |
| Fluoride                     | 0.62                                                     | mg/L         | 0.20             | 1        |                | 10/23/24 20:59 |               |     |  |  |  |
| Sulfate                      | 2180                                                     | mg/L         | 200              | 200      |                | 10/23/24 21:51 |               |     |  |  |  |



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

QC Batch: 914830 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462655002, 60462655003, 60462655004

METHOD BLANK: 3621878 Matrix: Water

Associated Lab Samples: 60462655002, 60462655003, 60462655004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 11/01/24 13:38

LABORATORY CONTROL SAMPLE: 3621879

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.2 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3621880 3621881

MS MSD

60462558002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 5 100 20 Mercury ug/L 5 5.0 5.3 106 75-125 6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

QC Batch: 913745 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462655002, 60462655003, 60462655004

METHOD BLANK: 3617416 Matrix: Water

Associated Lab Samples: 60462655002, 60462655003, 60462655004

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Arsenic    | ug/L  | ND              | 10.0               | 11/01/24 21:57 |            |
| Barium     | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Beryllium  | ug/L  | ND              | 1.0                | 11/01/24 21:57 |            |
| Boron      | ug/L  | ND              | 100                | 11/01/24 21:57 |            |
| Cadmium    | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Calcium    | ug/L  | ND              | 200                | 11/01/24 21:57 |            |
| Chromium   | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Cobalt     | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Lead       | ug/L  | ND              | 10.0               | 11/01/24 21:57 |            |
| Lithium    | ug/L  | ND              | 10.0               | 11/01/24 21:57 |            |
| Molybdenum | ug/L  | ND              | 20.0               | 11/01/24 21:57 |            |
| Selenium   | ug/L  | ND              | 15.0               | 11/01/24 21:57 |            |

| LABORATORY CONTROL SAMPLE: | 3617417 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Arsenic                    | ug/L    | 1000  | 920    | 92    | 80-120 |            |
| Barium                     | ug/L    | 1000  | 998    | 100   | 80-120 |            |
| Beryllium                  | ug/L    | 1000  | 1000   | 100   | 80-120 |            |
| Boron                      | ug/L    | 1000  | 958    | 96    | 80-120 |            |
| Cadmium                    | ug/L    | 1000  | 998    | 100   | 80-120 |            |
| Calcium                    | ug/L    | 10000 | 10300  | 103   | 80-120 |            |
| Chromium                   | ug/L    | 1000  | 1010   | 101   | 80-120 |            |
| Cobalt                     | ug/L    | 1000  | 1030   | 103   | 80-120 |            |
| Lead                       | ug/L    | 1000  | 1030   | 103   | 80-120 |            |
| Lithium                    | ug/L    | 1000  | 982    | 98    | 80-120 |            |
| Molybdenum                 | ug/L    | 1000  | 1000   | 100   | 80-120 |            |
| Selenium                   | ug/L    | 1000  | 982    | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX S |       | 3617419               |                      |                       |              |               |             |              |                 |     |            |      |
|-------------------------|-------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter               | Units | 60462959007<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Arsenic                 | ug/L  | <0.0020<br>mg/L       | 1000                 | 1000                  | 899          | 859           | 90          | 86           | 75-125          | 5   | 20         |      |
| Barium                  | ug/L  | 0.094<br>mg/L         | 1000                 | 1000                  | 1030         | 996           | 94          | 90           | 75-125          | 4   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

| MATRIX SPIKE & MATRIX | SPIKE DUP | LICATE: 3617     | 418<br>MS | MSD   | 3617419 |        |       |       |        |     |     |      |
|-----------------------|-----------|------------------|-----------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |           | 60462959007      | Spike     | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units     | Result           | Conc.     | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Beryllium             | ug/L      | <0.00012<br>mg/L | 1000      | 1000  | 974     | 927    | 97    | 93    | 75-125 | 5   | 20  |      |
| Boron                 | ug/L      | 0.081J<br>mg/L   | 1000      | 1000  | 989     | 971    | 91    | 89    | 75-125 | 2   | 20  |      |
| Cadmium               | ug/L      | <0.00075<br>mg/L | 1000      | 1000  | 937     | 897    | 94    | 90    | 75-125 | 4   | 20  |      |
| Calcium               | ug/L      | 123 mg/L         | 10000     | 10000 | 135000  | 133000 | 119   | 97    | 75-125 | 2   | 20  |      |
| Chromium              | ug/L      | <0.0010<br>mg/L  | 1000      | 1000  | 981     | 921    | 98    | 92    | 75-125 | 6   | 20  |      |
| Cobalt                | ug/L      | <0.0012<br>mg/L  | 1000      | 1000  | 976     | 925    | 98    | 92    | 75-125 | 5   | 20  |      |
| Lead                  | ug/L      | <0.0038<br>mg/L  | 1000      | 1000  | 952     | 914    | 95    | 91    | 75-125 | 4   | 20  |      |
| Lithium               | ug/L      | 0.014J<br>mg/L   | 1000      | 1000  | 931     | 908    | 92    | 89    | 75-125 | 3   | 20  |      |
| Molybdenum            | ug/L      | <0.0010<br>mg/L  | 1000      | 1000  | 979     | 927    | 98    | 93    | 75-125 | 6   | 20  |      |
| Selenium              | ug/L      | <0.0055<br>mg/L  | 1000      | 1000  | 942     | 902    | 94    | 90    | 75-125 | 4   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Antimony

Thallium

Date: 11/25/2024 12:58 PM

### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

QC Batch: 913864 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462655002, 60462655003, 60462655004

METHOD BLANK: 3618010 Matrix: Water

Associated Lab Samples: 60462655002, 60462655003, 60462655004

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed ND 1.0 11/23/24 15:04 ug/L ND 1.0 11/23/24 15:04 ug/L

LABORATORY CONTROL SAMPLE: 3618011

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Antimony 40 39.9 100 80-120 ug/L ug/L Thallium 40 39.1 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3618012 3618013 MS MSD 60462558001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Antimony ug/L ND 40 40 36.6 36.5 91 75-125 0 20 Thallium ND 40 40 37.0 36.5 92 91 75-125 20 ug/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

QC Batch: 913310 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462655002, 60462655003, 60462655004

METHOD BLANK: 3616004 Matrix: Water

Associated Lab Samples: 60462655002, 60462655003, 60462655004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 10/17/24 15:27

LABORATORY CONTROL SAMPLE: 3616005

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 997 100 80-120

SAMPLE DUPLICATE: 3616007

60462775003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1160 **Total Dissolved Solids** mg/L 1140 2 10

SAMPLE DUPLICATE: 3616220

Date: 11/25/2024 12:58 PM

60462533002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 Total Dissolved Solids 2890 mg/L 2840 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

QC Batch: 913561 Analysis Method: EPA 9056
QC Batch Method: EPA 9056 Analysis Description: 9056 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462655001, 60462655002, 60462655003, 60462655004

METHOD BLANK: 3616728 Matrix: Water

Associated Lab Samples: 60462655001, 60462655002, 60462655003, 60462655004

|           |       | Diam   | reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Chloride  | mg/L  | ND     | 1.0       | 10/22/24 21:56 |            |
| Fluoride  | mg/L  | ND     | 0.20      | 10/22/24 21:56 |            |
| Sulfate   | mg/L  | ND     | 1.0       | 10/22/24 21:56 |            |

LABORATORY CONTROL SAMPLE: 3616729

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Chloride  | mg/L  |                | 4.9           | 98           | 80-120          |            |
| Fluoride  | mg/L  | 2.5            | 2.4           | 97           | 80-120          |            |
| Sulfate   | mg/L  | 5              | 4.9           | 98           | 80-120          |            |

| MATRIX SPIKE & MATRIX S | SPIKE DUPI | LICATE: 3616          | 730                  |                       | 3616731      |               |             |              |                 |     |            | •    |
|-------------------------|------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter               | Units      | 60462302001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Chloride                | mg/L       | 178                   | 500                  | 500                   | 576          | 575           | 80          | 79           | 80-120          | 0   | 15         | M1   |
| Fluoride                | mg/L       | 4.2                   | 2.5                  | 2.5                   | 6.7          | 6.8           | 101         | 103          | 80-120          | 0   | 15         |      |
| Sulfate                 | ma/L       | 4140                  | 5000                 | 5000                  | 8790         | 8840          | 93          | 94           | 80-120          | 1   | 15         |      |

SAMPLE DUPLICATE: 3616732

Date: 11/25/2024 12:58 PM

|           |       | 60462302002 | Dup    |     | Max |            |
|-----------|-------|-------------|--------|-----|-----|------------|
| Parameter | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride  | mg/L  | 176         | 176    | 0   | 15  |            |
| Fluoride  | mg/L  | 0.71        | 0.76   | 7   | 15  |            |
| Sulfate   | mg/L  | 3210        | 3340   | 4   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 11/25/2024 12:58 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462655

Date: 11/25/2024 12:58 PM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|----------|-------------------|---------------------|
| 60462655002 | BAT-02-CCR | EPA 3010        | 913745   | EPA 6010          | 913925              |
| 60462655003 | BAT-03-CCR | EPA 3010        | 913745   | EPA 6010          | 913925              |
| 60462655004 | BAT-10-CCR | EPA 3010        | 913745   | EPA 6010          | 913925              |
| 60462655002 | BAT-02-CCR | EPA 3010        | 913864   | EPA 6020          | 913919              |
| 60462655003 | BAT-03-CCR | EPA 3010        | 913864   | EPA 6020          | 913919              |
| 60462655004 | BAT-10-CCR | EPA 3010        | 913864   | EPA 6020          | 913919              |
| 60462655002 | BAT-02-CCR | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462655003 | BAT-03-CCR | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462655004 | BAT-10-CCR | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462655002 | BAT-02-CCR | SM 2540C        | 913310   |                   |                     |
| 60462655003 | BAT-03-CCR | SM 2540C        | 913310   |                   |                     |
| 60462655004 | BAT-10-CCR | SM 2540C        | 913310   |                   |                     |
| 60462655001 | BAT-13-CCR | EPA 9056        | 913561   |                   |                     |
| 60462655002 | BAT-02-CCR | EPA 9056        | 913561   |                   |                     |
| 60462655003 | BAT-03-CCR | EPA 9056        | 913561   |                   |                     |
| 60462655004 | BAT-10-CCR | EPA 9056        | 913561   |                   |                     |

Revision: 2

### DC#\_Title: ENV-FRM-LENE-0009\_Sample Col

WO#:60462655

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | ANALYTICAL SERV | Revis         | sion: 2         | Effective       | Date: 0   | 1/12/20      | 022          | Issuu.      | <b>-</b> , |              |            | Y .          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------|-----------------|-----------------|-----------|--------------|--------------|-------------|------------|--------------|------------|--------------|
| Courier:   FedEx   UPS   VIA   Clay   PEX   EC    Pace   Xroads   Client   Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client Nar      | me:             | AFCON         | 20              |                 |           |              |              |             |            |              |            |              |
| Custody Seal on Cooler/Box Present: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Courier:        | FedEx Z         |               | 7               | -<br>y □ PEX    | □ E       | CI 🗆         | Pace         | . □ Xro     | ads 🔲      | Client □     | Other □    |              |
| Packing Material: Bubble Wrap   Type of Ice: Blue None Cooler Temperature (*C): As-read   0 4 4 Corr. Factor   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tracking #:     | 7146            | 2381          | 1274/13         | // Pace Sh      | ipping La | abel Used    | d? Y         | es 🗆 🐧      | 0          |              |            |              |
| Type of Ice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Custody Sea     | al on Cooler/   | Box Presen    | t: Yes          | No □ Se         | als intac | t: Yes Z     | √ N          | 0 🗆         |            |              |            |              |
| Cooler Temperature (*C): As-read   0 4 8 Corr. Factor   Corrected   D-9/4-7   Date and initiate of person examining contemplate.  Temperature should be above freezing to 6*C  Chain of Custody present:   Dres   No   N/A    Samples arrived within holding time:   Dres   No   N/A    Samples arrived within holding time:   Dres   No   N/A    Short Hold Time analyses (<72hr):   Dres   No   N/A    Sufficient volume:   eived for dissolved tests?   Dres   No   N/A    Sufficient volume received for dissolved tests?   Dres   No   Dres   N/A    Sumples contain multiple phases?   Matrix   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   No   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dres   Dr                                  | Packing Mate    | erial: B        | ubble Wrap    | □ Bubb          | le Bags □       | F         | oam 🗆        | 1            | None 🗆      | Othe       | er 🗆         |            |              |
| Corrected C-779-7    examining contents:   Corrected C-779-7   Examining contents:   Corrected C-779-7   Examining contents:   Corrected C-779-7   Examining contents:   Corrected C-779-7   Corrected C-779-7   Examining contents:   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779-7   Corrected C-779                                  | Thermomete      | er Used:        |               | - ,             |                 |           |              |              | ,           |            |              | 1-22-20-2  |              |
| Temperature should be above freezing to 6°C  Chain of Custody present:  Chain of Custody relinquished:  Samples arrived within holding time:  Short Hold Time analyses (<72hr):  Rush Turn Around Time requested:  Correct containers used:  Correct contain                                  | Cooler Temp     | perature (°C):  | As-read       | 1-0/4.80        | orr. Factor_    | 1.0       | Correct      | ted <u>C</u> | 2.914       | .7         |              |            |              |
| Chain of Custody relinquished:    Samples arrived within holding time:   Short Hold Time analyses (<72hr):   Short Hold Time requested:   Sh                                  | Temperature sh  | hould be above  |               |                 |                 |           |              |              |             |            | p            | 10/16.     | 24           |
| Samples arrived within holding time:    Ves   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Cust   | tody present:   |               |                 |                 | Yes □No   | □N/A         |              |             |            |              | #          | - 3X<br>     |
| Short Hold Time analyses (<72hr):    Ves   No   N/A     No   N/A     Sufficient volume:   Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A     Ves   No   N/A                                      | Chain of Cust   | tody relinquis  | hed:          |                 | 6               | Yes □No   | □N/A         |              |             |            |              |            |              |
| Rush Turn Around Time requested:    Ves   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Samples arriv   | ved within hol  | ding time:    |                 | 6               | Yes □No   | □N/A         |              |             |            |              |            |              |
| Rush Turn Around Time requested:    Ves   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Short Hold T    | ime analyse     | s (<72hr):    |                 |                 | res No    | □N/A         |              |             |            |              |            |              |
| Correct containers used:    Yes   No   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rush Turn A     | round Time      | requested:    |                 |                 | res ZNo   | □n/a         |              |             |            |              |            |              |
| Pace containers used:    Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sufficient volu | ume:            |               |                 | 7               | res □No   | □N/A         |              |             |            |              |            |              |
| Containers intact:    Yes   No   N/A     Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?   Yes   No   N/A     Containers received for dissolved tests?   Yes   No   N/A     Containers requiring pH preservation in compliance?   Alloys, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)     Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)   LOT#:   BE717     Containers requiring the preservation in compliance?   Alloys, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)     Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)   LOT#:   BE717     Containers requiring the preservation in compliance?   Alloys, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)     Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)   LOT#:   BE717     Containers requiring the preservation in compliance?   Alloys   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field?   Yes   No   N/A     Containers requiring the preservation in the field the preservation in the field the p                                  | Correct contai  | iners used:     |               |                 |                 | ∕es □No   | □n/a         |              |             |            |              |            |              |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pace containe   | ers used:       |               |                 |                 | /es □No   | □n/a         |              |             |            |              |            |              |
| Eiltered volume received for dissolved tests?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Containers int  | tact:           |               |                 | 1               | ∕es □No   | □N/A         |              |             |            |              |            |              |
| Sample labels match COC: Date / time / ID / analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unpreserved :   | 5035A / TX10    | 005/1006 soi  | ls frozen in 48 | hrs?            | ∕es □No   | <b>Ø</b> N/A |              |             |            |              |            |              |
| Containers requiring pH preservation in compliance? HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCH-2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cotassium iodide test strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank present:  In Blank p | Filtered volum  | ne received fo  | r dissolved t | tests?          |                 | es No     | □n/a         |              |             |            |              |            |              |
| Containers requiring pH preservation in compliance?  HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  Cyanide water sample checks:  ead acetate strip turns dark? (Record only)  Cotassium iodide test strip turns blue/purple? (Preserve)  Tyes No  Trip Blank present:    Yes   No   Ni/A     List sample IDs, volumes, lot #'s of preservative and the date/time added.  Lot#:    Yes   No   Ni/A     List sample IDs, volumes, lot #'s of preservative and the date/time added.    Yes   No   Ni/A     List sample IDs, volumes, lot #'s of preservative and the date/time added.    Yes   No   Ni/A     List sample IDs, volumes, lot #'s of preservative and the date/time added.    Yes   No   Ni/A     List sample IDs, volumes, lot #'s of preservative and the date/time added.    Yes   No   Ni/A     List sample IDs, volumes, lot #'s of preservative and the date/time added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample labels   | s match COC     | : Date / time | / ID / analyses |                 | res □No   | □n/a         |              |             |            |              |            |              |
| ANO3, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  Cyanide water sample checks:  ead acetate strip turns dark? (Record only)  Potassium iodide test strip turns blue/purple? (Preserve)  Trip Blank present:    Yes   No   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Samples conta   | aln multiple p  | hases?        | Matrlx:         | WT '            | es 🛮 No   | □n/a         |              |             |            |              |            |              |
| Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  LOT#:  Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#:  LOT#                                  | Containers red  | quiring pH pre  | eservation in | compliance?     | <b>/</b>        | ′es □No   |              |              |             |            | s, lot #'s o | f preserva | tive and the |
| Cyanide water sample checks:  ead acetate strip turns dark? (Record only)  Potassium iodide test strip turns blue/purple? (Preserve)  Trip Blank present:    Yes   No   DN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |               | •               | • //            | 872       |              | date/t       | ime addec   | 1.         |              |            |              |
| Potassium iodide test strip turns blue/purple? (Preserve)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |               | K-DRO)          | LOI#.           | 0,0,      |              |              |             |            |              |            |              |
| rip Blank present:    Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   No   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA vials ( >6mm):   Yes   N/A     leadspace in VOA via                                  |                 |                 |               |                 |                 | ′es □No   |              |              |             |            |              |            |              |
| leadspace in VOA vials ( >6mm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Potassium iod   | lide test strip | turns blue/pu | urple? (Preser  | ve)             | 'es □No   |              |              |             |            |              |            |              |
| dditional labels attached to 5035A / TX1005 vials in the field?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trip Blank pre  | sent:           |               |                 |                 | es □No    | DN/A         |              |             |            |              |            |              |
| dditional labels attached to 5035A / TX1005 vials in the field?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Headspace in    | VOA vials ( >   | •6mm):        |                 |                 | es □No    | Z)N/A        |              |             |            |              |            |              |
| lient Notification/ Resolution:     Copy COC to Client? Y / N     Field Data Required? Y / N       erson Contacted:     Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Samples from    | USDA Regul      | ated Area:    | State:          |                 | es □No    | N/A          |              |             |            |              |            |              |
| erson Contacted: Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Additional labe | els attached t  | o 5035A / T>  | K1005 vials in  | the field? □\   | es □No    | <b>E</b> N/A |              |             |            |              |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Client Notifica | ation/ Resolu   | ution:        | Cop             | by COC to Clier | t? Y      | / N          | F            | ield Data R | lequired?  | Υ /          | N          |              |
| omments/ Resolution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | -               |               |                 | Date/Time:      |           |              |              |             |            |              |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments/ Re    | esolution:      |               |                 |                 |           |              |              |             |            |              |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 |               |                 |                 |           |              |              |             |            |              |            |              |
| roject Manager Review: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project Manag   | er Review:      |               |                 |                 |           | Date         | :            |             |            |              |            |              |

JAL DOCUMENT, All relevant fields must be completed accurately.

Section C

Attention

Report To: Vasanta Kallur

Required Project Information

Section B

Required Client Information

Section A Company:

CCc KS Face. !ytical

of

Page:

CHAIN-OF-C! ODY / Analytical Request Document The Chain-of-Custody is

Pace Project No./ Lab I.D. CCE (N/A) DRINKING WATER Samples Intact 55979hog SAMPLE CONDITIONS OTHER Cooler (Y/V) Custody Seale Ice (Y/N) по bevieseя GROUND WATER Residual Chlorine (Y/N) O° ni qmeT 00 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME STATE: Site Location 10115/24 NPDES DATE UST **5240C LDS** 1470 Total Mercury DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 5010 Total Metals\*\* Ormen June \*slajaM latoT 0208 9026 CI, F, SO4 1 N /A thnalysis Test Same as Section A Other Accounts Payable Heather Wilson Methanol Preservatives Olivia Helinski COSSEN company Name: AECOM HOBN 11033, 42700 HCI HNO3 Manager. Pace Profile #: \*OSZH 2 Address ace Quote Unpreserved TIME 1700 m # OF CONTAINERS Buch SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION W 15/24 DATE 0 180 69709374 PRPA CCR \$0731303 5501 1315 1445 606/6109 10/15/14 COLLECTED / RECOM RELINQUISHED BY / AFFILIATION COMPOSITE NEED PO# DATE O'NO Jamie Herman **60709371** P urchase Order No (G=GRAB C=COMP) SAMPLE TYPE roject Number: (see valid codes to left) **3000 XIATAM** roject Name MATRIX COD DRINKING WATER WT WASTE WATER WW PRODUCT P Valid Matrix Codes Greenwood Village, CO 80111 STANDARD jamie.herman@aecom.com ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 6200 South Quebec St BAT-10-COR Sb. As, Ba, Be, Cd. Cr. Co, Pb, Mo. Se. TI BAT-03-CCR SAMPLE ID BAT-02-CCR BAT-13-CCE Required Client Information hone: (303) 740-2614 Requested Due Date/TAT: Section D Address .. B. Ca, U 9) 10 # M∃TI Ŧ 12 3 ~ o 60 Page 18 of 19

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 15% per month for any invoices not paid within 30 days,

F-ALL-Q-020rev 08, 12-Oct-2007

Pace® Analytical Services, LLC

DC#\_Title: ENV-FRM-LENE-0001 v07\_Sample Container Count Effective Date: 7/12/2024

Client:

Site

Profile/EZ#

Notes

11033-3

Other SPLC WPDU BP3Z **BP3B** BP3S **BP3F BP3N** BP1N BP3U BP2U UIA8 + Medn MCKU **IGFU** VG5U VG4U AG38 **NZÐ** UfaA **HIDA** Bein DC9B DC9M **DG9**0 NG9V DC90 DC9H H69A Container Codes Matrix COC Line Item 12 ო 4 2 9 7 00 6 10 7

| ser Codes         |                             |       |                                     |      |                                     |       |                               |   |
|-------------------|-----------------------------|-------|-------------------------------------|------|-------------------------------------|-------|-------------------------------|---|
|                   |                             | Glass |                                     |      | Plactic                             |       | S. N                          | 1 |
| DG9B              | 40mL bisulfate clear vial   | WGKU  | 8oz clear soil jar                  | BP1B | 11L NAOH plastic                    | -     | Wine/Swah                     |   |
| DG9H              | 40mL HCl amber voa vial     | WGFU  | 4oz clear soil iar                  | BP1N | 1L HNO3 plastic                     | Sprit | 120ml Coliform Na Thiosulfate |   |
| DG9M              | 40mL MeOH clear vial        | WG2U  | 2oz clear soil iar                  | BP1S | 1L H2SO4 plastic                    | ZPIC  | Zinlor Ban                    |   |
| DG90              | 40mL TSP amber vial         | JGFU  | 4oz unpreserved amber wide          | BP1U | 1L unpreserved plastic              | AF    | Air Filter                    |   |
| DG9S              | 40mL H2SO4 amber vial       | AG0U  | 100mL unores amber glass            | BP1Z | 1L NaOH, Zn Acetate                 | 20    | Air Cassettes                 |   |
| DG9T              | 40mL Na Thio amber vial     | AG1H  | 1L HCl amber glass                  | BP2B | 500mL NAOH plastic                  | 2     | Terracore Kit                 |   |
| DG90              | 40mL amber unpreserved      | AG1S  | 1L H2SO4 amber glass                | BP2N | 500mL HNO3 plastic                  | _     | Summa Can                     |   |
| VG9H              | 40mL HCI clear vial         | AG1T  | 1L Na Thiosulfate clear/amber glass | BP2S | 500mL H2SO4 plastic                 |       |                               | ı |
| VG9T              | 40mL Na Thio. clear vial    | AG1U  | 1liter unpres amber glass           | BP2U | 500mL unpreserved plastic           |       |                               |   |
| VG9U              | 40mL unpreserved clear vial | AG2N  | 500mL HNO3 amber glass              | BP2Z | 500mL NaOH. Zn Acetate              |       |                               | L |
| BG1S              | 1liter H2SO4 clear glass    | AG2S  | 500mL H2SO4 amber glass             | BP3B | 250mL NaOH plastic                  | T     | Matrix                        |   |
| BG1U              | 1liter unpres glass         | AG3S  | 250mL H2SO4 amber glass             | BP3F | 250mL HNO3 plastic - field filtered | M     | Water                         |   |
| ВСЗН              | 250mL HCL Clear glass       | AG2U  | 500mL unpres amber glass            | BP3N | 250mL HNO3 plastic                  | SL    | Solid                         | ı |
| BG3U              | 250mL Unpres Clear glass    | AG3U  | 250mL unpres amber glass            | BP3U | 250mL unpreserved plastic           | NAL   | Non-aqueous Liquid            |   |
| WGDU              | 16oz clear soil jar         | AG4U  | 125mL unpres amber glass            | BP3S | 250mL H2SO4 plastic                 | 70    | OIL                           |   |
|                   |                             | AG5U  | 100mL unpres amber glass            | BP3Z | 250mL NaOH, Zn Acetate              | WP    | Wipe                          |   |
|                   |                             |       |                                     | BP4U | 125mL unpreserved plastic           | ΜQ    | Drinking Water                |   |
|                   |                             |       |                                     | BP4N | 125mL HNO3 plastic                  |       |                               | l |
|                   |                             |       |                                     | BP4S | 125mL H2SO4 plastic                 |       |                               |   |
|                   |                             |       | Ĩ                                   | WPDU | 16oz unpresserved plstic            |       |                               |   |
| Work Order Number | Nimbor                      |       |                                     |      |                                     |       |                               |   |

Work Order Number:





November 08, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462724

### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Databa m. Wilson

Enclosures

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM







### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



### **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |  |
|-------------|-------------|--------|----------------|----------------|--|
| 60462724001 | BAT-02-CCR  | Water  | 10/15/24 10:55 | 10/17/24 09:45 |  |
| 60462724002 | BAT-03-CCR  | Water  | 10/15/24 13:15 | 10/17/24 09:45 |  |
| 60462724003 | BAT-10-CCR  | Water  | 10/15/24 14:45 | 10/17/24 09:45 |  |
| 60462724004 | BAT-04R-CCR | Water  | 10/16/24 09:05 | 10/17/24 09:45 |  |
| 60462724005 | DUP-02-CCR  | Water  | 10/16/24 08:00 | 10/17/24 09:45 |  |



### **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Lab ID      | Sample ID   | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|--------------------------|----------|----------------------|------------|
| 60462724001 | BAT-02-CCR  | EPA 903.1                | REH1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462724002 | BAT-03-CCR  | EPA 903.1                | REH1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462724003 | BAT-10-CCR  | EPA 903.1                | REH1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462724004 | BAT-04R-CCR | EPA 903.1                | REH1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 60462724005 | DUP-02-CCR  | EPA 903.1                | REH1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Sample: BAT-02-CCR<br>PWS: | <b>Lab ID: 6046</b> 2<br>Site ID: | <b>2724001</b> Collected: 10/15/24 10:55 Sample Type: | Received: | 10/17/24 09:45 | Matrix: Water |      |
|----------------------------|-----------------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                            | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical                   | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                         | 0.245 ± 0.535 (0.954)<br>C:NA T:94%                   | pCi/L     | 11/05/24 13:35 | 5 13982-63-3  |      |
|                            | Pace Analytical                   | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                         | 0.756 ± 0.425 (0.770)<br>C:81% T:86%                  | pCi/L     | 11/01/24 15:40 | 0 15262-20-1  |      |
|                            | Pace Analytical                   | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium Calculation          | 1.00 ± 0.960 (1.72)                                   | pCi/L     | 11/06/24 09:02 | 2 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Sample: BAT-03-CCR<br>PWS: | <b>Lab ID: 6046272</b> 4<br>Site ID: | 4002 Collected: 10/15/24 13:15<br>Sample Type: | Received: | 10/17/24 09:45 | Matrix: Water |      |
|----------------------------|--------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                               | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Serv                 | vices - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                            | 0.260 ± 0.467 (0.817)<br>C:NA T:96%            | pCi/L     | 11/05/24 13:35 | 5 13982-63-3  |      |
|                            | Pace Analytical Serv                 | vices - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                            | 0.679 ± 0.390 (0.700)<br>C:83% T:86%           | pCi/L     | 11/01/24 15:4  | 1 15262-20-1  |      |
|                            | Pace Analytical Serv                 | vices - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation          | 0.939 ± 0.857 (1.52)                           | pCi/L     | 11/06/24 09:02 | 2 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Sample: BAT-10-CCR<br>PWS: | <b>Lab ID: 6046272</b> Site ID: | <b>4003</b> Collected: 10/15/24 14:45 Sample Type: | Received: | 10/17/24 09:45 | Matrix: Water |      |
|----------------------------|---------------------------------|----------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                          | Act ± Unc (MDC) Carr Trac                          | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical Ser             | vices - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                       | -0.0908 ± 0.436 (0.885)<br>C:NA T:93%              | pCi/L     | 11/05/24 13:3  | 5 13982-63-3  |      |
|                            | Pace Analytical Ser             | vices - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                       | -0.0121 ± 0.253 (0.607)<br>C:83% T:93%             | pCi/L     | 11/01/24 15:4  | 1 15262-20-1  |      |
|                            | Pace Analytical Ser             | vices - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation     | 0.000 ± 0.689 (1.49)                               | pCi/L     | 11/06/24 09:02 | 2 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Sample: BAT-04R-CCR<br>PWS: | <b>Lab ID: 6046272</b> 4<br>Site ID: | Collected: 10/16/24 09:05<br>Sample Type: | Received: | 10/17/24 09:45 | Matrix: Water |      |
|-----------------------------|--------------------------------------|-------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                               | Act ± Unc (MDC) Carr Trac                 | Units     | Analyzed       | CAS No.       | Qual |
|                             | Pace Analytical Serv                 | vices - Greensburg                        |           |                |               |      |
| Radium-226                  | EPA 903.1                            | 0.183 ± 0.524 (0.950)<br>C:NA T:95%       | pCi/L     | 11/05/24 13:35 | 5 13982-63-3  |      |
|                             | Pace Analytical Serv                 | rices - Greensburg                        |           |                |               |      |
| Radium-228                  | EPA 904.0                            | 0.720 ± 0.396 (0.694)<br>C:84% T:89%      | pCi/L     | 11/01/24 15:4  | 1 15262-20-1  |      |
|                             | Pace Analytical Serv                 | rices - Greensburg                        |           |                |               |      |
| Total Radium                | Total Radium<br>Calculation          | 0.903 ± 0.920 (1.64)                      | pCi/L     | 11/06/24 09:02 | 2 7440-14-4   |      |



Project: 60731303 PRPA CCR

Pace Project No.: 60462724

| Sample: DUP-02-CCR<br>PWS: | Lab ID: 6046<br>Site ID:    | <b>2724005</b> Collected: 10/16/24 08:00 Sample Type: | Received: | 10/17/24 09:45 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.403 ± 0.536 (0.900)<br>C:NA T:101%                  | pCi/L     | 11/05/24 13:3  | 5 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.318 ± 0.322 (0.666)<br>C:79% T:99%                  | pCi/L     | 11/01/24 15:4  | 1 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.721 ± 0.858 (1.57)                                  | pCi/L     | 11/06/24 09:0  | 2 7440-14-4   |      |



### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

QC Batch: 704229 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60462724001, 60462724002, 60462724003, 60462724004, 60462724005

METHOD BLANK: 3429156 Matrix: Water

Associated Lab Samples: 60462724001, 60462724002, 60462724003, 60462724004, 60462724005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.105 ± 0.278 (0.623) C:84% T:87%
 pCi/L
 11/01/24 15:39

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

QC Batch: 704228 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60462724001, 60462724002, 60462724003, 60462724004, 60462724005

METHOD BLANK: 3429155 Matrix: Water

Associated Lab Samples: 60462724001, 60462724002, 60462724003, 60462724004, 60462724005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0664 ± 0.160 (0.399) C:NA T:103%
 pCi/L
 11/05/24 13:11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 11/08/2024 09:47 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462724

Date: 11/08/2024 09:47 AM

| Lab ID      | Sample ID   | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|--------------------------|----------|-------------------|---------------------|
| 60462724001 | BAT-02-CCR  | EPA 903.1                | 704228   |                   |                     |
| 60462724002 | BAT-03-CCR  | EPA 903.1                | 704228   |                   |                     |
| 60462724003 | BAT-10-CCR  | EPA 903.1                | 704228   |                   |                     |
| 60462724004 | BAT-04R-CCR | EPA 903.1                | 704228   |                   |                     |
| 60462724005 | DUP-02-CCR  | EPA 903.1                | 704228   |                   |                     |
| 60462724001 | BAT-02-CCR  | EPA 904.0                | 704229   |                   |                     |
| 60462724002 | BAT-03-CCR  | EPA 904.0                | 704229   |                   |                     |
| 60462724003 | BAT-10-CCR  | EPA 904.0                | 704229   |                   |                     |
| 60462724004 | BAT-04R-CCR | EPA 904.0                | 704229   |                   |                     |
| 60462724005 | DUP-02-CCR  | EPA 904.0                | 704229   |                   |                     |
| 60462724001 | BAT-02-CCR  | Total Radium Calculation | 707586   |                   |                     |
| 60462724002 | BAT-03-CCR  | Total Radium Calculation | 707586   |                   |                     |
| 60462724003 | BAT-10-CCR  | Total Radium Calculation | 707586   |                   |                     |
| 60462724004 | BAT-04R-CCR | Total Radium Calculation | 707586   |                   |                     |
| 60462724005 | DUP-02-CCR  | Total Radium Calculation | 707586   |                   |                     |

Pace Analytical

## CHAIN-OF-CUS I ODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. CCR DRINKING WATER SAMPLE CONDITIONS OTHER jo □ GROUND WATER Page: 2222 Residual Chlorine (Y/N) Z REGULATORY AGENCY 00 RCRA Requested Analysis Filtered (Y/N) 250 TIME 10/17/24 Site Location STATE NPDES DATE TSU T Sum Radium-226 & 228 ACCEPTED BY / AFFILIATION Fotal Radium-228 F Fotal Radium-226 ↑N/A Trailysis Test Same as Section A Other Pace Ouote 73141
Reference:
Pace Project Heather Wilson Manager:
Pace Profile #: 11033, 8 Accounts Payable Methanol Preservatives Company Name: AECOM Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> HOBN HCI Invoice Information HNO3 2002 POSTH Section C Address: Unpreserved 0011 TIME # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION 10/16/24 1445 DATE 0905 1055 TIME 315 DELT 31303 BARNER COR hZ/91/01 1011574 COLLECTED DATE /A ECOM 60T084786 60731303 RELINQUISHED BY / AFFILIATION TIME START urchase Order No.: 1599461 DATE Report To: Vasanta Kalluri Copy To: Jamie Herman Required Project Information Ь 5 SAMPLE TYPE (G=GRAB C=COMP)  $\geq$ 1 Project Number. 1 (see valid codes to left) **BUOD XIMTAM** roject Name: Section B Valid Matrix Codes DAW WAT SIL CAL WAR ARR TS PRINKING WATER WATER WASTER WASTER WASTER WASTER WASTER WASTER WINDER WINDER ARE ATTESSUE Greenwood Village, CO 80111 jamie.herman@aecom.com BAT-04R-CCR ADDITIONAL COMMENTS 15 Day TAT 6200 South Quebec St (A-Z, 0-91,-) Sample IDs MUST BE UNIQUE DUP-02-CCR SAMPLE ID BAT-03-CCK BAT-10-CCR BAT-01-CCR Section D Required Client Information (303) 740-2614 Section A Required Client Information: Requested Due Date/TAT: AECOM Company: Email To Address: 2 4 ITEM # 5 10 9 7

F-ALL-Q-020rev.08, 12-Oct-2007

Samples Intact (V/V)

Custody Sealer Cooler (Y/N)

ICB (Y/N)

Received on

O. ui qmaT

10115/24

DATE Signed (MM/DD/YY):

Olivia Helinski

PRINT Name of SAMPLER: SIGNATURE of SAMPLER: important Noto: By signing this form ynu are accepting Pace's MET 30 day payment terms and agreeing to late charges of 1,5% per month for any involces not paid within 30 days.

Page 14 of 19

upawaren coullians recental 101171104 via timail 195

| 7                                  | Pace                | Results Reguested By: 1477/2004            | o reducated by. |                                                                      |                                             |                         |                      |                | LAB USE ONLY | 8            | 200               | 3                            | 805                          | Comments | uired                         |          |   |   | Samples Intact Or N           |
|------------------------------------|---------------------|--------------------------------------------|-----------------|----------------------------------------------------------------------|---------------------------------------------|-------------------------|----------------------|----------------|--------------|--------------|-------------------|------------------------------|------------------------------|----------|-------------------------------|----------|---|---|-------------------------------|
|                                    | 00                  | s x No<br>10/17/2024                       | Requested       |                                                                      | 1000                                        | uibs A les<br>7 mu2 les |                      |                | -            | -            | < >               |                              | +                            |          | IR-30 *Rad QC sheets required |          |   |   | Y or N                        |
|                                    | State Of Origin: CO | Cert. Needed: Ye                           |                 |                                                                      | 9ZZ-W                                       | rsl Radiu               |                      |                | ,            | < >          | < ×               | ×                            | ×                            |          | Date/Time                     | 1124 945 |   |   | Received on Ice               |
|                                    | State               |                                            |                 |                                                                      |                                             |                         | rieselved containers | ниоз           | c            | 7 0          | 2                 | 2                            | 2                            |          |                               | 1101     |   |   | Rece                          |
|                                    | ×                   | gged into eCOC                             |                 | Pittsburgh<br>n Road                                                 | 7 15601<br>2-5600                           |                         |                      | Matrix         |              |              |                   |                              | 4005 Water                   |          | Received By                   | monde    |   |   | ak(Y) or N                    |
| stody -                            | Rush Multiplier_    | Samples Pre-Logged ir<br>60731455 PRPA CCR | Subcontract To  | Pace Analytical Pittsburgh<br>1638 Roseytown Road<br>Suites 2,3, & 4 | Greensburg, PA 15601<br>Phone (724)850-5600 |                         |                      | de<br>Cl       |              |              | 14:45 60462724003 | 10/16/2024 09:05 60462724004 | 10/16/2024 08:00 60462724005 |          | Date/Time Rece                |          |   |   | Custody Seal(                 |
| n of Cus                           | <u>⊼</u>            | ٠,                                         | Sub             |                                                                      |                                             |                         |                      | Sample Collect |              | 10/15/2024   | 10/15/2024 14:45  | 10/16/2024                   | 10/16/2024                   | -        | Date/                         |          |   |   | ပွ                            |
| er Chain                           |                     | Workorder Name:                            |                 |                                                                      |                                             |                         |                      | Samp           | S S          | PS           | PS                | PS                           | PS                           |          |                               |          |   |   | Receipt                       |
| Internal Transfer Chain of Custody |                     | Workorder: 60462724                        |                 | Heather Wilson<br>Pace Analytical Kansas<br>9608 Loiret Blvd.        | Lellexa, NS 002.19<br>Phone 1(913)563-1407  |                         |                      | le ID          | CCR          | CCR          | ccR               | R-CCR                        | CCR                          |          | Released By                   |          |   |   | Cooler Temperature on Receipt |
| Intern                             |                     | Workorde                                   | Keport 10       | Heather Wilson Pace Analytical K 9608 Loiret Blvd.                   | Phone 1(913)563-1                           |                         |                      | Item Sample ID | 1 BAT-02-CCR | 2 BAT-03-CCR | 3 BAT-10-CCR      | 4 BAT-04R-CCR                | 5 DUP-02-CCR                 |          | Transfers                     | -        | 2 | 3 | Cooler Te                     |

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory. WO#:30727160

|                          | DC#_Title: ENV-FR       | RM-G   | BUF           | ₹-00  | 88       | v07_Sample        | Conditi  | on Upon Re                | eceipt-            |          |
|--------------------------|-------------------------|--------|---------------|-------|----------|-------------------|----------|---------------------------|--------------------|----------|
|                          | Greensburg              |        |               |       |          |                   |          |                           | 1                  |          |
| Rose                     |                         |        |               |       |          |                   | LIO      | #:307                     | <i>'2</i> 716      | 0        |
|                          | ffective Date: 01/04/20 | )24    |               |       |          |                   | MO.      |                           |                    |          |
| Client Name:             | Pace-KS / A             | ECC    | M             |       |          | F                 | PM: M    | IAR<br>IT: PACE_60        | Due Date:<br>_LEKS | 11/07    |
|                          |                         |        |               |       |          | 75 000            |          |                           |                    |          |
| Courier: Fed Ex          | UPS USPS Clien          | nt UC  | Comn          | nerci | al L     | Pace U Other      |          | Everningd Ry              | 1: PS 10/19/2      | 9        |
| Tracking Number:         | 6432 13930              | 300    |               |       |          |                   |          |                           | •                  |          |
| Custody Seal on Co       | oler/Box Present:       | Yes    | □No           |       | Seal     | ls Intact:        | Yes □No  | Labeled By: _             | PS 10/17/          | 24       |
| Thermometer Used         | :1                      | Гуре о | f Ice:        |       | /et      | Blue None         |          |                           |                    |          |
| Cooler Temperature       | e: Observed Temp        | _      | - •0          | 100   | Cori     | rection Factor: _ |          | ∘C Final Ter              | mp:                | ۰C       |
| Temp should be above for | eezing to 6°C           |        |               |       |          |                   |          |                           |                    |          |
|                          | 2                       |        |               |       |          | pH paper Lot      |          | D.P.D. Residu             | ial Chlorine Lot   | #        |
| Comments:                |                         | Y      | 25            | No    | NA       |                   |          |                           |                    |          |
| Chain of Custody Pre     | sent                    |        | -             |       |          | 1. updates        | 1 coc/   | 1 RWO rece                | word Mat           | M        |
| Chain of Custody Fille   |                         | 1      | 1             |       |          | 2.                |          |                           | 10/17/24           | 1        |
| -Were client corr        | ections present on GO   |        | -             |       |          |                   |          |                           |                    | _        |
| Chain of Custody Reli    | nguished                | /      |               |       |          | 3.                |          |                           |                    | -        |
| Sampler Name & Sign      | ature on COC:           | /      | 4             |       |          | 4.                |          |                           |                    | -H       |
| Sample Labels match      | COC:                    |        | 1             |       |          | 5.                | 1 3      | 26° 124(M.C               |                    | $\dashv$ |
| -Includes date/tir       | ne/ID                   | _      |               |       | _        | time on sar       | npe oc   | os bottles                |                    | 1        |
| Matrix:                  |                         |        | $\Lambda \Pi$ |       |          | <b></b>           | · ·      |                           |                    | $\dashv$ |
| Samples Arrived within   |                         | 1      | 1             | +     |          | 6.                |          |                           |                    | $\dashv$ |
| Short Hold Time Analy    | ysis (<72hr             |        | 1             | -     |          | 7.                |          |                           |                    |          |
| remaining):              |                         | +-     | +             | _     |          | 8.                |          |                           |                    | -        |
| Rush Turn Around Tim     | e Requested:            | +      | +             | +     |          | 9.                |          |                           |                    | $\neg$   |
| Sufficient Volume:       | d.                      | -      | +             | +     | -        | 10.               |          |                           |                    |          |
| Correct Containers Use   | ¥3 - 0.03               | 1      | +             | +     | $\dashv$ | 10.               |          |                           |                    | $\neg$   |
| Containers Intact:       | SEU                     | 1      | +             | +     | $\neg$   | 11.               |          |                           |                    |          |
| Orthophosphate field fi  | Itered.                 |        | $\vdash$      | +,    | -        | 12.               |          |                           |                    |          |
| Hex Cr Aqueous sample    | s field filtered:       |        |               | 1,    | 7        | 13.               |          |                           |                    |          |
| Organic Samples checke   | ed for dichlorination   |        |               | 1     | 1        | 14:               |          |                           |                    | _        |
| Filtered volume receive  | d for dissolved tests:  |        |               | /     |          | 15:               |          |                           |                    | 4        |
| All containers checked   |                         | /      |               |       | 4        | 16.               |          |                           |                    | -        |
| exceptions: VOA, co      | liform, TOC, O&G,       |        |               |       | -        | PHCD              |          |                           |                    |          |
| Phenolics, Radon, no     | on-aqueous matrix       |        |               |       | $\perp$  | 711               |          |                           |                    | 4        |
| All containers meet met  | hod preservation        | /      |               | Γ     |          | nitial when 5     | 383.00   | ite/Time of<br>eservation |                    | 1        |
| requirements:            | L                       |        |               |       | _        | ot# of added      |          |                           |                    | ]        |
|                          |                         |        |               |       |          | reservative       |          |                           |                    | 1        |
| 8260C/D: Headspace in \  |                         |        |               | /     |          | 17.               |          |                           |                    | 1        |
| 624.1: Headspace in VOA  | Vials (0mm)             |        |               |       | 1        | .8.               |          |                           |                    |          |
| Radon: Headspace in RAD  | ) Vials (0mm)           |        |               |       | 1        | 9.                |          |                           | NO                 |          |
| Trip Blank Present:      |                         |        |               | /     |          |                   |          | present? YES              |                    |          |
| Rad Samples Screened <.  | 05 mrem/hr.             | /      |               |       |          | mpleted PS        | Date: 17 | 124 SN:                   | ey Meler U143      | 30       |
| Comments:                |                         |        |               |       |          | •                 | _        |                           |                    |          |
| 1                        |                         |        |               | -     |          |                   |          |                           |                    |          |

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Qualtrax ID: 55680

Pace Analytical

## CHAIN-OF-CUS I ODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. CCR DRINKING WATER SAMPLE CONDITIONS OTHER of GROUND WATER Page: Residual Chlorine (Y/N) Z REGULATORY AGENCY 8 RCRA Requested Analysis Filtered (Y/N) 25 TIME Voln124 STATE Site Location NPDES DATE TSU T ACCEPTED BY / AFFILIATION Sum Radium-226 & 228 Fotal Radium-228 T Total Radium-226 N/A Transpais Test Same as Section A Other Accounts Payable Heather Wilson Methanol Preservatives Company Name: AECOM Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Reference:
Pace Project Heather Wi HOBN 73141 HCI Invoice Information; HNO3 20000 PS5H Section C ace Guote Address: Unpreserved TIME 0011 NN # OF CONTAINERS 6 SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION 10/16/24 445 DATE 0905 1055 TIME BOT 31403 CCR iolishi 10 16/24 COLLECTED DATE 60708478 60731303 /A ECOM RELINQUISHED BY / AFFILIATION TIME START Purchase Order No.: 1599461 DATE Report To: Vasanta Kalluri Sopy To: Jamie Herman Required Project Information P (G=6RAB C=COMP) SAMPLE TYPE P  $\rightarrow$ 1 Project Number: M Project Name: MATRIX CODE Section B MO#:30727160 Greenwood Village, CO 80111 jamie herman@aecom.com BM1-04R-CCR ADDITIONAL COMMENTS 15 Day TAT 6200 South Quebec St (A-Z, 0-91,-) Sample IDs MUST BE UNIQUE - CCR SAMPLE ID BAT-03-CCK BAY-10-CCR BAT-01-CCR Required Client Information DUP-02 (303) 740-2614 Required Client Information; Requested Due Date/TAT: AECOM company. 4ddress: Email To: 5 9 10 ITEM # 1 12

F-ALL-Q-020rev.08, 12-Oct-2007

(V/V)

Cooler (Y/N)

(NIY) eal

по раучеряя

D. ui dmal

10115/24

DATE Signed (MM/DD/YY):

Olivia Helinski

PRINT Name of SAMPLER;

Due Date: 11/07/24

CLIENT: PACE\_60\_LEKS

Page 17 of 19

PM: MAR

.. I terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

# Quality Control Sample Performance Assessment

Pace Analytical"

Ra-226 REH1 10/22/2024 81909 DW Test: Analyst: Date: Batch ID: Matrix:

3429155 -0.066 0.159 0.399 -0.82 N/A Pass

MB Sample ID
MB concentration:
M/B Counting Uncertainty:
M/B MDC:

Method Blank Assessment

MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

|     | Sample Matrix Spike Control Assessment                            | MS/MSD 1 | MS/MSD 2 |
|-----|-------------------------------------------------------------------|----------|----------|
|     | Sample Collection Date:                                           |          |          |
|     | Sample I.D.                                                       |          |          |
|     | Sample MSD I.D.                                                   |          |          |
|     | Spike I.D.:                                                       |          |          |
|     | MS/MSD Decay Corrected Spike Concentration (pCi/mL):              |          |          |
|     | Spike Volume Used in MS (mL):                                     |          |          |
|     | Spike Volume Used in MSD (mL):                                    |          |          |
|     | MS Aliquot (L, g, F):                                             |          |          |
|     | MS Target Conc.(pCi/L, g, F):                                     |          |          |
|     | MSD Aliquot (L, g, F):                                            |          |          |
|     | MSD Target Conc. (pCi/L, g, F):                                   |          |          |
|     | MS Spike Uncertainty (calculated):                                |          |          |
|     | MSD Spike Uncertainty (calculated):                               |          |          |
| 606 | Sample Result:                                                    |          |          |
| 4   | Sample Result Counting Uncertainty (pCi/L, g, F):                 |          |          |
| _   | Sample Matrix Spike Result:                                       |          |          |
|     | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           |          |          |
|     | Sample Matrix Spike Duplicate Result:                             |          |          |
|     | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |          |          |
|     | MS Numerical Performance Indicator:                               |          |          |
|     | MSD Numerical Performance Indicator;                              |          |          |
|     | MS Percent Recovery:                                              |          |          |
|     | MSD Percent Recovery:                                             |          |          |
|     | MS Status vs Numerical Indicator:                                 |          |          |
| ٠,  | MSD Status vs Numerical Indicator:                                |          |          |
|     | MS Status vs Recovery:                                            |          |          |
|     | MSD Status vs Recovery:                                           |          |          |
|     | MS/MSD Upper % Recovery Limits:                                   |          |          |
|     | MS/MSD Lower % Recovery Limits:                                   |          |          |

| Laboratory Control Sample Assessment         | LCSD (Y or N)? | >-        | MSD Spike Un                              |
|----------------------------------------------|----------------|-----------|-------------------------------------------|
|                                              | LCS81909       | LCSD81909 |                                           |
| Count Date:                                  | 11/5/2024      | 11/5/2024 | Sample Result Counting Un                 |
| Spike I.D.:                                  | 23-063         | 23-063    | Sampl                                     |
| Spike Concentration (pCi/mL):                | 32.293         | 32.293    | Matrix Spike Result Counting Un           |
| Volume Used (mL):                            | 0.10           | 0.10      | Sample Matrix S                           |
| Aliquot Volume (L, g, F):                    |                | 0.652     | Matrix Spike Duplicate Result Counting Un |
| Target Conc. (pCi/L, g, F):                  | 4.961          | 4.956     | MS Numerical F                            |
| Uncertainty (Calculated):                    | 0.233          | 0.233     | MSD Numerical F                           |
| Result (pCi/L, g, F):                        | 3.721          | 4.308     | _                                         |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F): | 0.810          | 0.853     | W                                         |
| Numerical Performance Indicator:             | -2.88          | -1.44     | MS Status v                               |
| Percent Recovery:                            | 75.01%         | 86.93%    | MSD Status v                              |
| Status vs Numerical Indicator:               | N/A            | N/A       | - W                                       |
| Status vs Recovery:                          | Pass           | Pass      | MSI                                       |
| Upper % Recovery Limits:                     | 133%           | 133%      | ddn ds/wsd nbb                            |
| Lower % Recovery Limits:                     | 73%            | 73%       | MS/MSD Low                                |
|                                              |                |           |                                           |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D. Sample MSI.D. Sample MSI.D. Sample MSI.D. SSD in Matrix Spike Result Counting Uncertainty (PCift., g. F): Sample MSI.D. Sample MSI.D. Sample MSI.D. Sample Matrix Spike Result Matrix Spike Duplicate Result Counting Uncertainty (PCift., g. F): Duplicate Numerical Preformance Indicator (Based on the Percent Recoveries) MSI MSD Duplicate RPD: MSI MSD Duplicate Status vs Numerical Indicator MSI MSD Duplicate Status vs Numerical Indicator MSI MSD Duplicate Status vs RPD: MSI MSD Duplicate Status vs RPD: % RPD Limit. |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L                                                     | Enter Duplicate sample IDs if other than LCS/LCSD in the space below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                       | LCSB1909<br>1,721<br>3,721<br>0,810<br>4,308<br>0,853<br>NO<br>-0,978<br>14,72%<br>NIA<br>Pass<br>32%                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Duplicate Sample Assessment                           | Sample I.D.  Sample Result (polit. g. F.)  Sample Result (polit. g. F.)  Sample Duplicate Result (polit. g. F.)  Sample Duplicate Result (polit. g. F.)  Are sample andor duplicate results below RL?  Duplicate Nurmerical Performance Indicator:  Duplicate Status vs Nurmerical Indicator:  Duplicate Status vs Nurmerical Indicator:  Duplicate Status vs Nurmerical Indicator:  Duplicate Status vs RPD:  Sample RPD:  Outplicate Status vs RPD:  Outplicate Status vs RPD:  Sample RPD Initit                                             |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

My Standard Market and Market of the AC does not meet the recommended limits of the Manual for the Certification of Labs Analyzing Drinking Waters, 5th Edition , section 7.7 of Chapter VI.

Cery (1/5/hy

Ra-226\_81909\_W Ra-226 (ENV-FRM-GBUR-0294 03).xls

### Pace Analytical

## Quality Control Sample Performance Assessment

ZPC 10/26/2024 Ra-228 Test: Analyst: Date:

MS/MSD 2

MS/MSD .

Analyst Must Manually Enter All Fields Highlighted in Yellow.

81910 WT Worklist: Matrix:

0.105 0.278 0.623 0.74 Pass Pass MB concentration: M/B 2 Sigma CSU: MB MDC: MB Sample ID MB Numerical Performance Indicator: MB Status vs Numerical Indicator: MB Status vs. MDC: Method Blank Assessment

II CSD (Y or N)?

Sample I.D. Sample MS I.D. MSD Target Conc. (pCi/L, g, F): Matrix Spike Duplicate Result 2 Sigma CSU (pCI/I, g, F): MS Numerical Performance Indicator: MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: Sample Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: MS Percent Recovery MS Status vs Recovery. Sample Collection Date: Sample MSD I.D. MS/MSD Decay Corrected Spike Concentration (pCi/mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MS Spike Uncertainty (calculated): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: MSD Numerical Performance Indicator MS Status vs Numerical Indicator MSD Status vs Numerical Indicator MSD Status vs Recovery Spike I.D. Spike Volume Used in MS (mL) Spike Volume Used in MSD (mL) MSD Spike Uncertainty (calculated) MSD Percent Recovery Sample Matrix Spike Control Assessment

| 10281910<br>11/12024<br>23-043<br>34-739<br>0.10<br>0.208<br>2.973<br>0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%       | Laboratory Control Sample Assessment          | LCSD (Y or N)? | ٨         |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|-----------|
| 11/12024<br>23-043<br>23-043<br>0.10<br>0.819<br>4.241<br>0.208<br>2.973<br>0.753<br>-3.18<br>70.10%<br>NA<br>Pass<br>1359%<br>60% |                                               | LCS81910       | LCSD81910 |
| 23-043 34.739 0.10 0.819 4.241 0.208 2.973 0.753 -3.18 70.10% N/A Pass 135% 60%                                                    | Count Date:                                   |                | 11/1/2024 |
| 34.739 0.10 0.10 0.2819 4.241 0.208 2.973 0.753 -3.18 70.10% N/A Pass 135% 60%                                                     | Spike I.D.:                                   |                | 23-043    |
| 0.10<br>0.819<br>4.241<br>0.208<br>2.973<br>0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%                                 | Decay Corrected Spike Concentration (pCi/mL): |                | 34.739    |
| 0.819<br>4.241<br>0.208<br>2.973<br>0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>1359%<br>60%                                        | Volume Used (mL):                             |                | 0.10      |
| 4.241<br>0.208<br>2.973<br>0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%                                                  | Aliquot Volume (L, g, F):                     |                | 0.820     |
| 0.208<br>2.373<br>0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%                                                           | Target Conc. (pCi/L, g, F):                   |                | 4.237     |
| 2.973<br>0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%                                                                    | Uncertainty (Calculated):                     |                | 0.208     |
| 0.753<br>-3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%                                                                             | Result (pCi/L, g, F):                         |                | 3.632     |
| -3.18<br>70.10%<br>N/A<br>Pass<br>135%<br>60%                                                                                      | LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           |                | 0.870     |
| 70.10%<br>N/A<br>Pass<br>135%<br>60%                                                                                               | Numerical Performance Indicator:              |                | -1.33     |
| N/A<br>Pass<br>135%<br>60%                                                                                                         | Percent Recovery:                             |                | 85.72%    |
| Pass<br>135%<br>60%                                                                                                                | Status vs Numerical Indicator:                |                | N/A       |
| 135%                                                                                                                               | Status vs Recovery:                           |                | Pass      |
| %09                                                                                                                                | Upper % Recovery Limits:                      | 135%           | 135%      |
|                                                                                                                                    | Lower % Recovery Limits:                      | %09            | %09       |

| uplicate Sample Assessment                                |           |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment |
|-----------------------------------------------------------|-----------|------------------|-------------------------------------------------------|
| Sample I.D.:                                              | LCS81910  | Enter Duplicate  | Sample                                                |
| Duplicate Sample I.D.                                     | LCSD81910 | sample IDs if    | Sample Ms                                             |
| Sample Result (pCi/L, g, F):                              | 2.973     | other than       | Sample MSI                                            |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                  | 0.753     | LCS/LCSD in      | Sample Matrix Spike Re                                |
| Sample Duplicate Result (pCi/L, g, F):                    | 3.632     | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/L,               |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):        | 0.870     |                  | Sample Matrix Spike Duplicate Re                      |
| Are sample and/or duplicate results below RL?             | 9         |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L,     |
| Duplicate Numerical Performance Indicator:                | -1.123    |                  | Duplicate Numerical Performance India                 |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | 20.06%    |                  | (Based on the Percent Recoveries) MS/ MSD Duplicate   |
| Duplicate Status vs Numerical Indicator:                  | Pass      |                  | MS/ MSD Duplicate Status vs Numerical Indic           |
| Duplicate Status vs RPD:                                  | Pass      |                  | MS/ MSD Duplicate Status vs                           |
| % RPD Limit:                                              | 36%       |                  | RPD                                                   |
|                                                           |           |                  |                                                       |

Duplicate Sample Assessment

Sample I.D. Sample MS I.D. Sample MSD I.D. Duplicate Numerical Performance Indicator:
on the Percent Recoveries) MS/ MSD Duplicate RPD:
MS/ MSD Duplicate Status vs Numerical Indicator:
MS/ MSD Duplicate Status vs RPD:
% RPD Limit: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result Sample Matrix Spike Duplicate Result: atrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F)

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:





November 25, 2024

Vasanta Kalluri AECOM 6200 South Quebec Street Greenwood Village, CO 80111

RE: Project: 60731303 PRPA CCR

Pace Project No.: 60462790

### Dear Vasanta Kalluri:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Wilson

heather.wilson@pacelabs.com 1(913)563-1407

Databa m. Wilson

Project Manager

**Enclosures** 

cc: Jamie Herman, AECOM Jeremy Hurshman, AECOM



9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665



### **CERTIFICATIONS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13



### **SAMPLE SUMMARY**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |  |
|-------------|-------------|--------|----------------|----------------|--|
| 60462790001 | BAT-13-CCR  | Water  | 10/16/24 09:40 | 10/17/24 08:55 |  |
| 60462790002 | BAT-04R-CCR | Water  | 10/16/24 09:05 | 10/17/24 08:55 |  |
| 60462790003 | DUP-02-CCR  | Water  | 10/16/24 09:05 | 10/17/24 08:55 |  |



### **SAMPLE ANALYTE COUNT**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

| Lab ID                 | Sample ID   | Method   | Analysts | Analytes<br>Reported | Laboratory |
|------------------------|-------------|----------|----------|----------------------|------------|
| 60462790001 BAT-13-CCR | BAT-13-CCR  | EPA 6010 | ARMN     | 12                   | PASI-K     |
|                        |             | EPA 6020 | JXD      | 2                    | PASI-K     |
|                        |             | EPA 7470 | MLD      | 1                    | PASI-K     |
| 60462790002 BAT-04R    | BAT-04R-CCR | EPA 6010 | ARMN     | 12                   | PASI-K     |
|                        |             | EPA 6020 | JXD      | 2                    | PASI-K     |
|                        |             | EPA 7470 | MLD      | 1                    | PASI-K     |
|                        |             | SM 2540C | TML      | 1                    | PASI-K     |
|                        |             | EPA 9056 | AAA      | 3                    | PASI-K     |
| 60462790003            | DUP-02-CCR  | EPA 6010 | ARMN     | 12                   | PASI-K     |
|                        |             | EPA 6020 | JXD      | 2                    | PASI-K     |
|                        |             | EPA 7470 | MLD      | 1                    | PASI-K     |
|                        |             | SM 2540C | TML      | 1                    | PASI-K     |
|                        |             | EPA 9056 | AAA      | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



### **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

| Sample: BAT-13-CCR | Lab ID: 604                                              | 62790001     | Collected: 10/16/ | 24 09:40 | Received: 10   | 0/17/24 08:55  | Matrix: Water |     |  |  |  |
|--------------------|----------------------------------------------------------|--------------|-------------------|----------|----------------|----------------|---------------|-----|--|--|--|
| Parameters         | Results                                                  | Units        | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |  |
| 6010 MET ICP       | Analytical Method: EPA 6010 Preparation Method: EPA 3010 |              |                   |          |                |                |               |     |  |  |  |
|                    | Pace Analytical Services - Kansas City                   |              |                   |          |                |                |               |     |  |  |  |
| Arsenic            | ND                                                       | ug/L         | 10.0              | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-38-2     |     |  |  |  |
| Barium             | 162                                                      | ug/L         | 5.0               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-39-3     |     |  |  |  |
| Beryllium          | ND                                                       | ug/L         | 1.0               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-41-7     |     |  |  |  |
| Boron              | 1560                                                     | ug/L         | 100               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-42-8     |     |  |  |  |
| Cadmium            | ND                                                       | ug/L         | 5.0               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-43-9     |     |  |  |  |
| Calcium            | 266000                                                   | ug/L         | 200               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-70-2     |     |  |  |  |
| Chromium           | 27.7                                                     | ug/L         | 5.0               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-47-3     |     |  |  |  |
| Cobalt             | 11.8                                                     | ug/L         | 5.0               | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7440-48-4     |     |  |  |  |
| ₋ead               | 15.3                                                     | ug/L         | 10.0              | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7439-92-1     |     |  |  |  |
| _ithium            | 260                                                      | ug/L         | 10.0              | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7439-93-2     |     |  |  |  |
| Molybdenum         | 38.5                                                     | ug/L         | 20.0              | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7439-98-7     |     |  |  |  |
| Selenium           | ND                                                       | ug/L         | 15.0              | 1        | 10/24/24 11:57 | 11/01/24 22:20 | 7782-49-2     |     |  |  |  |
| 6020 MET ICPMS     | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |              |                   |          |                |                |               |     |  |  |  |
|                    | Pace Analytica                                           | l Services - | Kansas City       |          |                |                |               |     |  |  |  |
| Antimony           | ND                                                       | ug/L         | 2.0               | 2        | 10/24/24 14:28 | 11/23/24 16:22 | 7440-36-0     | D3  |  |  |  |
| Thallium           | ND                                                       | ug/L         | 2.0               | 2        | 10/24/24 14:28 | 11/23/24 16:22 | 7440-28-0     | D3  |  |  |  |
| 7470 Mercury       | Analytical Method: EPA 7470 Preparation Method: EPA 7470 |              |                   |          |                |                |               |     |  |  |  |
| -                  | Pace Analytica                                           |              |                   |          |                |                |               |     |  |  |  |
| Mercury            | ND                                                       | ug/L         | 0.20              | 1        | 11/01/24 10:47 | 11/01/24 14:06 | 7439-97-6     |     |  |  |  |



### **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

| Sample: BAT-04R-CCR           | Lab ID: 6046                                                       | 2790002    | Collected: 10/16/2 | 24 09:05 | Received: 10   | /17/24 08:55 N | Matrix: Water |      |  |  |
|-------------------------------|--------------------------------------------------------------------|------------|--------------------|----------|----------------|----------------|---------------|------|--|--|
| Parameters                    | Results                                                            | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |  |  |
| 6010 MET ICP                  | Analytical Method: EPA 6010 Preparation Method: EPA 3010           |            |                    |          |                |                |               |      |  |  |
|                               | Pace Analytical                                                    | Services - | Kansas City        |          |                |                |               |      |  |  |
| Arsenic                       | ND                                                                 | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-38-2     |      |  |  |
| Barium                        | 12.1                                                               | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-39-3     |      |  |  |
| Beryllium                     | ND                                                                 | ug/L       | 1.0                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-41-7     |      |  |  |
| Boron                         | 742                                                                | ug/L       | 100                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-42-8     |      |  |  |
| Cadmium                       | ND                                                                 | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-43-9     |      |  |  |
| Calcium                       | 487000                                                             | ug/L       | 200                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-70-2     |      |  |  |
| Chromium                      | ND                                                                 | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-47-3     |      |  |  |
| Cobalt                        | ND                                                                 | ug/L       | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7440-48-4     |      |  |  |
| Lead                          | ND                                                                 | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7439-92-1     |      |  |  |
| Lithium                       | 177                                                                | ug/L       | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7439-93-2     |      |  |  |
| Molybdenum                    | ND                                                                 | ug/L       | 20.0               | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7439-98-7     |      |  |  |
| Selenium                      | ND                                                                 | ug/L       | 15.0               | 1        | 10/24/24 11:57 | 11/01/24 22:21 | 7782-49-2     |      |  |  |
| 6020 MET ICPMS                | Analytical Method: EPA 6020 Preparation Method: EPA 3010           |            |                    |          |                |                |               |      |  |  |
|                               | Pace Analytical                                                    | Services - | Kansas City        |          |                |                |               |      |  |  |
| Antimony                      | ND                                                                 | ug/L       | 1.0                | 1        | 10/24/24 14:28 | 11/23/24 16:17 | 7440-36-0     |      |  |  |
| Thallium                      | ND                                                                 | ug/L       | 1.0                | 1        |                | 11/23/24 16:17 |               |      |  |  |
| 7470 Mercury                  | Analytical Method: EPA 7470 Preparation Method: EPA 7470           |            |                    |          |                |                |               |      |  |  |
|                               | Pace Analytical                                                    | Services - | Kansas City        |          |                |                |               |      |  |  |
| Mercury                       | ND                                                                 | ug/L       | 0.20               | 1        | 11/01/24 10:47 | 11/01/24 14:08 | 7439-97-6     |      |  |  |
| 2540C Total Dissolved Solids  | Analytical Meth                                                    | od: SM 254 | 40C                |          |                |                |               |      |  |  |
| 20 100 10141 210001104 001140 | Pace Analytical Services - Kansas City                             |            |                    |          |                |                |               |      |  |  |
| Total Dissolved Solids        | 3470                                                               | mg/L       | 100                | 1        |                | 10/22/24 15:38 |               |      |  |  |
|                               |                                                                    | Ü          |                    | •        |                | 10.22,27 10.00 |               |      |  |  |
| 9056 IC Anions                | Analytical Method: EPA 9056 Pace Analytical Services - Kansas City |            |                    |          |                |                |               |      |  |  |
| Chloride                      | 29.9                                                               | mg/L       | 10.0               | 10       |                | 10/23/24 22:17 | 16887-00-6    |      |  |  |
| Fluoride                      | 0.47                                                               | mg/L       | 0.20               | 1        |                | 10/23/24 22:04 |               |      |  |  |
| Sulfate                       | 1930                                                               | mg/L       | 200                | 200      |                | 10/23/24 22:29 |               |      |  |  |



### **ANALYTICAL RESULTS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

| Sample: DUP-02-CCR           | Lab ID: 6046                                             | 52790003     | Collected: 10/16/2 | 24 09:05 | Received: 10   | /17/24 08:55 N | Matrix: Water |     |  |  |
|------------------------------|----------------------------------------------------------|--------------|--------------------|----------|----------------|----------------|---------------|-----|--|--|
| Parameters                   | Results                                                  | Units        | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qua |  |  |
| 6010 MET ICP                 | Analytical Method: EPA 6010 Preparation Method: EPA 3010 |              |                    |          |                |                |               |     |  |  |
|                              | Pace Analytical                                          | Services - I | Kansas City        |          |                |                |               |     |  |  |
| Arsenic                      | ND                                                       | ug/L         | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-38-2     |     |  |  |
| Barium                       | 11.9                                                     | ug/L         | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-39-3     |     |  |  |
| Beryllium                    | ND                                                       | ug/L         | 1.0                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-41-7     |     |  |  |
| Boron                        | 728                                                      | ug/L         | 100                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-42-8     |     |  |  |
| Cadmium                      | ND                                                       | ug/L         | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-43-9     |     |  |  |
| Calcium                      | 480000                                                   | ug/L         | 200                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-70-2     |     |  |  |
| Chromium                     | ND                                                       | ug/L         | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-47-3     |     |  |  |
| Cobalt                       | ND                                                       | ug/L         | 5.0                | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7440-48-4     |     |  |  |
| _ead                         | ND                                                       | ug/L         | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7439-92-1     |     |  |  |
| _ithium                      | 172                                                      | ug/L         | 10.0               | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7439-93-2     |     |  |  |
| Molybdenum                   | ND                                                       | ug/L         | 20.0               | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7439-98-7     |     |  |  |
| Selenium                     | ND                                                       | ug/L         | 15.0               | 1        | 10/24/24 11:57 | 11/01/24 22:23 | 7782-49-2     |     |  |  |
| 6020 MET ICPMS               | Analytical Method: EPA 6020 Preparation Method: EPA 3010 |              |                    |          |                |                |               |     |  |  |
|                              | Pace Analytical                                          | Services - I | Kansas City        |          |                |                |               |     |  |  |
| Antimony                     | ND                                                       | ug/L         | 1.0                | 1        | 10/24/24 14:28 | 11/23/24 16:25 | 7440-36-0     |     |  |  |
| Гhallium                     | ND                                                       | ug/L         | 1.0                | 1        |                | 11/23/24 16:25 |               |     |  |  |
| 7470 Mercury                 | Analytical Method: EPA 7470 Preparation Method: EPA 7470 |              |                    |          |                |                |               |     |  |  |
|                              | Pace Analytical                                          | Services - I | Kansas City        |          |                |                |               |     |  |  |
| Mercury                      | ND                                                       | ug/L         | 0.20               | 1        | 11/01/24 10:47 | 11/01/24 14:10 | 7439-97-6     |     |  |  |
| 2540C Total Dissolved Solids | Analytical Meth                                          | od: SM 254   | 0C                 |          |                |                |               |     |  |  |
|                              | Pace Analytical Services - Kansas City                   |              |                    |          |                |                |               |     |  |  |
| Total Dissolved Solids       | 3460                                                     | mg/L         | 100                | 1        |                | 10/22/24 15:38 |               |     |  |  |
| 9056 IC Anions               | Analytical Meth                                          | od: EPA 905  | 56                 |          |                |                |               |     |  |  |
|                              | Pace Analytical Services - Kansas City                   |              |                    |          |                |                |               |     |  |  |
| Chloride                     | 32.6                                                     | mg/L         | 10.0               | 10       |                | 10/23/24 22:55 | 16887-00-6    |     |  |  |
| Fluoride                     | 0.76                                                     | mg/L         | 0.20               | 1        |                | 10/23/24 22:42 | 16984-48-8    |     |  |  |
| Sulfate                      | 1940                                                     | mg/L         | 100                | 100      |                | 10/23/24 23:08 | 4 4000 70 0   |     |  |  |



### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

QC Batch: 914830 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462790001, 60462790002, 60462790003

METHOD BLANK: 3621878 Matrix: Water

Associated Lab Samples: 60462790001, 60462790002, 60462790003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L ND 0.20 11/01/24 13:38

LABORATORY CONTROL SAMPLE: 3621879

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.2 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3621880 3621881

MS MSD

60462558002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 5 100 20 Mercury ug/L 5 5.0 5.3 106 75-125 6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

QC Batch: 913745 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462790001, 60462790002, 60462790003

METHOD BLANK: 3617416 Matrix: Water

Associated Lab Samples: 60462790001, 60462790002, 60462790003

| Parameter  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------|-------|-----------------|--------------------|----------------|------------|
| Arsenic    | ug/L  | ND              | 10.0               | 11/01/24 21:57 |            |
| Barium     | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Beryllium  | ug/L  | ND              | 1.0                | 11/01/24 21:57 |            |
| Boron      | ug/L  | ND              | 100                | 11/01/24 21:57 |            |
| Cadmium    | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Calcium    | ug/L  | ND              | 200                | 11/01/24 21:57 |            |
| Chromium   | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Cobalt     | ug/L  | ND              | 5.0                | 11/01/24 21:57 |            |
| Lead       | ug/L  | ND              | 10.0               | 11/01/24 21:57 |            |
| Lithium    | ug/L  | ND              | 10.0               | 11/01/24 21:57 |            |
| Molybdenum | ug/L  | ND              | 20.0               | 11/01/24 21:57 |            |
| Selenium   | ug/L  | ND              | 15.0               | 11/01/24 21:57 |            |

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Arsenic    | ug/L  | 1000  | 920    | 92    | 80-120 |            |
| Barium     | ug/L  | 1000  | 998    | 100   | 80-120 |            |
| Beryllium  | ug/L  | 1000  | 1000   | 100   | 80-120 |            |
| Boron      | ug/L  | 1000  | 958    | 96    | 80-120 |            |
| Cadmium    | ug/L  | 1000  | 998    | 100   | 80-120 |            |
| Calcium    | ug/L  | 10000 | 10300  | 103   | 80-120 |            |
| Chromium   | ug/L  | 1000  | 1010   | 101   | 80-120 |            |
| Cobalt     | ug/L  | 1000  | 1030   | 103   | 80-120 |            |
| _ead       | ug/L  | 1000  | 1030   | 103   | 80-120 |            |
| Lithium    | ug/L  | 1000  | 982    | 98    | 80-120 |            |
| Nolybdenum | ug/L  | 1000  | 1000   | 100   | 80-120 |            |
| Selenium   | ug/L  | 1000  | 982    | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX S | SPIKE DUPL | ICATE: 3617     | 418         |              | 3617419 |        |       |       |        |     |     |      |
|-------------------------|------------|-----------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                         |            | 60462959007     | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units      | Result          | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Arsenic                 | ug/L       | <0.0020<br>mg/L | 1000        | 1000         | 899     | 859    | 90    | 86    | 75-125 | 5   | 20  |      |
| Barium                  | ug/L       | 0.094<br>mg/L   | 1000        | 1000         | 1030    | 996    | 94    | 90    | 75-125 | 4   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

| MATRIX SPIKE & MATRIX | SPIKE DUPI | LICATE: 3617     | 418<br>MS | MSD   | 3617419 |        |       |       |        |     |     |      |
|-----------------------|------------|------------------|-----------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |            | 60462959007      | Spike     | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units      | Result           | Conc.     | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Beryllium             | ug/L       | <0.00012<br>mg/L | 1000      | 1000  | 974     | 927    | 97    | 93    | 75-125 | 5   | 20  |      |
| Boron                 | ug/L       | 0.081J<br>mg/L   | 1000      | 1000  | 989     | 971    | 91    | 89    | 75-125 | 2   | 20  |      |
| Cadmium               | ug/L       | <0.00075<br>mg/L | 1000      | 1000  | 937     | 897    | 94    | 90    | 75-125 | 4   | 20  |      |
| Calcium               | ug/L       | 123 mg/L         | 10000     | 10000 | 135000  | 133000 | 119   | 97    | 75-125 | 2   | 20  |      |
| Chromium              | ug/L       | <0.0010<br>mg/L  | 1000      | 1000  | 981     | 921    | 98    | 92    | 75-125 | 6   | 20  |      |
| Cobalt                | ug/L       | <0.0012<br>mg/L  | 1000      | 1000  | 976     | 925    | 98    | 92    | 75-125 | 5   | 20  |      |
| Lead                  | ug/L       | <0.0038<br>mg/L  | 1000      | 1000  | 952     | 914    | 95    | 91    | 75-125 | 4   | 20  |      |
| Lithium               | ug/L       | 0.014J<br>mg/L   | 1000      | 1000  | 931     | 908    | 92    | 89    | 75-125 | 3   | 20  |      |
| Molybdenum            | ug/L       | <0.0010<br>mg/L  | 1000      | 1000  | 979     | 927    | 98    | 93    | 75-125 | 6   | 20  |      |
| Selenium              | ug/L       | <0.0055<br>mg/L  | 1000      | 1000  | 942     | 902    | 94    | 90    | 75-125 | 4   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Antimony

Thallium

Date: 11/25/2024 12:59 PM

#### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

QC Batch: 913864 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462790001, 60462790002, 60462790003

METHOD BLANK: 3618010 Matrix: Water

Associated Lab Samples: 60462790001, 60462790002, 60462790003

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed ND 1.0 11/23/24 15:04 ug/L ND 1.0 11/23/24 15:04 ug/L

LABORATORY CONTROL SAMPLE: 3618011

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Antimony 40 39.9 100 80-120 ug/L ug/L Thallium 40 39.1 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3618012 3618013 MS MSD 60462558001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Antimony ug/L ND 40 40 36.6 36.5 91 75-125 0 20 Thallium ND 40 40 37.0 36.5 92 91 75-125 20 ug/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

QC Batch: 913488 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60462790002, 60462790003

METHOD BLANK: 3616467 Matrix: Water

Associated Lab Samples: 60462790002, 60462790003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 10/22/24 15:35

LABORATORY CONTROL SAMPLE: 3616468

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 996 100 80-120

SAMPLE DUPLICATE: 3616469

60462775005 Dup Max

ParameterUnitsResultResultRPDRPDQualifiersTotal Dissolved Solidsmg/L968971010

SAMPLE DUPLICATE: 3616470

Date: 11/25/2024 12:59 PM

60462719006 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 511 515 10 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

QC Batch: 913561 QC Batch Method: EPA 9056 Analysis Method: EPA 9056
Analysis Description: 9056 IC A

9056 IC Anions Pace Analytical Services - Kansas City

Associated Lab Samples: 60462790002, 60462790003

METHOD BLANK: 3616728 Matrix: Water

Associated Lab Samples: 60462790002, 60462790003

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L ND 1.0 10/22/24 21:56 Fluoride mg/L ND 0.20 10/22/24 21:56 Sulfate mg/L ND 10/22/24 21:56 1.0

Laboratory:

LABORATORY CONTROL SAMPLE: 3616729

|           |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride  | mg/L  |       | 4.9    | 98    | 80-120 |            |
| Fluoride  | mg/L  | 2.5   | 2.4    | 97    | 80-120 |            |
| Sulfate   | mg/L  | 5     | 4.9    | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX S | SPIKE DUPL | LICATE: 3616          | 730                  |                       | 3616731      |               |             |              |                 |     |            |      |
|-------------------------|------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter               | Units      | 60462302001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Chloride                | mg/L       | 178                   | 500                  | 500                   | 576          | 575           | 80          | 79           | 80-120          | 0   | 15         | M1   |
| Fluoride                | mg/L       | 4.2                   | 2.5                  | 2.5                   | 6.7          | 6.8           | 101         | 103          | 80-120          | 0   | 15         |      |
| Sulfate                 | ma/l       | 4140                  | 5000                 | 5000                  | 8790         | 8840          | 93          | 94           | 80-120          | 1   | 15         |      |

SAMPLE DUPLICATE: 3616732

Date: 11/25/2024 12:59 PM

|           |       | 60462302002 | Dup    |     | Max |            |
|-----------|-------|-------------|--------|-----|-----|------------|
| Parameter | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride  | mg/L  | 176         | 176    | 0   | 15  |            |
| Fluoride  | mg/L  | 0.71        | 0.76   | 7   | 15  |            |
| Sulfate   | mg/L  | 3210        | 3340   | 4   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 11/25/2024 12:59 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 60731303 PRPA CCR

Pace Project No.: 60462790

Date: 11/25/2024 12:59 PM

| Lab ID      | Sample ID   | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|----------|-------------------|---------------------|
| 60462790001 | BAT-13-CCR  | EPA 3010        | 913745   | EPA 6010          | 913925              |
| 60462790002 | BAT-04R-CCR | EPA 3010        | 913745   | EPA 6010          | 913925              |
| 60462790003 | DUP-02-CCR  | EPA 3010        | 913745   | EPA 6010          | 913925              |
| 60462790001 | BAT-13-CCR  | EPA 3010        | 913864   | EPA 6020          | 913919              |
| 60462790002 | BAT-04R-CCR | EPA 3010        | 913864   | EPA 6020          | 913919              |
| 60462790003 | DUP-02-CCR  | EPA 3010        | 913864   | EPA 6020          | 913919              |
| 60462790001 | BAT-13-CCR  | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462790002 | BAT-04R-CCR | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462790003 | DUP-02-CCR  | EPA 7470        | 914830   | EPA 7470          | 914843              |
| 60462790002 | BAT-04R-CCR | SM 2540C        | 913488   |                   |                     |
| 60462790003 | DUP-02-CCR  | SM 2540C        | 913488   |                   |                     |
| 60462790002 | BAT-04R-CCR | EPA 9056        | 913561   |                   |                     |
| 60462790003 | DUP-02-CCR  | EPA 9056        | 913561   |                   |                     |

WO#:60462790



DC#\_Title: ENV-FRM-LENE-0010\_Sample ( (SCUR\_ESI)

Revision: 3 Issued By: Lenexa Effective Date: 01/12/2022 Client Name: FedEx 🖊 Courier: Clay □ PEX [] ECI 🗆 Pace □ Xroads ☐ Client ☐ Other Tracking #: Pace Shipping Label Used? Yes □ No 🗔 Custody Seal on Cooler/Box Present: Yes No □ Seals intact: Yes No 🗆 Bubble Wrap □ Packing Material: Bubble Bags Foam None □ Other Thermometer Used: Type of Ice: (Wet) Blue None Date and initials of person Cooler Temperature (°C): As-read 9 Corr. Factor -OL | Corrected OLX examining contents: Temperature should be above freezing to 6°C Chain of Custody present: Yes No □N/A Chain of Custody relinquished: PYes □No □N/A Samples arrived within holding time: □No □N/A Short Hold Time analyses (<72hr): □N/A Rush Turn Around Time requested: □N/A Sufficient volume: □No □N/A Correct containers used: ¥Yes □No □N/A Pace containers used: ZYes □No □N/A Yes DNo Containers intact: □N/A Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs? ☐Yes ☑No □N/A Filtered volume received for dissolved tests? □Yes ☑No □N/A Sample labels match COC: Date / time / ID / analyses Yes □No □N/A Samples contain multiple phases? No □N/A Matrix: Containers requiring pH preservation in compliance? ✓Yes □No List sample IDs, volumes, lot #'s of preservative and the □N/A date/time added. (HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: Lead acetate strip turns dark? (Record only) ☐Yes ☐No Potassium iodide test strip turns blue/purple? (Preserve) ☐Yes ☐No Trip Blank present: N/A □Yes □No N/A Headspace in VOA vials ( >6mm): ☐Yes ☐No Samples from USDA Regulated Area: State: ☐Yes ☑No □N/A Additional labels attached to 5035A / TX1005 vials in the field? Yes □N/A Client Notification/ Resolution: Copy COC to Client? Field Data Required? Person Contacted: Temp Log: Record start and finish times Date/Time: when unpacking cooler, if >20 min, recheck Comments/ Resolution: sample temps. Start: Start:

Date:

Project Manager Review:

End:

Temp:

End:

Temp:

CHAIN-OF-CI-TODY / Analytical Request Document

REGULATORY AGENCY JAL DOCUMENT All relevant fields must be completed accurately Same as Section A Accounts Payable ompany Name: AECOM Section C Address: The Chain-of-Custody is Section B
Required Project Information:
Report To: Vasanta Kalluri Sopy To Jamie Herman Greenwood Village, CO 80111 6200 South Quebec St Pace Iytical Section A Required Client Information Address

|                                                            | Distribution Or  | der No.          | NFFD PO#    | # Od                          |              |                        |                   | Pace Quote                 |                 | 42700          |                                                          |                  |                                                            | T        |                                   |         |                  | j                    |                   |                            |
|------------------------------------------------------------|------------------|------------------|-------------|-------------------------------|--------------|------------------------|-------------------|----------------------------|-----------------|----------------|----------------------------------------------------------|------------------|------------------------------------------------------------|----------|-----------------------------------|---------|------------------|----------------------|-------------------|----------------------------|
| lating right and                                           | ON ISPIC SEPTIME |                  | -<br>1<br>1 |                               |              |                        | -                 | 2-4-6                      |                 | 25             |                                                          |                  |                                                            | -        | LOI                               | -       |                  |                      | 1                 |                            |
| Phone: (303) 740-2614 Fax:                                 | Project Name     |                  | 99374-P     | 60709374-PRPA CCR             | R 447        | 2 12/2                 |                   | Reference:<br>Pace Project | -               | 1 -04+0        | 7.63                                                     |                  |                                                            | -        | 000                               | ۲       | KCKA             | `                    | OTHER             | 2<br>2<br>8                |
| Requested Due Date/TAT:                                    | Droion Page      |                  | 11000       |                               | - 1          | 50016                  |                   | Manager:                   |                 | neamer vvilson | VIISON                                                   |                  |                                                            | S        | Site Location                     | uc      | (                |                      |                   |                            |
| STANUARD                                                   |                  |                  | 1/551776    | 607                           | 60731303     |                        |                   | Pace Profile #:            |                 | 11033, 3       |                                                          |                  |                                                            |          | STATE                             | ůì      | 00               |                      |                   |                            |
|                                                            |                  | -                |             |                               |              |                        |                   |                            |                 |                |                                                          | Н                | Reques                                                     | sted Ang | Requested Analysis Filtered (Y/N) | ered (Y | î                | -                    |                   |                            |
| Required Client Information MATRIX  ORINKING               | ()               |                  |             | COL                           | COLLECTED    | -                      | ı                 |                            | Pre             | Preservatives  | ves                                                      | N /A             | N                                                          | 1        |                                   |         |                  |                      |                   |                            |
| WATER<br>WASTE WATER<br>PRODUCT<br>SOUGSOLID               |                  | valid code       | COM         | COMPOSITE                     | CON          | COMPOSITE<br>END/GRAB  | LECTION           |                            |                 |                |                                                          |                  |                                                            |          |                                   |         |                  | (N                   |                   |                            |
| SAMPLE ID OIL OIL OIL OIL OIL OIL OIL OIL OIL OIL          | 0 0 W W P N O 1. | NATRIX CODE (see | L<br>F<br>C | -                             |              |                        | JOO TA AMƏT ƏJAMA | OF CONTAINERS              | NO <sup>3</sup> | aOH<br>CI      | a <sub>z</sub> S <sub>z</sub> O <sub>3</sub><br>lethanol | ther <b>Test</b> | 020 Cl. F. SO4<br>020 Total Metals**<br>010 Total Metals** | AOC TDS  |                                   |         |                  | VV) əninoldƏ lsubise |                   |                            |
| 1 BAT-13-CCP                                               |                  | 1                | 1.          |                               | INHAIN       | an Can                 | -                 | +                          | -1              | H              | ΝÌ                                                       | _                | )9<br>)6                                                   | 7/       |                                   | 1       |                  | $\perp$              | ce Projec         | Pace Project No./ Lab I.D. |
| 2 BAT-04R-CCE                                              |                  | -                |             |                               |              |                        |                   |                            | -               |                |                                                          | T                | $\langle \rangle$                                          |          |                                   | +       |                  | 2 2                  |                   |                            |
| 3 DUP-02 - CCR                                             |                  | \<br>\<br>\      | >           | >                             | >            |                        | ļ.                | 2 W                        |                 |                |                                                          | T                | XX                                                         |          |                                   | +       |                  | 2 2                  |                   |                            |
| 4 m                                                        |                  |                  |             |                               |              |                        |                   |                            |                 |                |                                                          |                  |                                                            |          |                                   |         |                  | >                    |                   |                            |
| 9                                                          |                  |                  |             |                               |              | -                      | F                 |                            |                 |                |                                                          | _                |                                                            |          |                                   |         |                  | +                    |                   |                            |
| 7                                                          |                  |                  |             |                               |              |                        |                   |                            |                 |                |                                                          | 1                |                                                            |          |                                   |         | İ                | _                    |                   |                            |
| σ (                                                        |                  | -                |             |                               |              |                        |                   |                            |                 |                |                                                          |                  |                                                            |          |                                   |         |                  | -                    |                   |                            |
| מ מכ                                                       |                  |                  |             |                               |              |                        | 7                 |                            |                 |                |                                                          | T                |                                                            |          |                                   |         |                  |                      |                   |                            |
| 2 1                                                        |                  |                  |             |                               |              |                        |                   |                            |                 |                |                                                          |                  |                                                            |          |                                   | 1       |                  | -                    |                   |                            |
| 12                                                         |                  |                  |             |                               |              |                        | F                 | -                          |                 |                |                                                          |                  |                                                            |          |                                   |         |                  | _                    |                   |                            |
| ADDITIONAL COMMENTS                                        |                  | RELINGUI         | SHED BY     | RELINQUISHED BY / AFFILIATION | TION         | A                      | DATE              | TIME                       |                 |                | ACCEP                                                    | TED BY           | ACCEPTED BY / AFFILIATION                                  | - ×      | DATE                              | TIMIT   | -<br>-<br>-<br>- | -                    | SAMPLE CONDITIONS | OMOLEIG                    |
| *Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TI<br>**B, Ca, Li | 9                | 13               | 13          | / AECOM                       | JOM          | 10/10/24               | 12/               | 1700                       | +               |                | 1                                                        |                  |                                                            |          | 10/10                             | 13%     | 0.08             |                      |                   |                            |
|                                                            |                  |                  |             |                               |              |                        |                   |                            | ++              |                |                                                          |                  |                                                            |          |                                   | 44      |                  |                      |                   |                            |
| Pa                                                         |                  |                  |             | SAMPI                         | SAMPLER NAME | E AND SIGNATURE        | NATUR             | l w                        |                 |                |                                                          |                  |                                                            |          |                                   | -       |                  | U                    |                   | -                          |
| ge 17 (                                                    |                  |                  |             |                               | PRINT Na     | PRINT Name of SAMPLER: | APLER:            | Olivio                     |                 | Helinski       | ISKI                                                     |                  | DATE Signed                                                | 1 1      | 1 1 1                             |         | I I I            | aceived o            | se2 (bol:         | stni səlqn                 |
| of '                                                       |                  |                  |             |                               |              |                        | IL LER.           | ž                          | 3               | 3              | )                                                        |                  | CAGAMAD                                                    |          | 72.19.10.1                        | _       | T                | - A                  |                   | _                          |

F-ALL-Q-020rev 08, 12-Oct-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

DC#\_Title: ENV-FRM-LENE-0001 v07\_Sample Container Count Effective Date: 7/12/2024

Client

Profile/EZ#

Wipe/Swab 120mL Coliform Na Thiosulfate төйтС SPLC Misc. Air Cassettes Terracore Kit Summa Can Ziploc Bag MPDU Air Filter BP3Z BP3B ZPLC SP5T BP3S 22 ¥ BP3F to wh **BP3N** BP1N 1L unpreserved plastic 1L NaOH, Zn Acetate 500mL NAOH plastic 500mL HNO3 plastic 1L NAOH plastic 1L HNO3 plastic 1L H2SO4 plastic **BP3U** Notes BP2U BP1U Mepn BP1Z BP2B BP2N BP1U MCKN NOEN AG5U 4oz unpreserved amber wide 100mL unores amber glass 1L H2SO4 amber glass N≠9∀ 1L HCl amber glass **∀C32** 8oz clear soil jar 4oz clear soil jar 2oz clear soil jar NGSA NEIN **HIDA** WGKU WG2U JGFU AGOU AG1H AG1S Bein Glass DC9B DG9M 40mL amber unpreserved 40mL HCI amber voa vial 40mL Na Thio amber vial 40mL H2SO4 amber vial 40mL bisulfate clear via DG9N 40mL MeOH clear via 40mL TSP amber vial UG9V Site Dead DC9H H69/ DG90 DG90 DG9S DG9U Container Codes VISITIE ine Item 8 10 9 7 12 4 2 ∞ თ n 7

MO#: 60462790

Work Order Number:

Non-aqueous Liquid

WP NAL WT

250mL unpreserved plastic

BP3F BP3N BP3U BP3S BP3Z

Drinking Water

8

125mL unpreserved plastic

BP4U BP4N

125mL HNO3 plastic 125mL H2SO4 plastic

16oz unpresserved plstic

250mL NaOH, Zn Acetate

250mL H2SO4 plastic

Wipe

등

Matrix

Water

250mL HNO3 plastic - field filtered

500mL unpreserved plastic

500mL H2SO4 plastic

BP2S BP2U

1L Na Thiosulfate clear/amber glass

AG1T AG1U

AG2N AG2S

40mL unpreserved clear vial

1liter H2SO4 clear glass 250mL HCL Clear glass

BG1S

ВСЗН

BG10

VG9U

1liter unpres glass

40mL Na Thio. clear vial

40mL HCI clear vial

VG9H

VG9T

500mL NaOH, Zn Acetate

250mL NaOH plastic 250mL HNO3 plastic

BP2Z BP3B

500mL H2SO4 amber glass 250mL H2SO4 amber glass

500mL HNO3 amber glass 1liter unpres amber glass

500mL unpres amber glass 250mL unpres amber glass 125mL unpres amber glass 100mL unpres amber glass

AG3S AG2U AG3U

250mL Unpres Clear glass

16oz clear soil jar

Solid

Due Date: 11/07/24 CLIENT: RECOM CO

Qualtrax ID: 30422

Project/Site: Platte River Power Authority/CCR Event: October Groundwater 2024

AECOM Chemist: Sawyer Hunt

AECOM Secondary Reviewer: Katie Abbott

Date: 12/17/2024

Date: 12/17/2024

### **Introduction:**

This validation report documents the data review process through the checklists below. Further identification and explanation of any anomalies are provided following each section of the checklist, as needed.

The field sample and laboratory identification associations are summarized in Table 1.

Qualified data are summarized and presented in Table 2.

## Laboratory and Sample Delivery Groups (SDGs):

Pace Analytical Services in Lenexa, Kansas – 60462426, 60462558, 60462655, 60462790

Pace Analytical Services in Greensburg, Pennsylvania – 60462512, 60462579, 60462724

## **Analytical Methods Validated:**

Total dissolved solids (TDS) by SM2540C, total metals (select lists) by EPA Methods 6010 and 6020, mercury by EPA Method 7470, anions (chloride, sulfate, fluoride) by EPA Method 9056, radium-226 by EPA Method 903.1, radium-228 by EPA Method 904.0, total radium calculation.

### Validation:

Stage 2A Validation

## **Validation Guidance Documents:**

The data review was conducted in accordance with *National Functional Guidelines for Inorganic Superfund Methods Data Review* (EPA November 2020), and evaluation of laboratory criteria, as applicable.

## **Overall Assessment of Data:**

As no data were missing or qualified as unusable during the validation process, the overall assessment of data was acceptable at 100%. Qualified data are summarized and presented in Table 2.

**Project/Site:** Platte River Power Authority/CCR **Event:** October Groundwater 2024

AECOM Chemist: Sawyer Hunt

AECOM Secondary Reviewer: Katie Abbott

Date: 12/17/2024

Date: 12/17/2024

## 1.0 Sample Documentation and Case Narrative

| Yes              | No        | NA           |
|------------------|-----------|--------------|
| X                |           |              |
|                  |           |              |
| X                |           |              |
| X                |           |              |
| Yes              | No        | NA           |
| $\mathbf{X}^{1}$ |           |              |
|                  | X X X Yes | X X X Yes No |

1. **Data Package 60462426:** The laboratory noted that method requirements were not met due to the mass of the dried residue obtained for sample ERB-02-CCR for total dissolved solids analysis. The sample result was qualified as estimated (UJ pr).

**Data Package 60462512:** The COC submitted to Pace Greensburg, PA listed BAT-12-CCR MS and BAT-12-CCR MSD. These were not individual samples and were meant to be evaluated as the MS/MSD pair for sample BAT-12-CCR. No further action was considered necessary.

Project/Site: Platte River Power Authority/CCR Event: October Groundwater 2024

AECOM Chemist: Sawyer Hunt
AECOM Secondary Reviewer: Katie Abbott
Date: 12/17/2024
Date: 12/17/2024

## 2.0 Quality Control and Performance Checks

| Stage 2a                                                     |                              |         |            |    |
|--------------------------------------------------------------|------------------------------|---------|------------|----|
| Method Blank Criteria                                        |                              | Yes     | No         | NA |
| Was a method blank analyzed for each batch, as applicable    | to the method?               | X       |            |    |
| Were method blank concentrations reported as not detected    | or less than the MDC?        | X       |            |    |
| <b>Laboratory Control Sample Criteria</b>                    |                              | Yes     | No         | NA |
| Was an LCS reported with each preparation batch, as applic   | able to the method?          | X       |            |    |
| Were LCS/LCSD recoveries and/or RPDs within acceptance       | e criteria?                  | $X^1$   |            |    |
| Matrix Spike/Matrix Spike Duplicates Criteria                |                              | Yes     | No         | NA |
| Was an MS/MSD performed on a project specific sample?*       |                              | X       |            |    |
| Parent Sample                                                | Method                       |         |            |    |
| Data Packages 60462426, 60462512                             |                              |         |            |    |
| BAT-12-CCR                                                   | 7470, 6010, 6020, 903        | 3.1, 90 | 4.0        |    |
| Data Package 60462558                                        |                              |         |            |    |
| BAT-05-CCR                                                   | 7470, 6020                   |         |            |    |
| BAT-06-CCR                                                   | 7470                         |         |            |    |
| For concentrations <4x the spike concentration, were MS/M    | SD recoveries and RPDs       | X       |            |    |
| within acceptance criteria?                                  |                              | Λ       |            |    |
| Laboratory Duplicate Criteria – As applicable to the ana     | •                            | Yes     | No         | NA |
| Was a laboratory duplicate performed on a project specific s | *                            | X       |            |    |
| If both the parent sample and duplicate values were >5xRL,   | was laboratory duplicate     | X       |            |    |
| RPD within laboratory acceptance criteria?                   |                              | 1       |            |    |
| If either the parent sample or duplicate value was <5xRL, w  |                              |         |            | X  |
| within acceptance criteria of <2xRL for waters, and <3.5xR   |                              |         |            |    |
| For radiological parameters, was the DER agreement between   | en parent sample results and |         |            | X  |
| laboratory duplicate sample results \( \leq 2 ? \)           |                              | ***     | <b>3</b> 7 |    |
| Tracery/Carrier Recovery - Radiological                      |                              | Yes     | No         | NA |
| The sample specific recoveries were within the laboratory li | mits (30-110%).              | X       |            |    |

<sup>\*</sup> MS/MSD performed on project specific field samples were evaluated.

1. **Data Package 60462512, 60462579:** The LCSD for radium 226 and radium 228 was not reported. The laboratory noted that due to the sample or duplicate result was/were below the MDC, evaluation of duplicate precision was not applicable.

Project/Site: Platte River Power Authority/CCR Event: October Groundwater 2024

AECOM Chemist: Sawyer Hunt
AECOM Secondary Reviewer: Katie Abbott

Date: 12/17/2024
Date: 12/17/2024

## 3.0 Field Quality Control Samples

| Field Quality Control Samples                                                               |                                           |     |    |    |
|---------------------------------------------------------------------------------------------|-------------------------------------------|-----|----|----|
| Verification Criteria                                                                       |                                           | Yes | No | NA |
| Was a trip blank shipped with, and analyzed                                                 | with the samples?                         |     |    | X  |
| Were trip blank concentrations reported as no                                               | on-detect for target analytes?            |     |    | X  |
| Were field and/or equipment blanks collected                                                | d and analyzed with the samples?          | X   |    |    |
| Were field QC blank concentrations reported radiological parameters, for the target analyte |                                           | X   |    |    |
| Field Duplicate Criteria                                                                    |                                           | Yes | No | NA |
| Were field duplicate samples collected for the                                              | is sampling event?                        | X   |    |    |
| Parent Sample                                                                               | Field Duplicate Sample                    |     |    |    |
| BAT-04R-CCR                                                                                 | DUP-02-CCR                                |     |    |    |
| If both the parent sample and/field duplicate within the acceptance criteria of ≤30%?       | sample results were >5xRL were the RPDs   | X   |    |    |
| If either the parent sample or duplicate value within the acceptance criteria of <2xRL?     | was <5xRL, was the absolute difference    | X   |    |    |
| For radiological parameters, was the DER ag field duplicate sample results ≤2?              | reement between parent sample results and | X   |    |    |

Project/Site: Platte River Power Authority/CCR

Event: October Groundwater 2024

AECOM Chemist: Sawyer Hunt

AECOM Secondary Reviewer: Katie Abbott

Date: 12/17/2024

Date: 12/17/2024

## 4.0 Sensitivity, Additional Qualification, and Completeness

| Sensitivity and Additional Qualification                                                                                                                                           |     |       |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----|
| Sensitivity Criteria                                                                                                                                                               | Yes | No    | NA |
| Did all analytes meet sensitivity requirements?                                                                                                                                    |     | $X^1$ |    |
| For radiological parameters, if the associated uncertainty was greater than the reported result, the 2 sigma (σ) uncertainty multiplied by 1.65 was less than or equal to the MDC? |     | $X^2$ |    |
| Additional Qualification Criteria                                                                                                                                                  | Yes | No    | NA |
| Was professional judgment used to qualify data?                                                                                                                                    | X   |       |    |
| Were multiple results reported for a single analyte?                                                                                                                               |     | X     |    |
| Total vs Dissolved Analyses                                                                                                                                                        | Yes | No    | NA |
| Was the dissolved concentration greater than the total concentration?                                                                                                              |     |       | X  |
| If either sample result was $>5xRL$ , were the RPDs within $\leq 30\%$ ?                                                                                                           |     |       | X  |
| If either sample result was <5xRL, was the absolute difference within 2xRL?                                                                                                        |     |       | X  |
| Completeness Criteria                                                                                                                                                              | Yes | No    | NA |
|                                                                                                                                                                                    |     |       |    |
| Were the reported results usable if qualified?                                                                                                                                     | X   |       |    |

- 1. Several results were reported as non-detect at elevated reporting limits. These non-detect results will need to be evaluated with respect to project objectives.
- 2. For radiological parameters, the following sample results did not meet the  $2\sigma$  uncertainty evaluation.

| Sample Method Analyte Identification |                       |              | Result | 2 Sigma (σ)<br>Uncertainty | MDC   | Units |  |  |  |  |  |  |  |
|--------------------------------------|-----------------------|--------------|--------|----------------------------|-------|-------|--|--|--|--|--|--|--|
|                                      | Data Package 60462512 |              |        |                            |       |       |  |  |  |  |  |  |  |
| BAT-12-CCR                           | TRC                   | Total Radium | 0.470  | 0.563                      | 0.757 | pCi/L |  |  |  |  |  |  |  |

TRC: Total Radium Calculation

As the  $2\sigma$  uncertainty multiplied by 1.65 was greater than the reported minimum detectable concentration (MDC), the associated results were qualified as estimated (J v). The qualified data are presented in Table

Table 1 – Sample Summary and Laboratory Association

| Sample Identification                            | <b>Collection Date</b> | Laboratory Identification | Sample Type     |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------|------------------------|---------------------------|-----------------|--|--|--|--|--|--|--|--|--|--|
|                                                  | Data Pack              | age 60462426              |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-11-CCR                                       | 10/10/2024             | 60462426001               | Normal          |  |  |  |  |  |  |  |  |  |  |
| ERB-02-CCR                                       | 10/10/2024             | 60462426002               | Equipment Blank |  |  |  |  |  |  |  |  |  |  |
| BAT-09-CCR                                       | 10/10/2024             | 60462426003               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-12-CCR                                       | 10/10/2024             | 60462426004               | Matrix Spike    |  |  |  |  |  |  |  |  |  |  |
|                                                  | Data Pack              | age 60462512              |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-11-CCR                                       | 10/10/2024             | 60462508007               | Normal          |  |  |  |  |  |  |  |  |  |  |
| ERB-02-CCR 10/10/2024 60462508008 Equipment Blan |                        |                           |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-09-CCR                                       | 10/10/2024             | 60462508009               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-12-CCR                                       | 10/10/2024             | 60462508010               | Matrix Spike    |  |  |  |  |  |  |  |  |  |  |
|                                                  | Data Pack              | age 60462558              | _               |  |  |  |  |  |  |  |  |  |  |
| BAT-05-CCR                                       |                        |                           |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-06-CCR                                       | 10/14/2024             | 60462558002               | Matrix Spike    |  |  |  |  |  |  |  |  |  |  |
| BAT-01-CCR                                       | 10/14/2024             | 60462558003               | Normal          |  |  |  |  |  |  |  |  |  |  |
|                                                  | Data Package 60462579  |                           |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-05-CCR                                       | 10/14/2024             | 60462579001               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-06-CCR                                       | 10/14/2024             | 60462579002               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-01-CCR                                       | 10/14/2024             | 60462579003               | Normal          |  |  |  |  |  |  |  |  |  |  |
|                                                  | Data Pack              | age 60462655              |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-13-CCR                                       | 10/15/2024             | 60462655001               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-02-CCR                                       | 10/15/2024             | 60462655002               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-03-CCR                                       | 10/15/2024             | 60462655003               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-10-CCR                                       | 10/15/2024             | 60462655004               | Normal          |  |  |  |  |  |  |  |  |  |  |
|                                                  | Data Pack              | age 60462724              |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-02-CCR                                       | 10/15/2024             | 60462724001               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-03-CCR                                       | 10/15/2024             | 60462724002               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-10-CCR                                       | 10/15/2024             | 60462724003               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-04R-CCR                                      | 10/16/2024             | 60462724004               | Normal          |  |  |  |  |  |  |  |  |  |  |
| DUP-02-CCR                                       | 10/16/2024             | 60462724005               | Field Duplicate |  |  |  |  |  |  |  |  |  |  |
|                                                  | Data Pack              | age 60462790              |                 |  |  |  |  |  |  |  |  |  |  |
| BAT-13-CCR                                       | 10/16/2024             | 60462790001               | Normal          |  |  |  |  |  |  |  |  |  |  |
| BAT-04R-CCR                                      | 10/16/2024             | 60462790002               | Normal          |  |  |  |  |  |  |  |  |  |  |
| DUP-02-CCR                                       | 10/16/2024             | 60462790003               | Field Duplicate |  |  |  |  |  |  |  |  |  |  |

Table 2 – Summary of Qualified Sample Results

| Sample<br>Identification | Laboratory<br>Identification | Analytical<br>Method | Fraction | 2                         |     | Qualifier | Reason |
|--------------------------|------------------------------|----------------------|----------|---------------------------|-----|-----------|--------|
| ERB-02-CCR               | 60462426002                  | 2540C                | Total    | Total Dissolved<br>Solids | YES | UJ        | pr     |
| BAT-12-CCR               | 60462508010                  | TRC                  | NA       | Total Radium              | YES | J         | v      |

TRC: Total Radium Calculation

### ATTACHMENT A

## DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

List of Possible Qualifiers Assigned by AECOM Data Review Team

## **DATA QUALIFIER DEFINITIONS**

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit, or the sample result was considered not-detected due to associated blank contamination.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported sample quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control (QC) criteria. The analyte may or may not be present in the sample.

## AECOM DATA QUALIFIER — REASON CODE DEFINITIONS

- be Equipment blank contamination
- bf Field blank contamination
- bl Laboratory blank contamination
- bm Missing Blank Information
- c Calibration issue
- cl Clean-up standard recovery
- cp Insufficient in growth (radiochemical data only)
- cr Chromatographic resolution
- d Reporting limit raised due to chromatographic interference
- dt Dissolved result > total over limit
- fd Field duplicate imprecision
- g Chromatographic pattern match issue
- h Holding times
- i Internal standard areas
- ii Injection internal standard area or retention time exceedance
- k Estimated Maximum Possible Concentrations
- 1 LCS recoveries
- lc Labeled compound recovery
- ld Laboratory duplicate imprecision (matrix duplicate, MSD, LCSD)
- lq Level of quantitation/trace value
- m Matrix spike recovery
- nb Negative laboratory blank contamination
- p Chemical preservation issue
- pe Post Extraction Spike
- pr Professional Judgement
- q Quantitation issue
- r Dual column RPD
- rp Re-extraction precision issue [PAHs only]
- rt SIM ions not within + 2 seconds
- s Surrogate recovery
- sp Sample preparation issue
- su Evidence of ion suppression
- t Temperature Preservation Issue
- u High combined sample result uncertainty (radiochemical data Only)
- v compound identification issue
- x Low % solids
- y Serial dilution results
- z ICS results

AECOM Environment

**Appendix C** 

**Groundwater Velocity Calculation Sheet** 

# Hydraulic Gradient Calculations BAT Impoundments

## Platte River Power Authority, Rawhide Station

Darcy

 $V = Ki/n_e$ 

V = Velocity

K = Average Hydraulic Conductivity in ft/day

i = delta (height) / delta (length) (change in GW elevation / length of line drawn)

n<sub>e</sub> = Effective Porosity (15% for fractured Pierre shale)

#### **Average Hydraulic Conductivity**

|                | April BAT | Septer         | nber BAT  |
|----------------|-----------|----------------|-----------|
| K =            | 0.029     | K =            | 0.029     |
| dH             | 16.91     | dH             | 16.04     |
| dL             | 1120      | dL             | 1120      |
| n <sub>e</sub> | 0.15      | n <sub>e</sub> | 0.15      |
| GW Velocity =  | 2.919E-03 | GW Velocity =  | 2.769E-03 |

Average: 2.844E-03

Notes:

BAT wells gradient between BAT-10 and BAT-05 for dH and dL

### **Low Hydraulic Conductivity**

|                | · · · · · · · · · · · · · · · · · · · |                |           |
|----------------|---------------------------------------|----------------|-----------|
| A              | pril BAT                              | Sept           | ember BAT |
| K =            | 0.0002                                | K =            | 0.0002    |
| dH             | 16.91                                 | dH             | 16.04     |
| dL             | 1120                                  | dL             | 1120      |
| n <sub>e</sub> | 0.15                                  | n <sub>e</sub> | 0.15      |
| GW Velocity =  | 2.013E-05                             | GW Velocity =  | 1.910E-05 |
| Average:       | 1.961E-05                             | -              | _         |

### **Max Hydraulic Conductivity**

|                | April BAT | Septem         | ber BAT   |
|----------------|-----------|----------------|-----------|
| K =            | 0.33      | K =            | 0.33      |
| dH             | 16.91     | dH             | 16.04     |
| dL             | 1120      | dL             | 1120      |
| n <sub>e</sub> | 0.15      | n <sub>e</sub> | 0.15      |
| GW Velocity =  | 3.322E-02 | GW Velocity =  | 3.151E-02 |
|                |           |                |           |

Average: 3.236E-02

Notes:

low = 0.0002 ft/day high = 0.33 ft/day average = 0.029

| Gradient       | BAT-10 to BAT-05 |
|----------------|------------------|
| April 2024     | 0.015098214      |
| September 2024 | 0.014321429      |
| Average        | 0.014709821      |

AECOM Environment

**Appendix D** 

Statistical Analysis Results and Input/Output Files

| Location_ID | Date       | Boron D_Bo | oron ( | Calcium | D_Calcium | Chloride | D_Chloride | e Fluoride | e D_Fluc | oride pH | D_pH | Sulfat | e D_Sulfate | TDS | D_TDS |   |
|-------------|------------|------------|--------|---------|-----------|----------|------------|------------|----------|----------|------|--------|-------------|-----|-------|---|
| BAT-09      | 9/14/2016  | 2200       | 1      | 220000  |           | 1 1      | 50         | 1          | 0.34     | 1        |      |        |             |     | 3100  | 1 |
| BAT-09      | 11/30/2016 | 1900       | 1      | 170000  |           | 1 1      | 40         | 1          | 0.32     | 1        |      |        |             |     | 2800  | 1 |
| BAT-09      | 12/19/2016 | 2000       | 1      | 160000  |           | 1 1      | 10         | 1          | 0.97     | 1        |      |        |             |     | 2500  | 1 |
| BAT-09      | 4/6/2017   | 2100       | 1      | 140000  |           | 1        | 86         | 1          | 0.24     | 1        |      |        | 1600        | 1   | 2600  | 1 |
| BAT-09      | 5/11/2017  | 2300       | 1      | 160000  |           | 1        | 92         | 1          | 0.2      | 1        | 7.49 | 1      | 1500        | 1   | 2700  | 1 |
| BAT-09      | 6/14/2017  | 2400       | 1      | 160000  |           | 1 1      | 00         | 1          | 0.22     | 1        | 7.26 | 1      | 1500        | 1   | 2800  | 1 |
| BAT-09      | 7/12/2017  | •          |        |         |           |          |            |            |          |          | 7.3  | 1      |             |     |       |   |
| BAT-09      | 2/8/2018   | 2200       | 1      | 140000  |           | 1        | 87         | 1          | 0.37     | 1        |      |        | 1500        | 1   | 2600  | 1 |
| BAT-09      | 3/27/2018  | }          |        |         |           |          |            |            | 0.2      | 0        | 7.35 | 1      |             |     |       |   |
| BAT-09      | 6/22/2018  | 2390       | 1      | 135000  |           | 1 90     | ).5        | 1          | 0.24     | 1        | 7.56 | 1      | 1540        | 1   | 1600  | 1 |
| BAT-09      | 10/10/2018 | 2060       | 1      | 139000  |           | 1 98     | 3.1        | 1          | 0.2      | 0        | 7.16 | 1      | 1770        | 1   | 1550  | 1 |
| BAT-09      | 5/1/2019   | 2110       | 1      | 199000  |           | 1 29     | ).1        | 1          | 0.2      | 0        | 7    | 1      | 29.5        | 1   | 3030  | 1 |
| BAT-09      | 7/12/2019  | )          |        |         |           |          |            |            |          |          | 7    | 1      |             |     |       |   |
| BAT-09      | 10/15/2019 | 2220       | 1      | 179000  |           | 1 1      | 47         | 1          | 0.2      | 0        |      |        | 1650        | 1   | 3530  | 1 |
| BAT-09      | 4/17/2020  | 2240       | 1      | 174000  |           | 1 1      | 31         | 1          | 0.2      | 0        | 7.78 | 1      | 1610        | 1   | 2790  | 1 |
| BAT-09      | 10/7/2020  | 2220       | 1      | 190000  |           | 1 1      | 74         | 1          | 0.25     | 1        | 7.33 | 1      | 1610        | 1   | 3470  | 1 |
| BAT-09      | 4/14/2021  | . 2170     | 1      | 161000  |           | 1 1      | 68         | 1          | 0.2      | 0        | 7.38 | 1      | 1           | 0   | 2650  | 1 |
| BAT-09      | 10/15/2021 | 2150       | 1      | 221000  |           | 1 1      | 88         | 1          | 0.2      | 0        | 7.34 | 1      | 4.3         | 1   | 3250  | 1 |
| BAT-09      | 5/4/2022   | 2210       | 1      | 187000  |           | 1 1      | 70         | 1          | 0.2      | 0        | 7.29 | 1      | 1590        | 1   | 2990  | 1 |
| BAT-09      | 10/26/2022 | 2190       | 1      | 215000  |           | 1 1      | 85         | 1          | 0.2      | 0        | 7.24 | 1      | 2700        | 1   | 3250  | 1 |
| BAT-09      | 5/2/2023   | 3 2220     | 1      | 185000  |           | 1 2      | 26         | 1          | 0.2      | 0        | 7.21 | 1      | 1690        | 1   | 2820  | 1 |
| BAT-09      | 10/17/2023 | 2050       | 1      | 193000  |           | 1 1      | 60         | 1          | 0.2      | 0        | 7.21 | 1      | 1900        | 1   | 3150  | 1 |
| BAT-09      | 5/7/2024   | 2110       | 1      | 186000  |           | 1 1      | 03         | 1          | 0.2      | 0        | 6.89 | 1      | 1760        | 1   | 2610  | 1 |
| BAT-09      | 10/10/2024 | 2230       | 1      | 228000  |           | 1 94     | l.9        | 1          | 2.3      | 1        | 7.25 | 1      | 1830        | 1   | 3140  | 1 |
| BAT-10      | 1/24/2019  | 813        | 1      | 363000  |           | 1 22     | 2.2        | 1          | 0.53     | 1        | 7.7  | 1      | 2760        | 1   | 3820  | 1 |
| BAT-10      | 5/3/2019   | 875        | 1      | 360000  |           | 1 45     | 5.4        | 1          | 0.31     | 1        | 7    | 1      | 2360        | 1   | 3620  | 1 |
| BAT-10      | 7/22/2019  | 859        | 1      | 392000  |           | 1 23     | 3.8        | 1          | 0.21     | 1        | 8    | 1      | 2490        | 1   | 4130  | 1 |
| BAT-10      | 10/11/2019 | 750        | 1      | 364000  |           | 1 22     | 2.8        | 1          | 0.2      | 0        |      |        | 2490        | 1   | 3830  | 1 |
| BAT-10      | 1/14/2020  | 818        | 1      | 343000  |           | 1 22     | 2.1        | 1          | 0.23     | 1        | 6.7  | 1      | 2940        | 1   | 4250  | 1 |
| BAT-10      | 4/22/2020  | 889        | 1      | 413000  |           | 1 22     | 2.5        | 1          | 0.4      | 1        | 7.76 | 1      | 2630        | 1   | 3930  | 1 |
| BAT-10      | 7/20/2020  | 659        | 1      | 471000  |           | 1 24     | .1         | 1          | 0.34     | 1        | 7.33 | 1      | 2550        | 1   | 3520  | 1 |
| BAT-10      | 10/8/2020  | 881        | 1      | 378000  |           | 1 22     | 2.7        | 1          | 0.2      | 0        | 7.36 | 1      | 2460        | 1   | 4020  | 1 |
| BAT-10      | 1/7/2021   | . 788      | 1      | 397000  |           | 1 22     | 2.2        | 1          | 0.5      | 1        | 7.5  | 1      | 2490        | 1   | 4270  | 1 |
| BAT-10      | 4/21/2021  | . 798      | 1      | 396000  |           | 1 22     | 2.8        | 1          | 0.2      | 0        | 7.35 | 1      | 14.8        | 1   | 3810  | 1 |
| BAT-10      | 10/18/2021 | . 689      | 1      | 431000  |           | 1 24     | l.5        | 1          | 0.2      | 0        | 7.33 | 1      | 2330        | 1   | 3950  | 1 |
| BAT-10      | 5/4/2022   | 837        | 1      | 405000  |           | 1 22     | 2.5        | 1          | 0.2      | 0        | 7.4  | 1      | 2360        | 1   | 3990  | 1 |
| BAT-10      | 10/28/2022 | 799        | 1      | 430000  |           | 1 22     | 2.2        | 1          | 0.2      | 0        | 7.43 | 1      | 2030        | 1   | 4010  | 1 |
| BAT-10      | 5/2/2023   | 789        | 1      | 404000  |           | 1 22     | 2.5        | 1          | 0.2      | 0        | 7.27 | 1      | 2640        | 1   | 3270  | 1 |
| BAT-10      | 10/19/2023 | 864        | 1      | 416000  |           | 1 22     | 2.9        | 1          | 0.2      | 0        | 7.44 | 1      | 2660        | 1   | 4160  | 1 |
| BAT-10      | 5/9/2024   | 815        | 1      | 425000  |           | 1 29     | 0.3        | 1          | 0.2      | 0        | 6.94 | 1      | 3100        | 1   | 1860  | 1 |
| BAT-10      | 10/15/2024 | 819        | 1      | 404000  |           | 1 23     | 3.4        | 1          | 0.62     | 1        | 7.31 | 1      | 2180        | 1   | 4060  | 1 |

| Location_ID | Date       | Antimony D | _Antimony | Arsenic I | D_Arsenic E | Barium | D_Barium | Beryllium | D_Beryllium | Cadmium | D_Cadm | ium C | Chromium | D_Chromium | Cobalt | D_Cobalt | Fluoride | D_Fluoride | Lead | D_Lead | Lithiur | m D_Lithi | ium |
|-------------|------------|------------|-----------|-----------|-------------|--------|----------|-----------|-------------|---------|--------|-------|----------|------------|--------|----------|----------|------------|------|--------|---------|-----------|-----|
| BAT-09      | 9/14/2016  | 2          | 1         | 5         | 1           | 46     | 1        | 1         | (           | 0.:     | 1      | 1     | 2        | 1          | . 3    | 1        | 0.34     | 1          | 1    | 1      | . 19    | 94        | 1   |
| BAT-09      | 11/30/2016 | 2          | 1         | 3         | 1           | 28     | 1        | 1         | (           | 0.:     | 1      | 0     | 1        | C          | ) 2    | . 1      | 0.32     | 1          | 1    | C      | 19      | 92        | 1   |
| BAT-09      | 12/19/2016 | 1          | 1         | 4         | 1           | 27     | 1        | 1         | (           | 0.:     | 1      | 0     | 1        | C          | ) 1    | . 1      | 0.97     | 1          | 1    | C      | 33      | 30        | 1   |
| BAT-09      | 4/6/2017   | 1          | 1         | 3         | 1           | 20     | 1        | 1         | (           | 0.      | 1      | 0     | 1        | C          | ) 1    | . 1      | 0.24     | 1          | 1    | 1      | . 17    | 73        | 1   |
| BAT-09      | 5/11/2017  | 1          | 0         | 2         | 1           | 17     | 1        | 1         | (           | 0.      | 1      | 0     | 1        | C          | ) 1    | . 1      | 0.2      | 1          | 1    | C      | 18      | 87        | 1   |
| BAT-09      | 6/14/2017  | 2          | 1         | 3         | 1           | 21     | 1        | 1         | (           | 0.:     | 1      | 0     | 1        | C          | ) 2    | 1        | 0.22     | 1          | 1    | C      | 24      | 47        | 1   |
| BAT-09      | 2/8/2018   | 1          | 1         | 4         | 1           | 19     | 1        | 1         | (           | 0.:     | 1      | 0     | 1        | C          | ) 1    | . 1      | 0.37     | 1          | 1    | C      | 23      | 30        | 1   |
| BAT-09      | 3/27/2018  | 1          | 0         | 1.6       | 1           | 16.3   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 19      | 92        | 1   |
| BAT-09      | 6/22/2018  | 3          | 0         | 3         | 0           | 18.1   | 1        | 1.5       | (           | ) 1.    | 5      | 0     | 3        | C          | ) 3    | 0        | 0.24     | 1          | 3    | C      | 20      | 00        | 1   |
| BAT-09      | 10/10/2018 | 0.5        | 0         | 2.5       | 1           | 23.7   | 1        | 1         | (           | 0.0     | 3      | 0     | 2.9      | 1          | 1.8    | 1        | 0.2      | 0          | 1.5  | 1      | . 18    | 82        | 1   |
| BAT-09      | 5/1/2019   | 1          | 0         | 1         | 0           | 19.3   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1.6      | 1          | 1.4    | . 1      | 0.2      | 0          | 1    | C      | 20      | 09        | 1   |
| BAT-09      | 10/15/2019 | 1          | 0         | 1.1       | 1           | 12.6   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | 1.8    | 1        | 0.2      | 0          | 1    | C      | 20      | 00        | 1   |
| BAT-09      | 4/17/2020  | 1          | 0         | 1         | 0           | 11.9   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 21      | 12        | 1   |
| BAT-09      | 10/7/2020  | 1          | 0         | 1         | 0           | 10.9   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.25     | 1          | 1    | C      | 21      | 10        | 1   |
| BAT-09      | 4/14/2021  | 1          | 0         | 1         | 0           | 13.4   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 19      | 97        | 1   |
| BAT-09      | 10/15/2021 | 1          | 0         | 1         | 0           | 13.8   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1.7      | 1          | . 1    | . 0      | 0.2      | 0          | 1    | C      | 26      | 64        | 1   |
| BAT-09      | 5/4/2022   | 1          | 0         | 1.1       | 1           | 11.6   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1.7      | 1          | . 1    | . 0      | 0.2      | 0          | 1    | C      | 22      | 21        | 1   |
| BAT-09      | 10/26/2022 | 5          | 0         | 5         | 0           | 12     | 1        | 2.5       | (           | ) 2.    | 5      | 0     | 5        | C          | ) 5    | 0        | 0.2      | 0          | 5    | C      | 24      | 49        | 1   |
| BAT-09      | 5/2/2023   | 1          | 0         | 1         | 0           | 12.3   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 22      | 20        | 1   |
| BAT-09      | 10/17/2023 | 2          | 0         | 2         | 0           | 11.5   | 1        | 1         | (           | )       | 1      | 0     | 2        | C          | ) 2    | . 0      | 0.2      | 0          | 2    | C      | 21      | 15        | 1   |
| BAT-09      | 5/7/2024   | 1          | 0         | 1         | 0           | 10.2   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 23      | 31        | 1   |
| BAT-09      | 10/10/2024 | 1          | 0         | 10        | 0           | 13.8   | 1        | 1         | (           | ) !     | 5      | 0     | 5        | C          | ) 5    | 0        | 2.3      | 1          | 10   | C      | 25      | 52        | 1   |
| BAT-10      | 1/24/2019  | 1.2        | 1         | 2.6       | 1           | 34.1   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | 1.1    | . 1      | 0.53     | 1          | 1    | C      | 22      | 21        | 1   |
| BAT-10      | 5/3/2019   | 2          | 0         | 2         | 0           | 30.9   | 1        | 1         | (           | )       | 1      | 0     | 2.2      | 1          | _ 2    | . 0      | 0.31     | 1          | 2    | C      | 22      | 27        | 1   |
| BAT-10      | 7/22/2019  | 1          | 0         | 1         | 0           | 21.5   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | 1.2    | 1        | 0.21     | 1          | 1    | C      | 22      | 23        | 1   |
| BAT-10      | 10/11/2019 | 3          | 0         | 3         | 0           | 25.3   | 1        | 1.5       | (           | ) 1.    | 5      | 0     | 3        | C          | ) 3    | 0        | 0.2      | 0          | 3    | C      | 19      | 96        | 1   |
| BAT-10      | 1/14/2020  | 1          | 0         | 1.2       | 1           | 59.2   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1.5      | 1          | 1.5    | 1        | 0.23     | 1          | 1    | C      | 19      | 93        | 1   |
| BAT-10      | 4/22/2020  | 1          | 0         | 1         | 0           | 38.3   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1.3      | C          | ) 1    | . 1      | 0.4      | 1          | 1    | C      | 23      | 36        | 1   |
| BAT-10      | 7/20/2020  | 1          | 0         | 1         | 0           | 24.9   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.34     | 1          | 1    | C      | 38      | 83        | 1   |
| BAT-10      | 10/8/2020  | 3          | 0         | 3         | 0           | 25.8   | 1        | 0.5       | (           | 0.5     | 5      | 0     | 3        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 23      | 32        | 1   |
| BAT-10      | 1/7/2021   | 1          | 0         | 1         | 0           | 17.8   | 1        | 0.5       | (           | 0.5     | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.5      | 1          | 1    | C      | 19      | 95        | 1   |
| BAT-10      | 4/21/2021  | 1          | 0         | 1         | 0           | 18.8   | 1        | 0.5       | (           | 0.5     | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 2:      | 12        | 1   |
| BAT-10      | 10/18/2021 | 1          | 0         | 1         | 0           | 24.6   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1.1      | 1          | . 1    | . 0      | 0.2      | 0          | 1    | C      | 19      | 97        | 1   |
| BAT-10      | 5/4/2022   | 1          | 0         | 1         | 0           | 14.6   | 1        | 0.5       | (           | 0.      | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 22      | 25        | 1   |
| BAT-10      | 10/28/2022 | 10         | 0         | 10        | 0           | 24.1   | 1        | 5         | (           | ) !     | 5      | 0     | 10       | C          | 10     | 0        | 0.2      | 0          | 10   | C      | 22      | 20        | 1   |
| BAT-10      | 5/2/2023   | 1          | 0         | 1         | 0           | 16.3   | 1        | 0.5       | (           | 0.9     | 5      | 0     | 1        | C          | ) 1    | . 0      | 0.2      | 0          | 1    | C      | 22      | 25        | 1   |
| BAT-10      | 10/19/2023 | 2          | 0         | 2         | 0           | 16.2   | 1        | 1         | (           | )       | 1      | 0     | 2        | C          | ) 2    | . 0      | 0.2      | 0          | 2    | C      | 23      | 36        | 1   |
| BAT-10      | 5/9/2024   | 3          | 0         | 3         | 0           | 14.4   | 1        | 1.5       | (           | ) 1.    | 5      | 0     | 3        | C          | ) 3    | 0        | 0.2      | 0          | 3    | C      | 23      | 30        | 1   |
| BAT-10      | 10/15/2024 | 1          | 0         | 10        | 0           | 15.1   | 1        | 1         | (           | ) !     | 5      | 0     | 5        | C          | ) 5    | 0        | 0.62     | 1          | 10   | C      | 21      | 13        | 1   |

| Location_ID | Date          | Mercury | D_Mercury | Molybdenum | D_Molybdenum | Radium | D_Radium | Selenium | D_Selenium | Thallium | D_Thallium |
|-------------|---------------|---------|-----------|------------|--------------|--------|----------|----------|------------|----------|------------|
| BAT-09      | 9/14/2016     | 0.1     | 0         | 23         | 1            | . 3.2  | 1        | 12       | 1          | . 1      |            |
| BAT-09      | 11/30/2016    | 0.1     | 0         | 40         | 1            | 1.6    | 1        | 5        | 1          | . 1      |            |
| BAT-09      | 12/19/2016    | 0.1     | 0         | 32         | . 1          | 1.6    | 1        | 3        | 1          | . 1      |            |
| BAT-09      | 4/6/2017      | 0.1     | 0         | 26         | . 1          | 0.55   | 1        | 4        | 1          | . 1      |            |
| BAT-09      | 5/11/2017     | 0.1     | 0         | 25         | 1            | 1.7    | 1        | 3        | 1          | . 1      |            |
| BAT-09      | 6/14/2017     | 0.1     | 0         | 18         | . 1          | 0.31   | 1        | 5        | 1          | . 1      |            |
| BAT-09      | 2/8/2018      | 0.1     | 0         | 33         | . 1          | 1.4    | 1        | 3        | 1          | . 1      |            |
| BAT-09      | 3/27/2018     | 0.2     | 0         | 18.3       | . 1          | 0.947  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 6/22/2018     | 0.2     | 0         | 17.7       | ' 1          | 0.85   | 1        | 3        | 0          | 3        |            |
| BAT-09      | 10/10/2018    | 0.2     | 0         | 12.7       | ' 1          | 0.834  | 1        | 2.5      | 0          | 0.1      |            |
| BAT-09      | 5/1/2019      | 0.2     | 0         | 9.6        | . 1          | 1.09   | 1        | 1.5      | 1          | . 1      |            |
| BAT-09      | 10/15/2019    | 0.2     | 0         | 8.2        | . 1          | 0.497  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 4/17/2020     | 0.2     | 0         | 4.9        | ) 1          | 0.451  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 10/7/2020     | 0.2     | 0         | 4.9        | ) 1          | 0.913  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 4/14/2021     | 0.2     | 0         | 5.4        | . 1          | 0.884  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 10/15/2021    | 0.2     | 0         | 3.8        | . 1          | 2.81   | 1        | 1        | 0          | 1        |            |
| BAT-09      | 5/4/2022      | 0.2     | 0         | 2.7        | ' 1          | 0.785  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 10/26/2022    | 0.2     | 0         | 5          | 0            | 0.242  | 1        | 5        | 0          | 5        |            |
| BAT-09      | 5/2/2023      | 0.2     | 0         | 3.1        | . 1          | 0.537  | 1        | 1        | 0          | 1        |            |
| BAT-09      | 10/17/2023    |         |           | 2.3        | . 1          | 0.647  | 1        |          |            | 2        |            |
| BAT-09      | 5/7/2024      | 0.2     | 0         | 2.3        | . 1          | 0.274  | 1        | 1        |            | 1        |            |
| BAT-09      | 10/10/2024    | 0.2     | 0         | 20         | 0            | 1.87   | 1        | 15       | 0          | 1        |            |
| BAT-10      | 1/24/2019     | 0.2     | 0         | 36.8       | 1            | _      |          | 131      | 1          | . 1      |            |
| BAT-10      | 5/3/2019      |         |           | 32.5       |              |        | 1        |          |            | . 2      |            |
| BAT-10      | 7/22/2019     | 0.2     | 0         | 20.4       | . 1          | 1.64   | 1        | 109      | 1          | . 1      |            |
| BAT-10      | 10/11/2019    | 0.2     | 0         | 19.3       | 1            | 0.915  | 1        | 115      | 1          | . 3      |            |
| BAT-10      | 1/14/2020     | 0.2     | 0         | 17.4       | . 1          | 0.681  | 1        |          |            | . 1      |            |
| BAT-10      | 4/22/2020     |         |           |            |              | 0.382  | 1        |          |            | . 1      |            |
| BAT-10      | 7/20/2020     | 0.2     | 0         | 12         | . 1          | 0.487  | 1        | 90.3     | 1          | . 1      |            |
| BAT-10      | 10/8/2020     |         |           |            |              |        |          |          |            | . 1      |            |
| BAT-10      | 1/7/2021      |         |           |            |              |        |          |          |            | . 1      |            |
| BAT-10      | 4/21/2021     | 0.2     | 0         | 8.2        | . 1          | 1.93   | 1        | 150      | 1          | . 1      |            |
| BAT-10      | 10/18/2021    |         |           |            |              | 0.666  | 1        | 213      | 1          | . 1      |            |
| BAT-10      | 5/4/2022      |         |           |            |              |        |          |          |            | . 1      |            |
| BAT-10      | 10/28/2022    |         |           |            |              |        |          |          |            |          |            |
| BAT-10      | 5/2/2023      |         |           |            |              |        |          |          |            |          |            |
| BAT-10      | 10/19/2023    |         |           |            |              |        |          |          |            |          |            |
| BAT-10      | 5/9/2024      |         |           |            |              |        |          | 136      |            |          |            |
| BAT-10      | 10/15/2024    |         |           |            |              |        |          |          |            |          |            |
| -           | <del></del> - |         | ·         |            | _            | ·      | _        | •        | _          | _        |            |

|          | Α            | В                | С             | D                                | E                            | F              | G               | Н                                 | I                                  | J              | K                                                     | L            |
|----------|--------------|------------------|---------------|----------------------------------|------------------------------|----------------|-----------------|-----------------------------------|------------------------------------|----------------|-------------------------------------------------------|--------------|
| 1        |              | Llaan Calas      | -td Oti       |                                  | Statistics for               | or Data Sets   | with Non-De     | etects                            |                                    |                |                                                       |              |
| 3        | Da           | te/Time of Co    | cted Options  | ProUCL 5.2                       | 1/23/2025 1                  | ·01·55 PM      |                 |                                   |                                    |                |                                                       |              |
| 4        |              | 10, 111110 01 01 | From File     |                                  |                              |                | ndix III Tota   | I 2016-2024.:                     | xls                                |                |                                                       |              |
| 5        |              |                  | II Precision  | OFF                              |                              | •              |                 |                                   |                                    |                |                                                       |              |
| 6<br>7   |              | Confidence       |               | 95%                              |                              |                |                 |                                   |                                    |                |                                                       |              |
| 8        | Different or | Future K Ob      | Coverage      | 95%                              |                              |                |                 |                                   |                                    |                |                                                       |              |
| 9        |              | of Bootstrap     |               | 2000                             |                              |                |                 |                                   |                                    |                |                                                       |              |
| 10       |              |                  |               |                                  |                              |                |                 |                                   |                                    |                |                                                       |              |
| 11       | TDS          |                  |               |                                  |                              |                |                 |                                   |                                    |                |                                                       |              |
| 12<br>13 | General Sta  | atietice         |               |                                  |                              |                |                 |                                   |                                    |                |                                                       |              |
| 14       | General Ot   | 21131103         | Total         | Number of C                      | bservations                  | 38             |                 |                                   | Numbe                              | r of Distinct  | Observations                                          | 35           |
| 15       |              |                  |               |                                  |                              |                |                 |                                   | Numbe                              |                | Observations                                          | 3            |
| 16       |              |                  |               |                                  | Minimum                      |                |                 |                                   |                                    |                | First Quartile                                        |              |
| 17<br>18 |              |                  |               | Sec                              | ond Largest<br>Maximum       |                |                 |                                   |                                    | 7              | Median<br>Third Quartile                              |              |
| 19       |              |                  |               |                                  | Mean                         |                |                 |                                   |                                    |                | SD                                                    | 721.6        |
| 20       |              |                  |               | Coefficient                      | of Variation                 |                |                 |                                   |                                    |                | Skewness                                              | -0.558       |
| 21       |              |                  |               | Mean of                          | logged Data                  | 8.058          |                 |                                   |                                    | SD of          | f logged Data                                         | 0.252        |
| 22<br>23 |              |                  |               | Criti                            | ical Valuos f                | or Backgrou    | nd Threehel     | d Values (B1                      | Γ//ς\                              |                |                                                       |              |
| 24       |              |                  | Tole          | rance Factor                     |                              |                | iii iiii esii0i | w values (D)                      | 1 43)                              | d2n            | nax (for USL)                                         | 2.846        |
| 25       |              |                  |               |                                  | , :                          |                |                 |                                   |                                    |                | ,/                                                    |              |
| 26       |              |                  |               | N · · · · · · · · ·              |                              |                | OF Test         |                                   | 01                                 |                |                                                       |              |
| 27<br>28 |              |                  |               | Shapiro Wilk T<br>Shapiro Wilk C |                              |                |                 | Data ann                          | <b>Shapiro W</b> i<br>ear Normal a | ilk GOF Test   |                                                       |              |
| 29       |              |                  | 1/0 3         |                                  | Test Statistic               |                |                 | Data app                          |                                    | GOF Test       | Janue Level                                           |              |
| 30       |              |                  | 1             | % Lilliefors C                   | ritical Value                | 0.165          |                 |                                   | ear Normal a                       |                | cance Level                                           |              |
| 31       |              |                  |               |                                  | Data appe                    | ar Normal at   | 1% Signific     |                                   |                                    |                |                                                       |              |
| 32<br>33 |              |                  |               | D.                               | ackground S                  | Statistics Acc | umina Nom       | nal Distribution                  | nn .                               |                |                                                       |              |
| 34       |              |                  | 95% (         | UTL with 95°                     |                              |                | unning Norn     | ומו טוטנווטנוני                   | ווע                                | 90%            | Percentile (z)                                        | 4173         |
| 35       |              |                  |               |                                  | 95% UPL (t)                  | 4482           |                 |                                   |                                    |                | Percentile (z)                                        |              |
| 36       |              |                  |               |                                  | 95% USL                      | 5302           |                 |                                   |                                    | 99%            | Percentile (z)                                        | 4927         |
| 37<br>38 |              |                  |               |                                  |                              | Gamma (        | GOF Test        |                                   |                                    |                |                                                       |              |
| 39       |              |                  |               | A-D T                            | est Statistic                |                | GO1 1691        | Ande                              | rson-Darling                       | Gamma GC       | F Test                                                |              |
| 40       |              |                  |               |                                  | critical Value               | 0.747          |                 | ata Not Gam                       | nma Distribut                      | ted at 5% Sig  | gnificance Lev                                        | ⁄el          |
| 41       |              |                  |               |                                  | est Statistic                | -              |                 |                                   | orov-Smirno                        |                |                                                       |              |
| 42<br>43 |              |                  |               |                                  | Critical Value               |                |                 | ed data appea<br>at 5% Signifi    |                                    |                | 5% Significan                                         | ce Level     |
| 44       |              |                  |               | Detected dg                      | na ronow Ap                  | pr. Ganiilid I | วเอนามนนเปก     | at 0 /0 OlyHill                   | Carice Level                       |                |                                                       |              |
| 45       |              |                  |               |                                  |                              | Gamma          | Statistics      |                                   |                                    |                |                                                       |              |
| 46       |              |                  |               |                                  | k hat (MLE)                  | 17.89          |                 |                                   |                                    |                | rrected MLE)                                          | 16.49        |
| 47<br>48 |              |                  |               |                                  | ta hat (MLE)<br>nu hat (MLE) |                |                 |                                   | Theta                              |                | rrected MLE) as corrected)                            | 197<br>1253  |
| 49       |              |                  | М             | LE Mean (bia                     |                              |                |                 |                                   |                                    |                | as corrected)                                         | 799.9        |
| 50       |              |                  |               |                                  | •                            |                |                 |                                   |                                    | . (*)          | <del> /</del>                                         | 1            |
| 51       |              | 050/ 11/11       | 1196 - 01     |                                  |                              |                | uming Gam       | ma Distributi                     | on                                 |                | 10/ D :"                                              | 4000         |
| 52<br>53 |              |                  |               | VH) Approx. C<br>IW) Approx. C   |                              |                |                 |                                   |                                    |                | <ul><li>9% Percentile</li><li>5% Percentile</li></ul> | 4306<br>4666 |
| 54       | 95           |                  |               | UTL with 95°                     |                              |                |                 |                                   |                                    |                | 9% Percentile                                         |              |
| 55       |              |                  |               | UTL with 95°                     | % Coverage                   | 5185           |                 |                                   |                                    |                |                                                       |              |
| 56<br>57 |              |                  |               | 95                               | 5% WH USL                    | 5915           |                 |                                   |                                    | 9              | 95% HW USL                                            | 6031         |
| 57<br>58 |              |                  |               |                                  |                              | Lognorma       | GOF Test        |                                   |                                    |                |                                                       |              |
| 59       |              |                  | S             | Shapiro Wilk T                   | est Statistic                |                | - GOI 163L      | Shai                              | piro Wilk Log                      | normal GOI     | F Test                                                |              |
| 60       |              |                  |               | hapiro Wilk C                    | ritical Value                | 0.947          |                 | Data Not I                        | Lognormal at                       | t 10% Signifi  | cance Level                                           |              |
| 61       |              |                  |               |                                  | est Statistic                | 0.116          |                 |                                   | lliefors Logn                      |                |                                                       |              |
| 62<br>63 |              |                  | 10            | % Lilliefors C<br>Data ar        |                              |                | ormal at 100    | Data appea<br><b>Significan</b> o |                                    | at 10% Sign    | ificance Leve                                         |              |
| 64       |              |                  |               | Data ap                          | pour Approx                  | Amulo LUGIII   | ormar at 10     | o organicant                      | ~ LUVUI                            |                |                                                       |              |
| 65       |              |                  |               |                                  |                              |                | ming Logno      | rmal Distribu                     | tion                               |                |                                                       |              |
| 66<br>67 |              |                  | 95% (         | UTL with 95°                     |                              |                |                 |                                   |                                    |                | Percentile (z)                                        | 4363         |
| 67<br>68 |              |                  |               |                                  | 95% UPL (t)<br>95% USL       |                |                 |                                   |                                    |                | Percentile (z)<br>Percentile (z)                      |              |
| 69       |              |                  |               |                                  | 33 /0 USL                    | 07/3           |                 |                                   |                                    | 33/0           | . 51551111 <del>5</del> (2)                           | 3073         |
| 70       |              |                  |               | No                               |                              |                |                 | round Statis                      | tics                               |                |                                                       |              |
| 71       |              |                  |               |                                  | Data appe                    | ar Normal at   | 1% Signific     | ance Level                        |                                    |                |                                                       |              |
| 72<br>73 |              |                  |               | Nonna                            | rametric I les               | er l imite for | Backgroup       | d Threshold                       | Values                             |                |                                                       |              |
| 74       |              |                  |               |                                  | atistic, order               |                | Dackyrouli      | u 1111691101Ü                     |                                    | UTL with 95    | 5% Coverage                                           | 4270         |
| 75       |              | Ap               | oprox, f used | to compute a                     |                              | 2              |                 |                                   | nfidence Co                        | efficient achi | ieved by UTL                                          | 0.858        |
| 76       |              | •                | •             | ·                                |                              | 40=0           |                 | mate Sample                       | Size neede                         | d to achieve   | specified CC                                          | 59           |
| 77<br>78 | 9.           | 5% Percentil     | e Bootstrap l | UTL with 95°                     |                              |                |                 | 95% BC                            | A Bootstrap                        |                | 5% Coverage<br>0% Percentile                          |              |
| 78<br>79 |              |                  |               | 90% Cha                          | 95% UPL byshev UPL           | -              |                 |                                   |                                    |                | <ul><li>D% Percentile</li><li>D% Percentile</li></ul> | 4081<br>4174 |
| , 5      |              |                  |               | 30 /0 CHE                        | DYSHEV UFL                   | UTT I          |                 |                                   |                                    | 30             | , or crecinite                                        | 71/7         |

|                   | A B C D E                                                     | F                       | G H I J K                                                                                        | L               |
|-------------------|---------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-----------------|
| 80<br>81          | 95% Chebyshev UPL<br>95% USL                                  |                         | 99% Percentile                                                                                   | 4263            |
| 82                | 93 % 03L                                                      | 4270                    |                                                                                                  |                 |
| 83<br>84          |                                                               |                         | of BTV, especially when the sample size starts exceeding 20.                                     |                 |
| 85                |                                                               |                         | e data set represents a background data set free of outliers ed from clean unimpacted locations. |                 |
| 86                | The use of USL tends to provide a balar                       | nce between             | false positives and false negatives provided the data                                            |                 |
| 87<br>88          | represents a background data set and w                        | hen many on             | site observations need to be compared with the BTV.                                              |                 |
| 89                | Boron                                                         |                         |                                                                                                  |                 |
| 90<br>91          | General Statistics                                            |                         |                                                                                                  |                 |
| 92                | Total Number of Observations                                  | 38                      | Number of Distinct Observations                                                                  | 34              |
| 93                |                                                               | 050                     | Number of Missing Observations                                                                   | 3               |
| 94<br>95          | Minimum<br>Second Largest                                     | 659<br>2390             |                                                                                                  | 818.3<br>2025   |
| 96                | Maximum                                                       | 2400                    |                                                                                                  | 2200            |
| 97<br>98          | Mean                                                          |                         | -                                                                                                | 695.2           |
| 99                | Coefficient of Variation  Mean of logged Data                 | 0.445<br>7.24           | Skewness<br>SD of logged Data                                                                    | -0.184<br>0.504 |
| 100               | -                                                             |                         |                                                                                                  |                 |
| 101<br>102        | Critical Values fo<br>Tolerance Factor K (For UTL)            | or Backgrour<br>2.132   | nd Threshold Values (BTVs) d2max (for USL)                                                       | 2.846           |
| 103               | Tolerance Lactor K (LOLOTE)                                   | ۷. ۱۷۷                  | uziliax (ioi USL)                                                                                | 2.040           |
| 104               |                                                               | Normal C                |                                                                                                  |                 |
| 105<br>106        | Shapiro Wilk Test Statistic<br>1% Shapiro Wilk Critical Value | 0.738<br>0.916          | Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level                                   |                 |
| 107               | Lilliefors Test Statistic                                     | 0.281                   | Lilliefors GOF Test                                                                              |                 |
| 108<br>109        | 1% Lilliefors Critical Value                                  | 0.165                   | Data Not Normal at 1% Significance Level                                                         |                 |
| 110               | Data Not                                                      | inomial at 1            | % Significance Level                                                                             |                 |
| 111               |                                                               |                         | uming Normal Distribution                                                                        |                 |
| 112<br>113        | 95% UTL with 95% Coverage<br>95% UPL (t)                      |                         | 90% Percentile (z) 2<br>95% Percentile (z) 2                                                     | 2454            |
| 114               | 95% USL                                                       |                         | 99% Percentile (z)                                                                               |                 |
| 115<br>116        |                                                               | Camma                   | DOE Took                                                                                         |                 |
| 117               | A-D Test Statistic                                            | <b>Gamma (</b><br>4.704 | Anderson-Darling Gamma GOF Test                                                                  |                 |
| 118               | 5% A-D Critical Value                                         | 0.752                   | Data Not Gamma Distributed at 5% Significance Level                                              |                 |
| 119<br>120        | K-S Test Statistic<br>5% K-S Critical Value                   | 0.284<br>0.144          | Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level            |                 |
| 121               |                                                               |                         | d at 5% Significance Level                                                                       |                 |
| 122<br>123        |                                                               | Commo                   | Statiation                                                                                       |                 |
| 124               | k hat (MLE)                                                   | <b>Gamma</b> 3 4.512    | k star (bias corrected MLE)                                                                      | 4.173           |
| 125<br>126<br>127 | Theta hat (MLE)                                               | 346.5                   |                                                                                                  | 374.6           |
| 120               | nu hat (MLE)<br>MLE Mean (bias corrected)                     | 342.9<br>1563           |                                                                                                  | 317.2<br>765.3  |
| 128               |                                                               |                         | · · · · · · · · · · · · · · · · · · ·                                                            | 700.0           |
| 129<br>130        | Background St<br>95% Wilson Hilferty (WH) Approx. Gamma UPL   | tatistics Assu<br>3040  | uming Gamma Distribution 90% Percentile 2                                                        | 2589            |
| 131               | 95% Hawkins Wixley (HW) Approx. Gamma UPL                     | 3094                    |                                                                                                  | 2997            |
| 132               | 95% WH Approx. Gamma UTL with 95% Coverage                    |                         | 99% Percentile 3                                                                                 | 3866            |
| 133<br>134        | 95% HW Approx. Gamma UTL with 95% Coverage<br>95% WH USL      |                         | 95% HW USL 4                                                                                     | 4800            |
| 135               | 33% WHOCE                                                     |                         |                                                                                                  |                 |
| 136<br>137        | Shapiro Wilk Test Statistic                                   | Lognormal<br>0.736      | GOF Test Shapiro Wilk Lognormal GOF Test                                                         |                 |
| 138               | 10% Shapiro Wilk Critical Value                               | 0.736                   | Data Not Lognormal at 10% Significance Level                                                     |                 |
| 139               | Lilliefors Test Statistic                                     | 0.289                   | Lilliefors Lognormal GOF Test                                                                    |                 |
| 140<br>141        | 10% Lilliefors Critical Value  Data Not Lo                    | 0.13<br>canormal at     | Data Not Lognormal at 10% Significance Level  10% Significance Level                             |                 |
| 142               |                                                               | _                       |                                                                                                  |                 |
| 143<br>144        | Background Sta<br>95% UTL with 95% Coverage                   |                         | ning Lognormal Distribution 90% Percentile (z)                                                   | 2659            |
| 145               | 95% UTL with 95% Coverage 95% UPL (t)                         |                         |                                                                                                  | 3193            |
| 146               | 95% USL                                                       |                         | 99% Percentile (z)                                                                               |                 |
| 147<br>148        | Nonnarametric                                                 | Distribution            | Free Background Statistics                                                                       |                 |
| 149               |                                                               |                         | iscernible Distribution                                                                          |                 |
| 150<br>151        | Nannaramatria II                                              | or l imita fa-          | Rackground Throshold Volume                                                                      |                 |
| 152               | Order of Statistic, order                                     | er Limits for<br>38     | Background Threshold Values  95% UTL with 95% Coverage 2                                         | 2400            |
| 153               | Approx, f used to compute achieved CC                         | 2                       | Approximate Actual Confidence Coefficient achieved by UTL                                        | 0.858           |
| 154<br>155        | 95% Percentile Bootstrap UTL with 95% Coverage                | 2400                    | Approximate Sample Size needed to achieve specified CC 95% BCA Bootstrap UTL with 95% Coverage 2 | 59<br>2400      |
| 156               | 95% UPL                                                       | 2391                    |                                                                                                  | 2233            |
| 157               | 90% Chebyshev UPL                                             | 3676                    | 95% Percentile 2                                                                                 | 2314            |
| 158               | 95% Chebyshev UPL                                             | 4633                    | 99% Percentile 2                                                                                 | 2396            |

| 159                                           | А           | В            | C        | ;      |          | D                   | 95% USL                          | F<br>2400            | G              | Н                          |           | ı          |          | J                        | K                          |                   | L           |
|-----------------------------------------------|-------------|--------------|----------|--------|----------|---------------------|----------------------------------|----------------------|----------------|----------------------------|-----------|------------|----------|--------------------------|----------------------------|-------------------|-------------|
| 160                                           |             |              |          |        |          |                     |                                  |                      | <u>'</u>       |                            |           |            |          |                          |                            |                   |             |
| 161<br>162                                    |             |              |          |        |          |                     | a conservat<br>imate a BTV       |                      |                |                            |           |            |          |                          |                            |                   |             |
| 163                                           |             | THEIEIGIE    | e, one m | lay us |          |                     | its of observa                   |                      |                |                            |           |            | uala Se  | t iiee o                 | outilets                   |                   |             |
| 164                                           |             |              |          |        | L tend   | s to pro            | ovide a balar                    | nce between          | false positi   | ves and fals               | se nega   | tives p    |          |                          |                            |                   |             |
| 165<br>166                                    |             | re           | present  | s a ba | ackgro   | und da              | ita set and w                    | hen many o           | nsite observ   | ations need                | to be c   | compar     | ed with  | the BT\                  | <i>/</i>                   |                   |             |
|                                               | Calcium     |              |          |        |          |                     |                                  |                      |                |                            |           |            |          |                          |                            |                   |             |
| 168                                           |             |              |          |        |          |                     |                                  |                      |                |                            |           |            |          |                          |                            |                   |             |
| 169<br>170                                    | General Sta | itistics     |          | Takal  | N I la   |                     | bservations                      | 20                   |                |                            |           | N I        | af D:a   | 4i4 Ob                   |                            |                   | 34          |
| 171                                           |             |              |          | Total  | Numb     | ei oi C             | bservations                      | 38                   |                |                            |           |            |          |                          | servations<br>servations   | -                 | 3           |
| 172                                           |             |              |          |        |          |                     | Minimum                          |                      |                |                            |           |            |          |                          | st Quartile                | e 175             | 250         |
| 173<br>174                                    |             |              |          |        |          | Sec                 | ond Largest                      |                      |                |                            |           |            |          | Thi                      | Mediar<br>rd Quartile      |                   |             |
| 175                                           |             |              |          |        |          |                     | Maximum<br>Mean                  | 277211               |                |                            |           |            |          | 1111                     |                            | 390               |             |
| 176                                           |             |              |          |        |          |                     | of Variation                     | 0.416                |                |                            |           |            |          |                          | Skewnes                    | s                 | 0.223       |
| 177<br>178                                    |             |              |          |        | M        | ean of              | logged Data                      | 12.44                |                |                            |           |            |          | SD of lo                 | gged Data                  | а (               | 0.431       |
| 179                                           |             |              |          |        |          | Criti               | ical Values f                    | or Backgrou          | nd Thresho     | ld Values (I               | BTVs)     |            |          |                          |                            |                   |             |
| 180                                           |             |              |          | Toler  | rance    |                     | K (For UTL)                      |                      |                |                            | ,         |            |          | d2ma                     | (for USL                   | ) :               | 2.846       |
| 181                                           |             |              |          |        |          |                     |                                  |                      |                |                            |           |            |          |                          |                            |                   |             |
| 182<br>183                                    |             |              |          | Q      | haniro   | \/\/iI⊾ T           | est Statistic                    | 0.828                | GOF Test       |                            | Sha       | niro W     | ilk GOF  | Toet                     |                            |                   |             |
| 184                                           |             |              |          |        |          |                     | critical Value                   | 0.916                |                | Data I                     |           |            |          | nificanc                 | e Level                    |                   |             |
| 185                                           |             |              |          |        |          |                     | est Statistic                    | 0.218                |                |                            |           |            | GOF T    |                          |                            |                   |             |
| 186<br>187                                    |             |              |          | 19     | % Lillie | efors C             | Critical Value                   | 0.165<br>t Normal at | 1% Signifies   |                            | Not Nor   | mal at     | 1% Sig   | nificanc                 | e Level                    |                   |             |
| 188                                           |             |              |          |        |          |                     | Data NO                          | i Nomiai at          | i /o Olgriillo | liice revei                |           |            |          |                          |                            |                   |             |
| 189                                           |             |              |          |        |          |                     | ackground S                      |                      | suming Nor     | nal Distribu               | ition     |            |          |                          |                            |                   |             |
| 190<br>191                                    |             |              | (        | 95% L  | JTL wi   |                     | % Coverage<br>95% UPL (t)        |                      |                |                            |           |            |          |                          | rcentile (z<br>rcentile (z |                   |             |
| 192                                           |             |              |          |        |          | •                   | 95% USL                          |                      |                |                            |           |            |          |                          | rcentile (z                |                   |             |
| 193                                           |             |              |          |        |          |                     |                                  |                      |                |                            |           |            |          |                          | ,                          | /                 |             |
| 194<br>195                                    |             |              |          |        |          | 4 D T               | Toot Ctatiatia                   | <b>Gamma</b> 2.489   | GOF Test       | And                        | loroon I  | Dorling    | Comm     | o COE                    | Toot                       |                   |             |
| 196                                           |             |              |          |        | 5%       |                     | Test Statistic<br>Critical Value | 0.75                 |                | Data Not Ga                |           |            |          | <b>na GOF</b><br>% Signi |                            | evel              |             |
| 197                                           |             |              |          |        |          | K-S T               | est Statistic                    | 0.207                |                | Kolmo                      | ogorov-   | Smirno     | ov Gam   | ma GO                    | F Test                     |                   |             |
| 198<br>199                                    |             |              |          |        | 5%       |                     | Critical Value                   |                      |                | Data Not Ga                |           | Distribu   | ted at 5 | % Signi                  | ficance Le                 | evel              |             |
| 200                                           |             |              |          |        |          | Da                  | ita Not Gami                     | ma Distribut         | ed at 5% Si    | gnificance i               | Levei     |            |          |                          |                            |                   |             |
| 201                                           |             |              |          |        |          |                     |                                  |                      | Statistics     |                            |           |            |          |                          |                            |                   |             |
| 202                                           |             |              |          |        |          |                     | k hat (MLE)                      | 5.795                |                |                            |           |            |          |                          | cted MLE                   | /                 | 5.355       |
| 203<br>204                                    |             |              |          |        |          |                     | ta hat (MLE)<br>nu hat (MLE)     |                      |                |                            |           | rneta      |          |                          | cted MLE<br>corrected      |                   |             |
| 205                                           |             |              |          | ML     | LE Me    |                     | s corrected)                     |                      |                |                            |           |            |          |                          | corrected                  |                   |             |
| 206<br>207                                    |             |              |          |        |          |                     | 11 0                             |                      |                | Distrille                  |           |            |          |                          |                            |                   |             |
| 207                                           |             | 95% Wilso    | on Hilfe | rtv (W | /H) An   |                     | <b>ackground S</b><br>Gamma UPL  |                      | uming Gar      | ima Distribu               | Jtion     |            |          | 90%                      | Percentile                 | 437               | 507         |
| 209                                           |             |              |          |        |          |                     | Gamma UPL                        |                      |                |                            |           |            |          |                          | Percentile                 | -                 |             |
| 210                                           |             |              |          |        |          |                     | % Coverage                       |                      |                |                            |           |            |          | 99%                      | Percentile                 | e 628             | 655         |
| 211<br>212                                    | 95          | % HW Appr    | ox. Gan  | nma c  | J I L WI |                     | % Coverage<br>5% WH USL          |                      |                |                            |           |            |          | 950                      | 6 HW USI                   | 756               | 261         |
| 213<br>214                                    |             |              |          |        |          |                     |                                  |                      | 1              |                            |           |            |          | 307                      |                            | _,,50             |             |
| 214                                           |             |              |          |        | ha!      | \A/:U- <del>-</del> | Foot Otatiati                    |                      | I GOF Test     |                            | onles 14  | //:II- I - |          | 1005                     |                            |                   |             |
| 215<br>216                                    |             |              | 1(       |        |          |                     | Test Statistic<br>Critical Value | 0.846<br>0.947       |                |                            |           |            |          | I GOF T<br>Significa     | est<br>nce Level           |                   |             |
| 217                                           |             |              | - 11     |        | Lilli    | efors T             | est Statistic                    | 0.213                |                |                            | Lilliefor | s Logn     | ormal C  | OF Tes                   | st                         |                   |             |
| 218                                           |             |              |          | 10°    | % Lillie | efors C             | ritical Value                    | 0.13                 | 100/ 0::4      |                            |           | rmal a     | t 10% S  | Significa                | nce Level                  |                   |             |
| 219<br>220                                    |             |              |          |        |          |                     | Data Not L                       | ognormal at          | 10% Signif     | icance Leve                | H         |            |          |                          |                            |                   |             |
| 220<br>221<br>222                             |             |              |          |        |          |                     | ckground Sta                     |                      | ming Logno     | rmal Distrib               | oution    |            |          |                          |                            |                   |             |
| 222                                           |             |              | (        | 95% L  | JTL wi   | th 95°              | % Coverage                       | 636181               |                |                            |           |            |          |                          | rcentile (z                |                   |             |
| 223<br>224                                    |             |              |          |        |          |                     | 95% UPL (t)<br>95% USL           |                      |                |                            |           |            |          |                          | rcentile (z<br>rcentile (z |                   |             |
| 224<br>225                                    |             |              |          |        |          |                     |                                  |                      |                |                            |           |            |          |                          | 30.1010 (2                 | , , 551           |             |
| 226                                           |             |              |          |        |          | No                  | nparametric                      |                      |                |                            |           |            |          |                          |                            |                   |             |
| 227<br>228                                    |             |              |          |        |          |                     | Data do n                        | ot follow a [        | Iscernible     | STIDUTION                  |           |            |          |                          |                            |                   |             |
| 227<br>228<br>229<br>230<br>231<br>232<br>233 |             |              |          |        |          |                     | rametric Upp                     |                      | r Backgrour    | nd Threshol                | d Value   |            |          |                          |                            |                   |             |
| 230                                           |             |              |          |        | Orde     | er of Sta           | atistic, order                   | 38                   |                |                            |           | 95%        |          |                          | Coverage                   |                   |             |
| 231<br>232                                    |             | Ap           | oprox, f | used   | to con   | npute a             | chieved CC                       | 2                    |                | ate Actual (<br>imate Samp |           |            |          |                          |                            |                   | 0.858<br>59 |
| 233                                           | 95          | 5% Percentil | e Boots  | trap L | JTL wi   | th 95°              | % Coverage                       | 471000               | Approx         |                            |           |            |          |                          | Coverage                   |                   |             |
| 234                                           |             |              | : 2.2    | ,      |          |                     | 95% UPL                          | 433000               |                |                            |           |            |          | 90%                      | Percentile                 | e 418             | 700         |
| 235<br>236                                    |             |              |          |        |          |                     | byshev UPL                       |                      |                |                            |           |            |          |                          | Percentile<br>Percentile   |                   |             |
| 237                                           |             |              |          |        | 90       | ⁄₀ cne              | byshev UPL<br>95% USL            |                      |                |                            |           |            |          | 99%                      | rercentile                 | <del>-</del>  430 | 200         |
|                                               |             |              |          |        |          |                     | 20.0 JOL                         |                      | 1              |                            |           |            |          |                          |                            |                   |             |

|                                               | A B C D E                                                       | F                      | G H I J K                                                                                                                   | L              |
|-----------------------------------------------|-----------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| 238                                           | Note: The use of LICI tende to viold a sense wetin              |                        | of DTV conscients when the complexity shorts averaging 20                                                                   |                |
| 239<br>240                                    |                                                                 |                        | of BTV, especially when the sample size starts exceeding 20.  ne data set represents a background data set free of outliers |                |
| 241                                           | and consists of observa                                         | tions collect          | ed from clean unimpacted locations.                                                                                         |                |
| 242<br>243                                    |                                                                 |                        | false positives and false negatives provided the data                                                                       |                |
| 243                                           | represents a background data set and wr                         | nen many on            | site observations need to be compared with the BTV.                                                                         |                |
| 245                                           | Chloride                                                        |                        |                                                                                                                             |                |
| 246<br>247                                    | One wal Chatistics                                              |                        |                                                                                                                             |                |
| 248                                           | General Statistics  Total Number of Observations                | 38                     | Number of Distinct Observations                                                                                             | 33             |
| 249                                           |                                                                 |                        | Number of Missing Observations                                                                                              | 3              |
| 250<br>251                                    | Minimum<br>Second Lorgest                                       | 22.1<br>188            | First Quartile<br>Median                                                                                                    | 22.83<br>86.5  |
| 252                                           | Second Largest Maximum                                          | 226                    | Third Quartile                                                                                                              | 137.8          |
| 253<br>254                                    | Mean                                                            | 82.83                  | SD                                                                                                                          | 63.33          |
| 254<br>255                                    | Coefficient of Variation<br>Mean of logged Data                 | 0.765<br>4.072         | Skewness<br>SD of logged Data                                                                                               | 0.559<br>0.879 |
| 256                                           | Mean of logged Data                                             | 4.072                  | 3D 01 logged Data                                                                                                           | 0.079          |
| 257                                           |                                                                 |                        | nd Threshold Values (BTVs)                                                                                                  |                |
| 258<br>259                                    | Tolerance Factor K (For UTL)                                    | 2.132                  | d2max (for USL)                                                                                                             | 2.846          |
| 260                                           |                                                                 | Normal C               | GOF Test                                                                                                                    |                |
| 261                                           | Shapiro Wilk Test Statistic                                     | 0.838                  | Shapiro Wilk GOF Test                                                                                                       |                |
| 262<br>263                                    | 1% Shapiro Wilk Critical Value<br>Lilliefors Test Statistic     | 0.916<br>0.248         | Data Not Normal at 1% Significance Level  Lilliefors GOF Test                                                               |                |
| 264                                           | 1% Lilliefors Critical Value                                    | 0.248                  | Data Not Normal at 1% Significance Level                                                                                    |                |
| 264<br>265                                    |                                                                 | Normal at 1            | % Significance Level                                                                                                        |                |
| 266<br>267                                    | Rackground St                                                   | tatistice Ass          | uming Normal Distribution                                                                                                   |                |
| 268                                           | 95% UTL with 95% Coverage                                       | 217.9                  | 90% Percentile (z)                                                                                                          | 164            |
| 269                                           | 95% UPL (t)                                                     |                        | 95% Percentile (z)                                                                                                          | 187            |
| 270<br>271                                    | 95% USL                                                         | 263.1                  | 99% Percentile (z)                                                                                                          | 230.2          |
| 272                                           |                                                                 | Gamma (                | GOF Test                                                                                                                    |                |
| 273                                           | A-D Test Statistic                                              | 2.656                  | Anderson-Darling Gamma GOF Test                                                                                             | -1             |
| 274<br>275                                    | 5% A-D Critical Value<br>K-S Test Statistic                     | 0.765<br>0.246         | Data Not Gamma Distributed at 5% Significance Leve<br>Kolmogorov-Smirnov Gamma GOF Test                                     | el e           |
| 276                                           | 5% K-S Critical Value                                           | 0.146                  | Data Not Gamma Distributed at 5% Significance Leve                                                                          | el             |
| 277<br>278                                    | Data Not Gamn                                                   | na Distribute          | ed at 5% Significance Level                                                                                                 |                |
| 279                                           |                                                                 | Gamma                  | Statistics                                                                                                                  |                |
| 280                                           | k hat (MLE)                                                     | 1.595                  | k star (bias corrected MLE)                                                                                                 | 1.487          |
| 281                                           |                                                                 | 51.92<br>121.3         | Theta star (bias corrected MLE)                                                                                             | 55.7<br>113    |
| 283                                           | nu hat (MLE)<br>MLE Mean (bias corrected)                       | 82.83                  | nu star (bias corrected)  MLE Sd (bias corrected)                                                                           | 67.92          |
| 282<br>283<br>284<br>285<br>286<br>287<br>288 | ,                                                               |                        |                                                                                                                             |                |
| 285                                           | Background St<br>95% Wilson Hilferty (WH) Approx. Gamma UPL     | atistics Assu<br>221.1 | uming Gamma Distribution 90% Percentile                                                                                     | 173            |
| 287                                           | 95% Hawkins Wixley (HW) Approx. Gamma UPL                       | 228.7                  | 95% Percentile                                                                                                              | 216.4          |
| 288                                           | 95% WH Approx. Gamma UTL with 95% Coverage                      | 279.8                  | 99% Percentile                                                                                                              | 314.5          |
| 289                                           | 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL           | 296.6<br>401.2         | 95% HW USL                                                                                                                  | 444.3          |
| 289<br>290<br>291                             | 3070 1111 002                                                   |                        |                                                                                                                             |                |
| 292<br>293<br>294<br>295                      | Okamina MERI Tara Or et et                                      | Lognormal              |                                                                                                                             |                |
| 294                                           | Shapiro Wilk Test Statistic<br>10% Shapiro Wilk Critical Value  | 0.803<br>0.947         | Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 10% Significance Level                                                |                |
| 295                                           | Lilliefors Test Statistic                                       | 0.234                  | Lilliefors Lognormal GOF Test                                                                                               |                |
| 296<br>297                                    | 10% Lilliefors Critical Value                                   | 0.13                   | Data Not Lognormal at 10% Significance Level                                                                                |                |
| 298                                           | Data Not Lo                                                     | ynomai at              | 10% Significance Level                                                                                                      |                |
| 298<br>299                                    |                                                                 |                        | ning Lognormal Distribution                                                                                                 |                |
| 300<br>301                                    | 95% UTL with 95% Coverage<br>95% UPL (t)                        | 382.3<br>263.6         | 90% Percentile (z)<br>95% Percentile (z)                                                                                    | 181<br>249.1   |
| 302                                           | 95% OPE (t)<br>95% USL                                          | 716.3                  | 95% Percentile (z)<br>99% Percentile (z)                                                                                    | 453.5          |
| 303                                           |                                                                 |                        |                                                                                                                             |                |
| 304<br>305                                    |                                                                 |                        | Free Background Statistics iscernible Distribution                                                                          |                |
| 306                                           |                                                                 |                        |                                                                                                                             |                |
| 307                                           |                                                                 |                        | Background Threshold Values                                                                                                 | 226            |
| 308<br>309                                    | Order of Statistic, order Approx, f used to compute achieved CC | 38<br>2                | 95% UTL with 95% Coverage<br>Approximate Actual Confidence Coefficient achieved by UTL                                      | 226<br>0.858   |
| 310                                           |                                                                 |                        | Approximate Sample Size needed to achieve specified CC                                                                      | 59             |
| 311                                           | 95% Percentile Bootstrap UTL with 95% Coverage                  | 226                    | 95% BCA Bootstrap UTL with 95% Coverage                                                                                     | 226            |
| 312<br>313                                    | 95% UPL<br>90% Chebyshev UPL                                    | 189.9<br>275.3         | 90% Percentile<br>95% Percentile                                                                                            | 171.2<br>185.5 |
| 314                                           | 95% Chebyshev UPL                                               | 362.5                  | 99% Percentile                                                                                                              | 211.9          |
| 315<br>316                                    | 95% USL                                                         | 226                    |                                                                                                                             |                |
| 310                                           |                                                                 |                        |                                                                                                                             |                |

| Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621<br>2.857 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 379 The use of USL tends to provide a balance between false positives and false negatives provided the data and when many onsite observations need to be compared with the BTV.  379 August 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
| The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.  323   Fluoride   324   Section   325   Total Number of Distinct Observations   326   Total Number of Distinct Observations   327   Number of Distinct Detacts   328   Number of Distinct Detacts   329   Number of Distinct Detacts   320   Number of Distinct Detacts   321   Number of Distinct Detacts   322   Number of Distinct Detacts   323   Number of Distinct Detacts   324   Number of Distinct Detacts   325   Number of Distinct Detacts   326   Number of Distinct Detacts   327   Number of Distinct Detacts   328   Number of Distinct Detacts   329   Number of Distinct Detacts   320   Number of Distinct Detacts   321   Maximum Detact   322   Maximum Detact   323   Maximum Detact   324   Maximum Detact   325   Maximum Detacts   326   Maximum Detact   327   Maximum Detacts   328   Number of Distinct Detacts   329   Number of Distinct Detacts   320   Number of Distinct Detacts   321   Maximum Detact   322   Maximum Detact   323   Maximum Detacts   324   Maximum Detacts   325   Maximum Detacts   326   Ostal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect   | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
| 325 326 327 328 328 329 329 329 329 329 320 320 320 320 320 320 320 320 320 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
| General Statistics  Total Number of Observations  Number of Distinct Observations  Number of Distinct Observations  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Nor-Detect Nor-Detect Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Distinct Nor-Detect  Number of Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-Detect Nor-D  | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
| Total Number of Deservations   39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621               |
| Number of Distinct Detects   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621                     |
| Number of Distinct Detects   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>0.2<br>0.2<br>53.85%<br>0.493<br>0.621                     |
| Minimum Non-Detect   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2<br>0.2<br>53.85%<br>0.493<br>0.621                          |
| Maximum Detect   2.3   Maximum Non-Detect   3332   Variance Detected   0.473   Percent Non-Detect   3334   Mean of Detected   0.477   SD Detected   0.478   SD Detected   0.477   SD Detected   0.478   SD Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   SD of Detected   0.478   | 0.2<br>53.85%<br>0.493<br>0.621                                 |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.85%<br>0.493<br>0.621                                        |
| Mean of Detected Logged Data   -0.988   SD of Detected Logged Data   -0.988   SD of Detected Logged Data   -0.988   SD of Detected Logged Data   -0.988   SD of Detected Logged Data   -0.988   SD of Detected Logged Data   -0.988   SD of Detected Logged Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of Detected Data   -0.988   SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of SD of S     | 0.621                                                           |
| Critical Values for Background Threshold Values (BTVs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| Critical Values for Background Threshold Values (BTVs)   337   Tolerance Factor K (For UTL)   2.124   d2max (for USL 338   Normal GOF Test on Detects Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.857                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.857                                                           |
| Normal GOF Test on Detects Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| Normal GOF Test on Detects Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| 1% Shapiro Wilk Critical Value   0.858   Data Not Normal at 1% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |
| Second Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| 144 Data Not Normal at 1% Significance Level 145 Data Not Normal at 1% Significance Level 146 Data Not Normal at 1% Significance Level 147 Data Not Normal at 1% Significance Level 148 Data Not Normal at 1% Significance Level 148 Data Not Mormal Distribution 148 Data Not RM Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| Deta Not Normal at 1% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |
| 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                               |
| Saplan Meier (KM) Background Statistics Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |
| 95% KM Percentile (2)   0.781   95% KM Percentile (2)   350   99% KM Percentile (2)   1.151   95% KM Percentile (2)   350   99% KM Percentile (2)   1.151   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   1.151   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% KM US   95% Percentile (2) 95% KM US   95% Percentile (2) 95% KM US   95% Percentile (2) 95% KM US   95% Percentile (2) 95% KM US   95% Percentile (2) 95% KM US   95% LM US   95% Percentile (2) 95% KM US   95% LM US   95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile (2) 95% Percentile    |                                                                 |
| Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.354                                                           |
| Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.932<br>0.91                                                   |
| DL/2 Substitution Background Statistics Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.339                                                           |
| DL/2 Substitution Background Statistics Assuming Normal Distribution   SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000                                                           |
| 95% UTL95% Coverage   1.084   95% UTL 95% UTL95% Coverage   1.084   95% UTL 95% Percentile (z)   9.762   95% Percentile (z)   95% Percentile (z)   95% Percentile (z)   95% US   95% Percentile (z)   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US       |                                                                 |
| 95% Percentile (z)   95% Percentile (z)   95% Percentile (z)   95% Percentile (z)   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US   95% US    | 0.381                                                           |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect   | 0.925                                                           |
| DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.901<br>1.363                                                  |
| Gamma GOF Tests on Detected Observations Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.505                                                           |
| A-D Test Statistic   1.537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |
| Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Significance Location   Sign   |                                                                 |
| Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Secondaria   Sec   | rol .                                                           |
| Solution   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Statistics   Stati   | ei                                                              |
| Data Not Gamma Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /el                                                             |
| Gamma Statistics on Detected Data Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |
| Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Residual No.   Resi   |                                                                 |
| Theta hat (MLE) 0.22 Theta star (bias corrected MLE nu hat (MLE) 78.1 nu star (bias corrected MLE nu hat (MLE) 78.1 nu star (bias corrected 0.477  MLE Mean (bias corrected) 0.477  MLE Sd (bias corrected) 0.351 95% Percentile of Chisquare (2kstar 372)  Gamma ROS Statistics using Imputed Non-Detects  GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs  GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)  For such situations, GROS method may yield incorrect values of UCLs and BTVs  This is especially true when the sample size is small.  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.845                                                           |
| 369     nu hat (MLE)     78.1     nu star (bias corrected)       370     MLE Mean (bias corrected)     0.477       371     MLE Sd (bias corrected)     0.351     95% Percentile of Chisquare (2kstar)       372     373     Gamma ROS Statistics using Imputed Non-Detects       374     GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs       375     GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.259                                                           |
| 370MLE Mean (bias corrected)0.477371MLE Sd (bias corrected)0.35195% Percentile of Chisquare (2kstar372373Gamma ROS Statistics using Imputed Non-Detects374GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs375GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.42                                                           |
| 372 373 Gamma ROS Statistics using Imputed Non-Detects 374 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 375 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20 376 For such situations, GROS method may yield incorrect values of UCLs and BTVs 377 This is especially true when the sample size is small. 378 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |
| Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20 For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small.  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.981                                                           |
| 374 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 375 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20 376 For such situations, GROS method may yield incorrect values of UCLs and BTVs 377 This is especially true when the sample size is small. 378 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
| 375 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20   376 For such situations, GROS method may yield incorrect values of UCLs and BTVs   377 This is especially true when the sample size is small.  378 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |
| This is especially true when the sample size is small.  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |
| For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| For garnina distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates   379   Minimum   0.01   Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.226                                                           |
| Maximum 2.3 Media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.220                                                           |
| 381 SD 0.406 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.798                                                           |
| 382 k hat (MLE) 0.447 k star (bias corrected MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |
| Theta hat (MLE) 0.505 Theta star (bias corrected MLE on u hat (MLE) 34.86 nu star (bias corrected MLE nu star (bias corrected MLE on u star (bias corrected MLE nu star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected MLE on u star (bias corrected ML | 0.43                                                            |
| 384nu hat (MLE)34.86nu star (bias corrected385MLE Mean (bias corrected)0.226MLE Sd (bias corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.43<br>0.525                                                   |
| 386 95% Percentile of Chisquare (2kstar) 3.482 90% Percentil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43<br>0.525<br>33.51                                          |
| 387 95% Percentile 0.915 99% Percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.43<br>0.525<br>33.51<br>0.344                                 |
| The following statistics are computed using Gamma ROS Statistics on Imputed Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.43<br>0.525<br>33.51<br>0.344                                 |
| 388   The following statistics are computed using Gamma ROS Statistics on Imputed Data   389   Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods   WH HW   WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.43<br>0.525<br>33.51<br>0.344<br>0.629                        |
| 390         WH         HW         WH           391         95% Approx. Gamma UTL with 95% Coverage         1.224         1.368         95% Approx. Gamma UPL         0.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.43<br>0.525<br>33.51<br>0.344<br>0.629<br>1.627               |
| 392 95% Gamma USL 2.105 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.43<br>0.525<br>33.51<br>0.344<br>0.629<br>1.627               |
| 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.43<br>0.525<br>33.51<br>0.344<br>0.629<br>1.627               |
| Estimates of Gamma Parameters using KM Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.43<br>0.525<br>33.51<br>0.344<br>0.629<br>1.627               |
| 395 Mean (KM) 0.328 SD (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.43<br>0.525<br>33.51<br>0.344<br>0.629<br>1.627               |

|            | A B C D E                                                | F              | G             | Н           |         |           |          | J           | K                                     | L               |
|------------|----------------------------------------------------------|----------------|---------------|-------------|---------|-----------|----------|-------------|---------------------------------------|-----------------|
| 396        | Variance (KM)                                            |                |               |             |         | -         |          | _           | Mean (KM)                             | 0.0583          |
| 397        | k hat (KM)                                               |                |               |             |         |           |          |             | k star (KM)                           | 0.81            |
| 398<br>399 | nu hat (KM)                                              |                |               |             |         |           |          |             | nu star (KM)                          | 63.2            |
| 400        | theta hat (KM)<br>80% gamma percentile (KM)              |                |               |             |         |           | 20% da   |             | ta star (KM)<br>centile (KM)          | 0.405<br>0.795  |
| 401        | 95% gamma percentile (KM)                                |                |               |             |         |           |          |             | centile (KM)                          | 1.682           |
| 402        |                                                          |                |               |             |         |           |          |             | ( )                                   |                 |
| 403        | The following statistics are co                          |                |               |             |         |           |          | 3           |                                       |                 |
| 404<br>405 | Upper Limits using Wilson WH                             | HW             | H) and Hawk   | dins Wixle  | y (HW   | ) Meth    | ods      |             | WH                                    | HW              |
| 406        | 95% Approx. Gamma UTL with 95% Coverage 0.866            | 0.846          |               |             | 95%     | Appro     | x. Gam   | ıma UPL     | 0.716                                 | 0.695           |
| 407        | 95% KM Gamma Percentile 0.695                            | 0.674          |               |             |         |           |          | ıma USL     | 1.179                                 | 1.168           |
| 408        |                                                          |                |               |             |         |           |          |             |                                       |                 |
| 409<br>410 | Lognormal GO<br>Shapiro Wilk Test Statistic              |                | etected Obs   | ervations   |         | haniro    | Wilk G   | OF Test     |                                       |                 |
| 411        | 10% Shapiro Wilk Critical Value                          |                |               | Data No     |         |           |          |             | ance Level                            |                 |
| 412        | Lilliefors Test Statistic                                | 0.176          |               |             |         | Lilliefo  | rs GOI   | F Test      |                                       |                 |
| 413        | 10% Lilliefors Critical Value                            |                |               |             |         |           |          | at 10% S    | Significance L                        | evel            |
| 414<br>415 | Detected Data appear A                                   | pproximate l   | Lognormal a   | t 10% Sig   | nifica  | nce Le    | vel      |             |                                       |                 |
| 416        | Background Lognormal ROS Statistics                      | : Assumina L   | ognormal D    | istribution | Usino   | a Impu    | ted No   | n-Detects   | · · · · · · · · · · · · · · · · · · · |                 |
| 417        | Mean in Original Scale                                   | 0.261          |               |             |         | gpu       |          | Mean i      | n Log Scale                           | -1.944          |
| 418        | SD in Original Scale                                     |                |               |             |         |           | F0/ F 5  |             | n Log Scale                           | 1.093           |
| 419<br>420 | 95% UTL95% Coverage<br>95% Bootstrap (%) UTL95% Coverage |                |               |             |         | 98        | 5% BC    |             | % Coverage<br>95% UPL (t)             | 2.3<br>0.925    |
| 421        | 95% Bootstrap (%) 01195% Coverage 90% Percentile (z)     |                |               |             |         |           |          |             | ercentile (z)                         | 0.925           |
| 422        | 99% Percentile (z)                                       |                |               |             |         |           |          | , , , , ,   | 95% USL                               | 3.251           |
| 423        |                                                          |                |               |             |         |           |          |             |                                       |                 |
| 424<br>425 | Statistics using KM estimates                            |                | Data and Ass  |             |         |           |          |             | O/ Covers                             | 0.704           |
| 425        | KM Mean of Logged Data<br>KM SD of Logged Data           |                |               |             | າວ% K   | IVI U I L |          |             | % Coverage (Lognormal)                | 0.794<br>0.641  |
| 427        | 95% KM Percentile Lognormal (z)                          |                |               |             |         |           |          |             | (Lognormal)                           | 1.157           |
| 428        |                                                          |                |               |             |         |           |          |             |                                       |                 |
| 429        | Background DL/2                                          |                | suming Logi   | normal Dis  | stribut | ion       |          |             | 1 0 1                                 | 1.000           |
| 430<br>431 | Mean in Original Scale<br>SD in Original Scale           |                |               |             |         |           |          |             | n Log Scale<br>n Log Scale            | -1.696<br>0.783 |
| 432        | 95% UTL95% Coverage                                      |                |               |             |         |           |          |             | 95% UPL (t)                           | 0.699           |
| 433        | 90% Percentile (z)                                       |                |               |             |         |           |          | 95% P       | ercentile (z)                         | 0.665           |
| 434        | 99% Percentile (z)                                       |                |               |             |         |           |          |             | 95% USL                               | 1.719           |
| 435<br>436 | DL/2 is not a Recommended Meth                           | od. DL/2 pro   | ovided for co | mparison    | s and   | histori   | cal rea  | sons.       |                                       |                 |
| 437        | Nonparametric                                            | Distribution   | Free Backa    | round Sta   | tistics | <u> </u>  |          |             |                                       |                 |
| 438        |                                                          | ar to follow a |               |             |         |           |          |             |                                       |                 |
| 439        | Nicona con catalo i licona di India del Di               | T) /- /        |               | h           |         |           |          | \           |                                       |                 |
| 440<br>441 | Nonparametric Upper Limits for B Order of Statistic, r   |                | nction made   | between     | aetec   |           |          |             | % Coverage                            | 2.3             |
| 442        | Approx, f used to compute achieved CC                    |                | Approxima     | te Actual   | Confid  |           |          |             | eved by UTL                           | 0.865           |
| 443<br>444 | Approximate Sample Size needed to achieve specified CC   | 59             |               |             |         |           |          |             | 95% UPL                               | 0.97            |
| 444        | 95% USL                                                  | 2.3            |               |             |         |           | 95%      | KM Che      | byshev UPL                            | 1.89            |
| 445<br>446 | Note: The use of USL tends to yield a conservati         | ivo estimate   | of RTV pend   | acially whe | on the  | campl     | 0 cizo ( | etarte ave  | eeding 20                             |                 |
| 447        | Therefore, one may use USL to estimate a BTV             |                |               |             |         |           |          |             |                                       |                 |
| 448        | and consists of observa                                  | ations collect | ted from clea | ın unimpad  | cted lo | ocation   | S.       |             |                                       |                 |
| 449        | The use of USL tends to provide a balar                  |                |               |             |         |           |          |             |                                       |                 |
| 450<br>451 | represents a background data set and w                   | nen many or    | isite observa | ations nee  | u to be | e comp    | ared w   | ntn tne B   | ı V.                                  |                 |
| 452        | рН                                                       |                |               |             |         |           |          |             |                                       |                 |
| 453        |                                                          |                |               |             |         |           |          |             |                                       |                 |
| 454<br>455 | General Statistics  Total Number of Observations         | 34             |               |             |         | NI        | hor of ' | Diction C   | bservations                           | 20              |
| 456        | i otal number of Observations                            | 34             |               |             |         |           |          |             | bservations                           | 28<br>7         |
| 457        | Minimum                                                  |                |               |             |         |           |          |             | irst Quartile                         | 7.218           |
| 458        | Second Largest                                           | 7.78           |               |             |         |           |          |             | Median                                | 7.33            |
| 459<br>460 | Maximum                                                  |                |               |             |         |           |          | T           | nird Quartile                         | 7.423           |
| 461        | Mean Coefficient of Variation                            | 0.0358         |               |             |         |           |          |             | SD<br>Skewness                        | 0.262<br>0.189  |
| 462        | Mean of logged Data                                      |                |               |             |         |           |          | SD of       | logged Data                           | 0.0357          |
| 463        |                                                          |                |               |             |         |           |          |             |                                       |                 |
| 464<br>465 | Critical Values for                                      |                | nd Threshol   | d Values (  | (BTVs   | )         |          | 40          | ov (for LICI)                         | 2 700           |
| 466        | Tolerance Factor K (For UTL)                             | 2.166          |               |             |         |           |          | u∠m         | ax (for USL)                          | 2.799           |
| 467        |                                                          | Normal (       | GOF Test      |             |         |           |          |             |                                       |                 |
| 468        | Shapiro Wilk Test Statistic                              | 0.962          |               |             |         |           |          | OF Test     |                                       |                 |
| 469<br>470 | 1% Shapiro Wilk Critical Value                           | 0.908          |               | Data a      |         |           |          |             | ance Level                            |                 |
| 470<br>471 | Lilliefors Test Statistic 1% Lilliefors Critical Value   |                |               | Data a      |         |           | ors GOI  |             | ance Level                            |                 |
| 472        |                                                          | ar Normal at   | 1% Signific   |             |         |           | 170      | . C.g.iiiot |                                       |                 |
| 473        |                                                          |                | _             |             |         |           |          |             |                                       |                 |
| 474        | Daalamaand C                                             | tatietice Aee  | uming Norm    | o Dietribu  | ution   |           |          |             |                                       |                 |

|                                                             | Α       |       | В                  | Т      | С      |        | D       |         | E                     | = 1     |           | F                    | l G                 | ì        | Н         |          |          |                                               | J                |        |         | K                    |        | L            |
|-------------------------------------------------------------|---------|-------|--------------------|--------|--------|--------|---------|---------|-----------------------|---------|-----------|----------------------|---------------------|----------|-----------|----------|----------|-----------------------------------------------|------------------|--------|---------|----------------------|--------|--------------|
| 475                                                         |         |       |                    |        |        | % UT   |         | า 95    | % Cov                 | erage   | 7.8       | 886                  |                     |          |           |          |          |                                               | 90               |        |         | ntile (z)            | 7.     | .655         |
| 476                                                         |         |       |                    |        |        |        |         |         | 95% U                 |         |           | 769                  |                     |          |           |          |          |                                               |                  |        |         | ntile (z)            |        | .75          |
| 477<br>478                                                  |         |       |                    |        |        |        |         |         | 95%                   | USL     | 8.0       | 052                  |                     |          |           |          |          |                                               | 99               | 9% F   | erce    | ntile (z)            | /      | .928         |
| 479                                                         |         |       |                    |        |        |        |         |         |                       |         | Ga        | mma (                | GOF To              | est      |           |          |          |                                               |                  |        |         |                      |        |              |
| 480                                                         |         |       |                    |        |        |        | -       | A-D     | Test St               | atistic |           | 712                  |                     |          | Α         | nderso   | n-Dar    | ling G                                        | amma             | GO     | F Tes   | st                   |        |              |
| 481                                                         |         |       |                    |        |        |        |         |         | Critical              |         |           | 746                  | De                  | tected   | data a    | ppear (  | Gamm     | a Dist                                        | tributed         | d at 5 | 5% Si   | gnifican             | ce Le  | vel          |
| 482<br>483                                                  |         |       |                    |        |        |        |         |         | Test St               |         |           | 133                  | _                   |          |           | mogor    |          |                                               |                  |        |         |                      |        |              |
| 484                                                         |         |       |                    |        |        |        |         |         | Critical              |         | O.        |                      | stribute            |          |           |          |          |                                               | tributed         | a at t | 5% Si   | gnifican             | ce Le  | vel          |
| 485                                                         |         |       |                    |        |        |        | Delle   | SCIGC   | i uata c              | appear  | Gaiiii    | IIIa Di              | Suibute             | u at J   | /o Olgii  | ilicalic | C LCVC   | <u>, , , , , , , , , , , , , , , , , , , </u> |                  |        |         |                      |        |              |
| 486                                                         |         |       |                    |        |        |        |         |         |                       |         | Ga        | amma                 | Statisti            | cs       |           |          |          |                                               |                  |        |         |                      |        |              |
| 487                                                         |         |       |                    |        |        |        |         |         | k hat (               |         | 807       |                      |                     |          |           |          |          |                                               |                  |        |         | d MLE)               | 736    |              |
| 488<br>489                                                  |         |       |                    |        |        |        |         |         | eta hat (<br>nu hat ( |         |           | 0907                 |                     |          |           |          | In       |                                               |                  |        |         | d MLE)<br>rected)    |        | 00994        |
| 490                                                         |         |       |                    |        |        | MLE    | Mear    |         | as corre              |         |           | 319                  |                     |          |           |          |          |                                               |                  |        |         | rected)              |        | .27          |
| 491                                                         |         |       |                    |        |        |        |         | `       |                       |         |           |                      |                     |          |           |          |          |                                               |                  | ,      |         |                      |        |              |
| 492                                                         |         |       |                    |        |        |        |         |         |                       |         |           |                      | uming (             | Gamm     | a Distr   | ibution  |          |                                               |                  |        |         |                      |        |              |
| 493<br>494                                                  |         |       | Wilse              |        |        |        |         |         |                       |         |           | 774<br>775           |                     |          |           |          |          |                                               |                  |        |         | rcentile<br>rcentile |        | .667         |
| 495                                                         |         |       | ∕ Hawki<br>∕H Appr |        |        |        |         |         |                       |         |           | 775<br>897           |                     |          |           |          |          |                                               |                  |        |         | rcentile             |        | .769<br>.962 |
| 496                                                         |         |       | W Appr             |        |        |        |         |         |                       |         |           | 899                  |                     |          |           |          |          |                                               |                  | - 00   | 70 T CI | Toomalo              |        | 302          |
| 497                                                         |         |       |                    |        |        |        |         |         | 5% WH                 |         |           | 073                  |                     |          |           |          |          |                                               |                  | 9      | 5% H    | W USL                | 8      | .076         |
| 498                                                         |         |       |                    |        |        |        |         |         |                       |         | 1         |                      |                     | Tast     |           |          |          |                                               |                  |        |         |                      |        |              |
| 499<br>500                                                  |         |       |                    |        |        | Sho    | niro V  | V/IIV - | Test St               | atietio |           | <b>norma</b><br>963  | I GOF               | ı est    |           | Shapir   | 0 /Will  | Logn                                          | ormal 4          | റ്റ⊏   | Teet    |                      |        |              |
| 501                                                         |         |       |                    |        | 10%    |        |         |         | Critical              |         |           | 963<br>943           |                     | Г        |           |          |          |                                               |                  |        |         | ce Level             |        |              |
| 502                                                         |         |       |                    |        |        |        | Lillie  | fors    | Test St               | atistic | 0.        | 137                  |                     |          |           | Lillie   | fors Lo  | ognor                                         | mal G0           | OF T   | est     |                      |        |              |
| 503                                                         |         |       |                    |        |        | 10%    | Lillief |         | Critical              |         |           | 137                  | L                   |          |           |          | ognorr   | mal at                                        | : 10% 5          | Signi  | ficanc  | ce Level             |        |              |
| 504<br>505                                                  |         |       |                    |        |        |        |         |         | Data a                | ppear   | Logno     | ormal a              | at 10%              | Signifi  | cance     | Level    |          |                                               |                  |        |         |                      |        |              |
| 506                                                         |         |       |                    |        |        |        |         | Ba      | ckarou                | nd Sta  | tistics   | assu                 | ming Lo             | oanorm   | nal Dist  | ributio  | n        |                                               |                  |        |         |                      |        |              |
| 507                                                         |         |       |                    |        | 959    | % UT   | L with  |         | % Cov                 |         |           | 903                  |                     | 9        | .u. 5.0.  |          |          |                                               | 90               | 0% F   | Percer  | ntile (z)            | 7      | .657         |
| 508                                                         |         |       |                    |        |        |        |         |         | 95% U                 |         |           | 778                  |                     |          |           |          |          |                                               |                  |        |         | ntile (z)            |        | .757         |
| 509<br>510                                                  |         |       |                    |        |        |        |         |         | 95%                   | S USL   | 8.        | 084                  |                     |          |           |          |          |                                               | 99               | 9% F   | Percer  | ntile (z)            | 7      | .949         |
| 511                                                         |         |       |                    |        |        |        |         | No      | nnarai                | metric  | Distrik   | oution               | Free B              | ackaro   | und St    | atistic  | <b>S</b> |                                               |                  |        |         |                      |        |              |
| 512                                                         |         |       |                    |        |        |        |         |         |                       |         |           |                      | 1% Si               |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 513                                                         |         |       |                    |        |        |        |         |         |                       |         |           |                      |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 514                                                         |         |       |                    |        |        |        |         |         |                       |         |           |                      | Backg               | round    | Thresh    | old Va   |          | F0/ 1.15                                      | Tlala            | 0.5    | 0/ 0-   |                      |        |              |
| 515<br>516                                                  |         |       | Δ                  | nnrov  | fue    |        |         |         | tatistic,<br>achieve  |         | 34        | 789                  | Annr                | ovimate  | a Δetus   | al Confi |          |                                               |                  |        |         | overage<br>by UTL    | 8<br>n | .825         |
| 517                                                         |         |       |                    | pprox  | , i us | eu io  | COM     | Jule 6  | acineve               | u CC    |           | 703                  |                     |          |           |          |          |                                               |                  |        |         | fied CC              | 59     |              |
| 518                                                         |         | 95% P | Percentil          | le Boo | otstra | ap UT  | L with  | า 95    |                       |         | 8         |                      |                     |          |           |          |          |                                               |                  | 95     | % Co    | verage               | 8      |              |
| 519                                                         |         |       |                    |        |        |        |         |         |                       | UPL     |           | 835                  |                     |          |           |          |          |                                               |                  |        |         | rcentile             |        | .658         |
| 520<br>521                                                  |         |       |                    |        |        |        |         |         | byshev<br>byshev      |         |           | 116<br>477           |                     |          |           |          |          |                                               |                  |        |         | rcentile<br>rcentile |        | .767<br>.927 |
| 522                                                         |         |       |                    |        |        |        | 33 /0   | Cite    |                       | USL     | 8         | 7//                  |                     |          |           |          |          |                                               |                  | 33     | 70 I CI | rcentile             |        | 321          |
| 522<br>523                                                  |         |       |                    |        |        |        |         |         |                       |         |           |                      |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 524<br>525                                                  |         |       | ote: The           |        |        |        |         |         |                       |         |           |                      |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 525                                                         |         |       | herefore           | e, one | ; may  |        |         |         |                       |         |           |                      | ne data<br>ted fron |          |           |          |          |                                               | ita set          | tree   | of ou   | tliers               |        |              |
| 526<br>527                                                  |         |       | т                  | he us  | se of  |        |         |         |                       |         |           |                      | false p             |          |           |          |          |                                               | vided tl         | he da  | ata     |                      |        |              |
| 528                                                         |         |       |                    |        |        |        |         |         |                       |         |           |                      | nsite ob            |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 529                                                         |         |       |                    |        |        |        |         |         |                       |         |           |                      |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 530                                                         | Sulfate |       |                    |        |        |        |         |         |                       |         |           |                      |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539 |         |       |                    |        |        |        |         |         |                       |         | Ge        | eneral               | Statisti            | cs       |           |          |          |                                               |                  |        |         |                      |        |              |
| 533                                                         |         |       |                    |        |        |        |         |         | Observa               |         | 35        |                      |                     |          |           |          | Nun      | nber c                                        | of Missi         | ing C  | Obser   | vations              | 6      |              |
| 534                                                         |         |       |                    |        | Num    | ber o  |         |         | Observa               |         | 29        |                      |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 535                                                         |         |       |                    |        |        | Nim    |         |         | er of De              |         | 34<br>28  |                      |                     |          |           |          | NI       |                                               |                  |        |         | Detects<br>Detects   | 1<br>1 |              |
| 537                                                         |         |       |                    |        |        | inum   | inel 0  |         | tinct De<br>imum E    |         | 28<br>4.3 |                      |                     |          |           |          | iNÜ      | mber                                          |                  |        |         | Detects -Detect      | 1      |              |
| 538                                                         |         |       |                    |        |        |        |         | Max     | imum [                | Detect  | 3100      | )                    |                     |          |           |          |          |                                               | Maxi             | mum    | Non-    | -Detect              | 1      |              |
| 539                                                         |         |       |                    |        |        |        |         | ariar/  | nce Det               | ected   | 59756     | 52                   |                     |          |           |          |          |                                               | Perc             |        |         | Detects              | 2      | .857%        |
| 540<br>541                                                  |         |       |                    |        | N.A    | or -1  | D-+-    |         | ean Det               |         |           |                      |                     |          |           |          |          | CD - 1                                        | f D-#-           |        |         | etected              | 773    |              |
| 541<br>542                                                  |         |       |                    |        | Mea    | an of  | Detec   | cted    | Logged                | שta     | 7.        | 188                  |                     |          |           |          |          | 2D 01                                         | Detec            | ted I  | Logge   | ed Data              |        | .512         |
| 542<br>543<br>544<br>545<br>546<br>547<br>548<br>549<br>550 |         |       |                    |        |        |        |         | Crit    | tical Va              | lues fo | or Bac    | kgrou                | nd Thre             | shold    | Values    | (BTV:    | s)       |                                               |                  |        |         |                      |        |              |
| 544                                                         |         |       |                    |        | To     | olerai | nce Fa  |         | K (For                |         |           | 157                  |                     |          |           |          | •        |                                               |                  | d2m    | nax (fo | or USL)              | 2      | .812         |
| 545                                                         |         |       |                    |        |        |        |         |         |                       | NJ-     | -1.00     | ·                    |                     |          |           |          |          |                                               |                  |        |         |                      |        |              |
| 546<br>547                                                  |         |       |                    |        |        | Qh-    | niro V  | V/III-  | Test St               |         |           | <b>)F Tes</b><br>868 | t on De             | etects ( | Jnly      |          | hanir    | > \A/iII-                                     | GOE :            | Toot   |         |                      |        |              |
| 548                                                         |         |       |                    |        | 1%     |        |         |         | Critical              |         |           | 908                  |                     |          | Dat       | a Not N  |          |                                               | GOF 6<br>6 Signi |        |         | evel                 |        |              |
| 549                                                         |         |       |                    |        |        |        |         |         | Test St               |         |           | 192                  |                     |          |           |          |          |                                               | OF Te            |        |         |                      |        |              |
| 550                                                         |         |       |                    |        |        | 1%     | Lillief | fors (  | Critical              |         | 0.        | 175                  | 04.00               | 10       |           | a Not N  | Norma    | l at 19                                       | % Signi          | ificar | nce Le  | evel                 |        |              |
| 551<br>552                                                  |         |       |                    |        |        |        |         |         | Da                    | ta Not  | Norm      | al at 1              | % Sigr              | nificano | e Leve    | el       |          |                                               |                  |        |         |                      |        |              |
| 553                                                         |         |       |                    |        |        | k      | (anlar  | n Mei   | ier (KM               | ) Rack  | מויוסוייי | nd Stet              | tistics <i>F</i>    | \ssumi   | na Nor    | mal Di   | strihut  | ion                                           |                  |        |         |                      |        |              |
| 555                                                         |         |       |                    |        |        | ^      | whiai   | IVIC    | 1. /1./1A             | Jack    | yı vul    | .u Uldi              | uouoð f             | เองนเเเ  | ilg i VUI | a. Di    | วน เมนโ  |                                               |                  |        |         |                      |        |              |

|            | Α      |       | В       | 1      | С         |         | D                      |         | Е                    |                    | l F                   |                      | Ι (       | G l      | H         | 1      | Т          | 1                   |                 | J                 |        | K                          |               |    |
|------------|--------|-------|---------|--------|-----------|---------|------------------------|---------|----------------------|--------------------|-----------------------|----------------------|-----------|----------|-----------|--------|------------|---------------------|-----------------|-------------------|--------|----------------------------|---------------|----|
| 554        | - / (  |       |         | 1      |           |         |                        |         | KMN                  | /lean              |                       |                      | ,         | <u>~</u> | •         | •      |            |                     |                 |                   |        | KM SD                      | 817.8         |    |
| 555        |        |       |         |        |           | 95      | 5% UTL                 | L95%    |                      |                    |                       |                      |           |          |           |        |            |                     |                 | 95                | 5% K   | M UPL (t)                  |               |    |
| 556        |        |       |         |        |           |         | 90% KI                 |         |                      |                    |                       |                      |           |          |           |        |            |                     | (               | 95% KM            |        | centile (z)                |               |    |
| 557        |        |       |         |        |           | (       | 99% KI                 | М Ре    | rcentil              | e (z)              | 3796                  |                      |           |          |           |        |            |                     |                 |                   | 95%    | 6 KM USL                   | 4193          |    |
| 558<br>559 |        |       |         |        |           |         | N /2 C.                | uboti   | tution               | Pook               | arouna                | l Ctati              | iotico A  | \ ooumi  | na Noi    | rmal l | Dietri     | hution              | •               |                   |        |                            |               |    |
| 560        |        |       |         |        |           | L       | )L/2 SI                | udstii  |                      |                    | <b>ground</b><br>1893 |                      | ISUCS F   | ASSUMI   | ng Nor    | rmai i | DISTR      | Dution              | 1               |                   |        | SD                         | 829.7         |    |
| 561        |        |       |         |        |           | 95      | 5% UTL                 | L95%    |                      |                    |                       |                      |           |          |           |        |            |                     |                 |                   | 95     | % UPL (t)                  |               |    |
| 562        |        |       |         |        |           |         | 909                    | % Pe    | rcentil              | e (z)              | 2957                  |                      |           |          |           |        |            |                     |                 | 95%               | Per    | centile (z)                |               |    |
| 563        |        |       |         |        |           |         |                        |         |                      |                    | 3824                  |                      | <u> </u>  |          |           |        |            |                     |                 |                   |        | 95% USL                    | 4226          |    |
| 564<br>565 |        |       |         |        | DL/2 is   | s not   | a reco                 | mme     | ended                | meth               | od. DL                | /2 pro               | ovided    | for cor  | mparis    | ons a  | and h      | istoric             | cal rea         | asons             |        |                            |               |    |
| 566        |        |       |         |        |           |         |                        | Ga      | mma                  | GOF                | Tests                 | on De                | atactac   | 1 Ohea   | nyation   | ne On  | ılv        |                     |                 |                   |        |                            |               |    |
| 567        |        |       |         |        |           |         | A-                     |         | est Sta              |                    |                       | 908                  |           | 1 0030   | i vauoi   |        |            | rson-D              | Darling         | GOF 1             | Test   |                            |               |    |
| 568        |        |       |         |        |           |         | 5% A-                  |         |                      |                    |                       | 767                  |           | Da       | ata Not   | t Gan  | nma        | Distrib             | outed           | at 5% S           | ignifi | icance Le                  | vel           |    |
| 569        |        |       |         |        |           |         |                        |         | est Sta              |                    |                       | 106                  |           |          |           |        |            |                     |                 | irnov G           |        |                            |               |    |
| 570<br>571 |        |       |         |        |           |         | 5% K-                  |         |                      |                    |                       | 154                  | ad at E   |          |           |        |            | Distrib             | outed           | at 5% S           | ignifi | icance Le                  | vel           |    |
| 572        |        |       |         |        |           |         |                        | Data    | a ivot (             | aam                | ma Dis                | uibuu                | eu at s   | 7% Siyi  | mican     | ce Le  | evei       |                     |                 |                   |        |                            |               |    |
| 573        |        |       |         |        |           |         |                        |         | Gar                  | mma                | Statist               | ics or               | n Dete    | cted Da  | ata On    | ly     |            |                     |                 |                   |        |                            |               |    |
| 574        |        |       |         |        |           |         |                        | k       | t hat (N             |                    | 1.4                   | 134                  |           |          |           |        |            |                     |                 |                   |        | cted MLE)                  |               | 27 |
| 575        |        |       |         |        |           |         | 1                      |         | hat (N               |                    |                       |                      |           |          |           |        |            | Thet                |                 |                   |        | cted MLE)                  |               |    |
| 576<br>577 |        |       |         |        |           | N41 -   | Mess                   |         | ı hat (N             |                    |                       |                      |           |          |           |        |            |                     | n               | u star (b         | oias d | corrected)                 | 90.25         | 5  |
| 578        |        |       |         |        |           |         | Mean<br>LE Sd          |         |                      |                    |                       |                      |           |          |           |        | QE0        | 6 Perc              | entile          | of Chic           | ימווסי | re (2kstar)                | 7.20          | 16 |
| 579        |        |       |         |        |           | IVII    | LL Ju                  | (nias   | COITE                | Ji <del>c</del> u) | 1032                  |                      |           |          |           |        | 337        | o r <del>C</del> IC | -CIIIIIE        | OI CITIS          | qual   | c (ZNSIAI)                 | 1.20          | ,5 |
| 580        |        |       |         |        |           |         |                        | Ga      | amma                 | ROS                | Statis                | tics u               | sing In   | nputed   | Non-E     | Detec  | ts         |                     |                 |                   |        |                            |               |    |
| 581        |        |       |         |        |           |         |                        | sed v   | vhen d               | ata s              | et has                | > 50%                | % NDs     | with m   | any tie   | d obs  | serva      |                     |                 | Itiple DL         |        |                            |               |    |
| 582        |        | GF    | ROS may | y not  |           |         |                        |         |                      |                    |                       |                      |           |          |           |        |            |                     |                 |                   | (e.g.  | ., <15-20)                 |               |    |
| 583<br>584 |        |       |         |        |           | ror s   | ucn sit                |         |                      |                    | methodially tru       |                      |           |          |           |        |            | s and               | RI VS           | <u> </u>          |        |                            |               |    |
| 585        |        |       | For gar | mma    | distrib   | outed   | detect                 | ted da  | ata BT               | TVs a              | and UC                | l s ma               | av be c   | compute  | ed usir   | าต ตลเ | an.<br>mma | distrik             | bution          | on KM             | estir  | mates                      |               |    |
| 586        |        |       |         |        |           |         |                        |         | Mini                 |                    |                       |                      |           |          |           | 3 3-   |            |                     |                 |                   |        | Mean                       | 1926          |    |
| 587        |        |       |         |        |           |         |                        |         | Maxii                | mum                |                       |                      |           |          |           |        |            |                     |                 |                   |        | Median                     |               |    |
| 588        |        |       |         |        |           |         |                        |         |                      | SD                 |                       |                      |           |          |           |        |            |                     |                 |                   |        | CV                         |               |    |
| 589<br>590 |        |       |         |        |           |         |                        |         | hat (N               |                    |                       |                      |           |          |           |        |            |                     |                 |                   |        | cted MLE)                  |               | 54 |
| 591        |        |       |         |        |           |         |                        |         | a hat (N<br>ı hat (N |                    |                       |                      |           |          |           |        |            | rnet                |                 |                   |        | cted MLE)<br>corrected)    |               | Ω  |
| 592        |        |       |         |        |           | MLE     | Mean                   |         |                      |                    |                       |                      |           |          |           |        |            |                     |                 |                   |        | corrected)                 |               | 5  |
| 593        |        |       |         | 95%    |           |         | of Chi                 | isqua   | are (2k              | star)              | 7.3                   | 302                  |           |          |           |        |            |                     |                 |                   |        | Percentile                 |               |    |
| 594        |        |       |         |        |           |         |                        |         |                      |                    | 5192                  |                      |           |          |           |        |            |                     |                 |                   | 9% F   | Percentile                 | 7642          |    |
| 595<br>596 |        |       |         |        | The       |         |                        |         |                      |                    | mputed<br>Hilfert     |                      |           |          |           |        |            |                     |                 | ıta               |        |                            |               |    |
| 597        |        |       |         |        |           | Орр     | GI LIIII               | iitə u  | WH                   |                    | HW                    |                      | i ij aliu | Hawki    | 1119 4417 | чеу (  | 1144)      | Menic               | ous             |                   |        | WH                         | HW            |    |
| 598        | 95% Ap | prox. | Gamma   | uTL    | with 9    | 95% (   | Covera                 | age     | 6397                 |                    | 7853                  |                      |           |          |           | 9      | 5% A       | Approx              | k. Gar          | nma UF            | PL 5   |                            | 5941          |    |
| 599        |        |       |         |        | 95%       | % Gar   | mma U                  | JSL     | 8745                 |                    | 11485                 | 5                    |           |          |           |        |            |                     |                 |                   |        |                            |               |    |
| 600        |        |       |         |        |           |         |                        |         |                      |                    |                       | _                    |           |          | 1/14 =    |        |            |                     |                 |                   |        |                            |               |    |
| 601<br>602 |        |       |         |        |           |         |                        |         |                      |                    | <b>amma</b><br>1893   |                      | meters    | s using  | KM E      | stima  | ites       |                     |                 |                   |        | SD (KM)                    | 817.8         |    |
| 603        |        |       |         |        |           |         |                        |         |                      |                    | 66874                 |                      |           |          |           |        |            |                     |                 | SF                | of M   | lean (KM)                  |               |    |
| 604        |        |       |         |        |           |         |                        | · ui    | k hat                |                    |                       | 361                  |           |          |           |        |            |                     |                 | - 02              |        | star (KM)                  |               |    |
| 605        |        |       |         |        |           |         |                        | r       | nu hat (             |                    | 375.                  | 3                    |           |          |           |        |            |                     |                 |                   |        | star (KM)                  |               |    |
| 606        |        |       |         |        |           | 001     |                        |         | ta hat               |                    |                       |                      |           |          |           |        |            |                     | 001             |                   |        | star (KM)                  |               |    |
| 607<br>608 |        |       |         |        |           |         |                        |         |                      |                    | 2550<br>3480          |                      |           |          |           |        |            |                     |                 |                   |        | entile (KM)<br>entile (KM) |               |    |
| 609        |        |       |         |        | 9         | J /o g  | ammid                  | perc    | eriule (             | (LZIVI)            | 3400                  |                      |           |          |           |        |            | 9:                  | <i>∍ /</i> o ya | анина р           | CICE   | arure (NIVI)               | 4419          |    |
| 610        |        |       |         |        | TI        | he fol  | llowing                | j stat  | istics a             | are c              | ompute                | ed usi               | ing gar   | mma di   | istribut  | ion a  | nd K       | M esti              | imate           | s                 |        |                            |               |    |
| 611        |        |       |         |        |           |         |                        |         | sing W               | /ilsor             | Hilfer                | ty (Wł               |           |          |           |        |            |                     |                 |                   |        |                            |               |    |
| 612<br>613 | OE0/ A | nr-:- | Ca      |        | ,,.:al- 4 | OEO/    | Ca                     |         | WH                   |                    | HW                    |                      |           |          |           |        | VE0/ 4     | \ n==-              | . 0 -           | nm= !!"           | ) -    | WH                         | HW            |    |
| 614        | 95% Ap | prox. |         |        |           |         | Covera<br>Percen       |         | 7131                 |                    | 9148<br>6348          |                      |           |          |           | 9      | 15% F      |                     |                 | nma UF<br>nma US  |        |                            | 6686<br>13968 |    |
| 615        |        |       | 33      | /U f\l | vi Gall   | iiiid f | CICCII                 | ııııC   | JZJ I                |                    | 0040                  |                      |           |          |           |        |            | 307                 | o Gai           | ııııa US          | ,∟  I  | 0040                       | 13300         |    |
| 616        |        |       |         |        |           |         |                        |         |                      |                    | F Test                | on D                 | etecte    | d Obse   | ervatio   | ns O   |            |                     |                 |                   |        |                            |               |    |
| 617        |        |       |         |        |           |         | piro Wi                | ilk Te  | est Sta              | tistic             | 0.4                   | 177                  |           |          |           |        | Sha        |                     |                 | OF Te             |        |                            |               |    |
| 618        |        |       |         |        | 10%       |         | oiro Wi                |         |                      |                    |                       | 943                  |           |          | Data      | Not I  |            |                     |                 |                   | tican  | ice Level                  |               |    |
| 619<br>620 |        |       |         |        |           |         | Lilliefo<br>Lilliefor  |         |                      |                    |                       | 145<br>137           |           |          | Data      | No+ I  |            |                     |                 | F Test<br>% Signi | fican  | ice Level                  |               |    |
| 621        |        |       |         |        |           | 1U /0 I | LIIII <del>C</del> IOI |         |                      |                    | ognorn                |                      | 10% 5     | Signific |           |        |            | omidi               | at 10           | 10 SIGIT          | ııcdil | ice Level                  |               |    |
| 622        |        |       |         |        |           |         |                        |         |                      |                    |                       |                      |           |          |           |        |            |                     |                 |                   |        |                            |               |    |
| 623        |        |       | Е       | Backg  | ground    |         |                        |         |                      |                    |                       |                      | Lognor    | rmal Di  | stributi  | ion U  | lsing      | Imput               | ed No           | on-Dete           |        |                            |               |    |
| 624<br>625 |        |       |         |        |           | N       |                        |         |                      |                    | 1897                  |                      |           |          |           |        |            |                     |                 |                   |        | Log Scale                  |               |    |
| 626        |        |       |         |        |           | QF      |                        |         | ginal S              |                    | 822.<br>34770         |                      |           |          |           |        |            | QF.                 | % pr            |                   |        | Log Scale<br>Coverage      |               | ŀδ |
| 626<br>627 |        |       | Ç       | 95% F  | Bootst    |         | %) UTL                 |         |                      |                    |                       |                      |           |          |           |        |            | 90                  | , 70 DC         | ,A UTL            |        | 5% UPL (t)                 |               |    |
| 628        |        |       |         |        |           |         |                        |         |                      |                    | 8962                  |                      |           |          |           |        |            |                     |                 | 95%               |        | centile (z)                |               |    |
| 629        |        |       |         |        |           |         |                        |         |                      |                    | 45184                 |                      |           |          |           |        |            |                     |                 |                   |        | 95% USL                    |               |    |
| 630        |        |       |         |        | <u> </u>  | Alc4!   | !                      | - 1/1 · | -c+!                 | at                 | - I -                 |                      | Date :    |          |           | 1      |            | al D!               | unile 4 °       |                   |        |                            |               |    |
| 631<br>632 |        |       |         |        | Sta       |         | <b>s using</b><br>Mean |         |                      |                    | on Log                | <b>iged [</b><br>982 | vata a    | na Ass   | uming     |        |            |                     |                 |                   | 35%    | Coverage                   | 6/207         |    |
| JJ2        |        |       |         |        |           | tZIVI   | ivicall                | OI LC   | ,gg <del>e</del> u   | ےald               | 0.8                   | ,UZ                  |           |          |           | 307    | /U I/IV    | IUIL                | Logi            | ioi iiidi)S       | JJ /0  | Coverage                   | U+2U/         |    |

|                                                                                                                                                               | Α        | В           | С             | D              | E               | F             | G              | Н             |            | J             | K                | L      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|---------------|----------------|-----------------|---------------|----------------|---------------|------------|---------------|------------------|--------|
| 633                                                                                                                                                           |          |             |               | KM SD of L     | ogged Data      | 1.895         |                |               |            | 95% KM UI     | PL (Lognormal)   | 27774  |
| 634                                                                                                                                                           |          |             | 95% KM        | Percentile Lo  | ognormal (z)    | 24321         |                |               |            | 95% KM U      | SL (Lognormal)   | 221982 |
| 635                                                                                                                                                           |          |             |               |                |                 |               |                |               |            |               |                  |        |
| 636                                                                                                                                                           |          |             |               | Backg          | round DL/2      | Statistics As | suming Logn    | ormal Distrib | bution     |               |                  |        |
| 637                                                                                                                                                           |          |             |               | Mean in O      | riginal Scale   | 1893          |                |               |            | Mea           | an in Log Scale  | 6.962  |
| 638                                                                                                                                                           |          |             |               |                | riginal Scale   |               |                |               |            |               | SD in Log Scale  |        |
| 639                                                                                                                                                           |          |             |               | 95% UTL95      | % Coverage      | 78740         |                |               |            |               | 95% UPL (t)      | 32533  |
| 640                                                                                                                                                           |          |             |               | 90% F          | Percentile (z)  | 13682         |                |               |            | 959           | % Percentile (z) | 28282  |
| 641                                                                                                                                                           |          |             |               |                | Percentile (z)  |               |                |               |            |               | 95% USL          | 291360 |
| 642                                                                                                                                                           |          |             | DL/2 is no    | ot a Recomn    | nended Meth     | od. DL/2 pro  | ovided for co  | mparisons a   | nd histori | cal reasons.  |                  |        |
| 643                                                                                                                                                           |          |             |               |                |                 |               |                |               |            |               |                  |        |
| 644                                                                                                                                                           |          |             |               | No             |                 |               | Free Backgr    |               | ics        |               |                  |        |
| 645                                                                                                                                                           |          |             |               |                | Data do n       | ot follow a D | iscernible Di  | istribution   |            |               |                  |        |
| 646                                                                                                                                                           |          |             |               |                |                 |               |                |               |            |               |                  |        |
| 647                                                                                                                                                           |          |             | Nonpara       |                |                 |               | nction made    | between det   |            |               |                  |        |
| 648                                                                                                                                                           |          |             |               |                | of Statistic, r |               |                |               |            |               | 95% Coverage     |        |
| 649                                                                                                                                                           |          |             | prox, f used  |                |                 | 1.842         | Approxima      | te Actual Co  | nfidence ( | Coefficient a | chieved by UTL   |        |
| 650                                                                                                                                                           | Approxim | nate Sample | Size needed   | I to achieve s |                 | 59            |                |               |            |               | 95% UPL          |        |
| 651                                                                                                                                                           |          |             |               |                | 95% USL         | 3100          |                |               |            | 95% KM C      | hebyshev UPL     | 5509   |
| 652                                                                                                                                                           |          |             |               |                |                 |               |                |               |            |               |                  |        |
| 653                                                                                                                                                           |          |             |               |                |                 |               |                |               |            |               | exceeding 20.    |        |
| 633<br>634<br>635<br>636<br>637<br>638<br>640<br>641<br>642<br>643<br>644<br>645<br>646<br>647<br>650<br>650<br>651<br>652<br>653<br>654<br>655<br>655<br>656 |          | Therefore   | , one may us  |                |                 |               |                |               |            |               | ee of outliers   |        |
| 655                                                                                                                                                           |          |             |               |                |                 |               | ed from clear  |               |            |               |                  |        |
| 656                                                                                                                                                           |          |             |               |                |                 |               | false positive |               |            |               |                  |        |
| 657                                                                                                                                                           |          | re          | presents a ba | ackground da   | ita set and w   | hen many or   | isite observa  | tions need to | be comp    | ared with the | BTV.             |        |
| 658                                                                                                                                                           |          |             |               |                |                 |               |                |               |            |               |                  |        |

| Deer Street Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  | A B C                         | D E                         | F<br>or Data Sets | G H I J K                                                                          | L        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------|-----------------------------|-------------------|------------------------------------------------------------------------------------|----------|
| From File   ProLUC, Input PRPA CCR BAT Appandix IV Total 2016-2024.sls   Full Proteiotics   SPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2  | User Selected Options         |                             |                   | MILIT NOTE DELECTS                                                                 |          |
| Full Processon   OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                               |                             |                   | adiu IV Tatal 2016 2024 ula                                                        |          |
| Different or Future N Descriptions   95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                               |                             | R BAT Appe        | 101X IV 10tal 2016-2024.XIS                                                        |          |
| Number of Bootstrap Operations   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Confidence Coefficient        |                             |                   |                                                                                    |          |
| Mumber of Bootstrap Operations   2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                               |                             |                   |                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9  |                               | •                           |                   |                                                                                    |          |
| Total Number of Dissired Observations   39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _  | A &                           |                             |                   |                                                                                    |          |
| Total Number of Diservations   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | Antimony                      |                             |                   |                                                                                    |          |
| Number of Detects   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                               |                             |                   |                                                                                    |          |
| Number of Detects 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                               |                             |                   | Number of Missing Observations                                                     | 0        |
| Minimum Delect   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 | INGINISC                      |                             |                   | Number of Non-Detects                                                              | 32       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | N                             |                             |                   |                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                               |                             |                   |                                                                                    |          |
| Mean of Detected Logged Data   0.323   SD of Detected Logged Data   0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 |                               | Variance Detected           | 0.263             | Percent Non-Detects                                                                | 82.05%   |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Maan                          |                             |                   |                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | Mean                          | of Detected Logged Data     | 0.323             | SD of Detected Logged Data                                                         | 0.352    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 |                               |                             |                   |                                                                                    |          |
| Normal COF Test on Detects Only   Shapiro Wilk GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Tole                          | rance Factor K (For UTL)    | 2.124             | d2max (for USL)                                                                    | 2.857    |
| Shapiro Wilk Test Statistic   0.721   Shapiro Wilk GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 |                               | Norr                        | nal GOF Test      | t on Detects Only                                                                  |          |
| Lilliefors Critical Visit   Statistics   15   Lilliefors Critical Visit   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics   Control at 1   Statistics | 28 |                               | hapiro Wilk Test Statistic  | 0.721             | Shapiro Wilk GOF Test                                                              |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 1% S                          |                             |                   |                                                                                    |          |
| Detected Date appear Approximate Normal at 1% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31 | 1                             | % Lilliefors Critical Value | 0.35              | Detected Data appear Normal at 1% Significance Leve                                | <u> </u> |
| Kaplan Meler (KM) Background Statistics Assuming Normal Distribution   KM SD   0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                               | Detected Data appear        | r Approximate     |                                                                                    |          |
| MM Mean   0.71   95% UTL95% Coverage   1.665   95% KM De1t (i) 1.478   37   99% KM Percentile (z)   1.286   95% KM De1t (i) 1.478   38   99% KM Percentile (z)   1.286   95% KM De1t (i) 1.458   95% KM De1t (ii) 1.458   95% KM De1t (ii) 1.458   95% KM De1t (ii) 1.458   95% KM De1t (ii) 1.458   95% KM De1t (ii) 1.955   95% KM De1t (ii) 1.955   95% KM De1t (ii) 1.955   95% KM De1t (ii) 1.955   95% KM De1t (ii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (iii) 1.955   95% KM De1t (i |    |                               | Kanlan Meier (KM) Bac       | karound Stat      | istics Assuming Normal Distribution                                                |          |
| 37   90% KM Percentile (z)   1.286   95% KM Percentile (z)   1.756   1.756   95% KM Percentile (z)   1.756   95% KM USL   1.995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35 |                               | KM Mean                     | 0.71              | KM SD                                                                              |          |
| Second Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                               |                             |                   |                                                                                    |          |
| DL2 Substitution Background Statistics Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                               |                             |                   |                                                                                    |          |
| Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 |                               | `                           |                   |                                                                                    |          |
| 90% Percentile (z)   2.08   95% Percentile (z)   2.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                               |                             |                   |                                                                                    | 0.863    |
| 145   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                               |                             |                   |                                                                                    |          |
| Section   Camma GOF Tests on Detected Observations Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                               | · ,                         |                   | \ /                                                                                |          |
| A-D Test Statistic   0.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45 | DL/2 is r                     |                             |                   |                                                                                    | 0.11     |
| A.D Test Statistic   0.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                               | Commo COE                   | Tooto on Do       | tootod Observations Only                                                           |          |
| Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Significance   Sig  |    |                               |                             |                   | Anderson-Darling GOF Test                                                          |          |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                               |                             |                   | Data Not Gamma Distributed at 5% Significance Level                                |          |
| Detected data follow Appr. Gamma Distribution at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                               |                             |                   |                                                                                    | a Level  |
| Samma Statistics on Detected Data Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 |                               |                             |                   |                                                                                    | LOVEI    |
| Second Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                               |                             |                   |                                                                                    |          |
| Theta hat (MLE)   0.153   Theta star (bias corrected MLE)   0.263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                               |                             |                   |                                                                                    | 5.542    |
| 58         MLE Mean (bias corrected)         1.457           59         MLE Sd (bias corrected)         0.619         95% Percentile of Chisquare (2kstar)         19.79           60         Genama ROS Statistics using Imputed Non-Detects           62         GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs           63         GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56 |                               | Theta hat (MLE)             | 0.153             | Theta star (bias corrected MLE)                                                    | 0.263    |
| MLE Sd (bias corrected)   0.619   95% Percentile of Chisquare (2kstar)   19.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | K.A.I                         |                             |                   | nu star (bias corrected)                                                           | 77.59    |
| Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01 Mean 0.425 Median 0.177 SD 0.581 CV 1.369 CV 1.369 The star (bias corrected MLE) 0.422 The hat (MLE) 0.968 Theta star (bias corrected MLE) 1.006 The star (bias corrected MLE) 0.423 MLE Mean (bias corrected) 0.425 MLE Sd (bias corrected) 0.425 MLE Sd (bias corrected) 0.425 MLE Sd (bias corrected) 0.654 The following statistics are computed using Gamma ROS Statistics on Imputed Data Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods WH HW WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | MI                            |                             |                   | 95% Percentile of Chisauare (2kstar)                                               | 19.79    |
| GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small.  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates  Maximum 0.01 Mean 0.425 Maximum 2 Median 0.177 Maximum 2 Median 0.177  SD 0.581 CV 1.369  K hat (MLE) 0.439 K star (bias corrected MLE) 0.422  Theta hat (MLE) 0.968 Theta star (bias corrected MLE) 1.006  Theta hat (MLE) 34.23 nu star (bias corrected) 32.93  MLE Mean (bias corrected) 0.425 MLE Sd (bias corrected) 0.654  MES MES Mercentile of Chisquare (2kstar) 3.443 90% Percentile 1.188  95% Percentile 1.732 99% Percentile 3.092  The following statistics are computed using Gamma ROS Statistics on Imputed Data  Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods  WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60 |                               | •                           |                   |                                                                                    |          |
| GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)  For such situations, GROS method may yield incorrect values of UCLs and BTVs  This is especially true when the sample size is small.  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates  Minimum 0.01 Mean 0.425  Maximum 2 Median 0.177  SD 0.581 CV 1.369  70 K hat (MLE) 0.439 K star (bias corrected MLE) 0.422  Theta hat (MLE) 0.968 Theta star (bias corrected MLE) 1.006  72 Theta hat (MLE) 34.23 nu star (bias corrected) 32.93  MLE Mean (bias corrected) 0.425 MLE Sd (bias corrected) 0.654  74 95% Percentile of Chisquare (2kstar) 3.443 90% Percentile 1.188  75 The following statistics are computed using Gamma ROS Statistics on Imputed Data  Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods  WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | CPOS may                      |                             |                   |                                                                                    |          |
| For such situations, GROS method may yield incorrect values of UCLs and BTVs  This is especially true when the sample size is small.  For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates  Minimum 0.01 Mean 0.425  Maximum 2 Median 0.177  SD 0.581 CV 1.369  k hat (MLE) 0.439 k star (bias corrected MLE) 0.422  Theta hat (MLE) 0.968 Theta star (bias corrected MLE) 1.006  nu hat (MLE) 34.23 nu star (bias corrected MLE) 1.006  MLE Mean (bias corrected) 0.425 MLE Sd (bias corrected) 32.93  MLE Mean (bias corrected) 0.425 MLE Sd (bias corrected) 0.654  95% Percentile of Chisquare (2kstar) 3.443 90% Percentile 1.188  75 95% Percentile 1.732 99% Percentile 3.092  The following statistics are computed using Gamma ROS Statistics on Imputed Data  Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods  WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63 |                               |                             |                   |                                                                                    |          |
| 66         For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates           67         Minimum         0.01         Mean         0.425           68         Maximum         2         Median         0.177           69         SD         0.581         CV         1.369           70         k hat (MLE)         0.439         k star (bias corrected MLE)         0.422           71         Theta hat (MLE)         0.968         Theta star (bias corrected MLE)         1.006           72         nu hat (MLE)         34.23         nu star (bias corrected)         32.93           73         MLE Mean (bias corrected)         0.425         MLE Sd (bias corrected)         0.654           74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                               | or such situations, GROS    | method may        | yield incorrect values of UCLs and BTVs                                            |          |
| 67         Minimum         0.01         Mean         0.425           68         Maximum         2         Median         0.177           69         SD         0.581         CV         1.369           70         k hat (MLE)         0.439         k star (bias corrected MLE)         0.422           71         Theta hat (MLE)         0.968         Theta star (bias corrected MLE)         1.006           72         nu hat (MLE)         34.23         nu star (bias corrected)         32.93           73         MLE Mean (bias corrected)         0.425         MLE Sd (bias corrected)         0.654           74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods           78         WH         HW         HW         HW         HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | For gamma distribut           | ted detected data BTVs:     | and UCLs ma       | n me sample size is small.  v be computed using gamma distribution on KM estimates |          |
| 69         SD         0.581         CV         1.369           70         k hat (MLE)         0.439         k star (bias corrected MLE)         0.422           71         Theta hat (MLE)         0.968         Theta star (bias corrected MLE)         1.006           72         nu hat (MLE)         34.23         nu star (bias corrected)         32.93           73         MLE Mean (bias corrected)         0.425         MLE Sd (bias corrected)         0.654           74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods           78         WH         HW         WH         HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67 | . o. gamma diotribu           | Minimum                     | 0.01              |                                                                                    |          |
| 70         k hat (MLE)         0.439         k star (bias corrected MLE)         0.422           71         Theta hat (MLE)         0.968         Theta star (bias corrected MLE)         1.006           72         nu hat (MLE)         34.23         nu star (bias corrected)         32.93           73         MLE Mean (bias corrected)         0.425         MLE Sd (bias corrected)         0.654           74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods           78         WH         HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                               |                             |                   |                                                                                    |          |
| 71         Theta hat (MLE)         0.968         Theta star (bias corrected MLE)         1.006           72         nu hat (MLE)         34.23         nu star (bias corrected)         32.93           73         MLE Mean (bias corrected)         0.425         MLE Sd (bias corrected)         0.654           74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods           78         WH         HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                               |                             |                   |                                                                                    |          |
| 73         MLE Mean (bias corrected)         0.425         MLE Sd (bias corrected)         0.654           74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods           78         WH         HW         WH         HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71 |                               | Theta hat (MLE)             | 0.968             | Theta star (bias corrected MLE)                                                    | 1.006    |
| 74         95% Percentile of Chisquare (2kstar)         3.443         90% Percentile         1.188           75         95% Percentile         1.732         99% Percentile         3.092           76         The following statistics are computed using Gamma ROS Statistics on Imputed Data           77         Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods           78         WH         HW         WH         HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | K. 41                         |                             |                   |                                                                                    |          |
| 75 95% Percentile 1.732 99% Percentile 3.092  76 The following statistics are computed using Gamma ROS Statistics on Imputed Data  77 Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods  78 WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74 |                               |                             |                   |                                                                                    |          |
| 77 Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods 78 WH HW WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75 |                               | 95% Percentile              | 1.732             | 99% Percentile                                                                     |          |
| 78 WH HW WH HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                               |                             |                   |                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78 |                               |                             |                   |                                                                                    | HW       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79 | 95% Approx. Gamma UTL with 95 | % Coverage 2.396            | 2.796             |                                                                                    | 1.833    |

|            | A B C D E                                                                                     | F             | G              | Н                                     | I                      | J                        | K                            | L               |
|------------|-----------------------------------------------------------------------------------------------|---------------|----------------|---------------------------------------|------------------------|--------------------------|------------------------------|-----------------|
| 80         | 95% Gamma USL 4.114                                                                           | 5.347         |                |                                       |                        | •                        |                              |                 |
| 81<br>82   | Estimates of G                                                                                | amma Parar    | meters usina   | KM Estimat                            | tes                    |                          |                              |                 |
| 83         | Mean (KM)                                                                                     | 0.71          |                |                                       |                        |                          | SD (KM)                      | 0.449           |
| 84<br>85   | Variance (KM)                                                                                 |               |                |                                       |                        | SE o                     | f Mean (KM)                  | 0.0853          |
| 86         | k hat (KM)<br>nu hat (KM)                                                                     |               |                |                                       |                        |                          | k star (KM)<br>nu star (KM)  | 2.323<br>181.2  |
| 87         | theta hat (KM)                                                                                |               |                |                                       |                        |                          | eta star (KM)                | 0.306           |
| 88         | 80% gamma percentile (KM)                                                                     |               |                |                                       |                        | )% gamma per             |                              | 1.334           |
| 89<br>90   | 95% gamma percentile (KM)                                                                     | 1.608         |                |                                       | 99                     | 9% gamma per             | centile (KM)                 | 2.21            |
| 91         | The following statistics are co                                                               | omputed usi   | ng gamma dis   | stribution ar                         | nd KM esti             | mates                    |                              |                 |
| 92         | Upper Limits using Wilson                                                                     | Hilferty (Wh  |                |                                       |                        |                          |                              | 1.047           |
| 93<br>94   | 95% Approx. Gamma UTL with 95% Coverage 1.626                                                 | HW<br>1.622   |                | Q.F                                   | 5% Annrox              | . Gamma UPL              | WH<br>1.386                  | HW<br>1.375     |
| 95         | 95% KM Gamma Percentile 1.352                                                                 | 1.34          |                |                                       |                        | Gamma USL                |                              | 2.135           |
| 96         |                                                                                               |               |                |                                       |                        |                          |                              |                 |
| 97<br>98   | Lognormal GO<br>Shapiro Wilk Test Statistic                                                   |               | etected Obse   | rvations On                           |                        | Vilk GOF Test            |                              |                 |
| 99         | 10% Shapiro Wilk Critical Value                                                               |               |                | Data Not L                            |                        | at 10% Signific          | ance Level                   |                 |
| 100        | Lilliefors Test Statistic                                                                     | 0.282         |                |                                       |                        | s GOF Test               |                              |                 |
| 101<br>102 | 10% Lilliefors Critical Value                                                                 |               | 100/ Cignific  |                                       | ognormal a             | at 10% Signific          | ance Level                   |                 |
| 103        | Data Not Lo                                                                                   | ognomial at   | 10% Significa  | ance Level                            |                        |                          |                              |                 |
| 104        | Background Lognormal ROS Statistics                                                           |               | ognormal Dis   | stribution Us                         | sing Impute            |                          |                              |                 |
| 105<br>106 | Mean in Original Scale                                                                        |               |                |                                       |                        |                          | in Log Scale                 | -0.678          |
| 106        | SD in Original Scale<br>95% UTL95% Coverage                                                   |               |                |                                       | 959                    | SD<br>8 BCA UTL95        | in Log Scale<br>% Coverage   | 0.666<br>2      |
| 108        | 95% Bootstrap (%) UTL95% Coverage                                                             | 2             |                |                                       |                        |                          | 95% UPL (t)                  | 1.582           |
| 109<br>110 | 90% Percentile (z)                                                                            |               |                |                                       |                        | 95% F                    | Percentile (z)               | 1.518           |
| 110        | 99% Percentile (z)                                                                            | 2.39          |                |                                       |                        |                          | 95% USL                      | 3.403           |
| 112        | Statistics using KM estimates                                                                 |               | Data and Assi  | ıming Logn                            | ormal Dist             | ribution                 |                              |                 |
| 113        | KM Mean of Logged Data                                                                        |               |                | 95%                                   |                        | (Lognormal)95            |                              | 1.613           |
| 114<br>115 | KM SD of Logged Data<br>95% KM Percentile Lognormal (z)                                       |               |                |                                       |                        | 95% KM UPL<br>95% KM USL |                              | 1.34<br>2.235   |
| 116        | 30 % RWT Grootiale Logiotima (2)                                                              | 1.000         |                |                                       |                        | 30 % TAW OOL             | (Lognormar)                  | 2.200           |
| 117        | Background DL/2                                                                               |               | suming Logno   | ormal Distrib                         | bution                 |                          |                              | 0.000           |
| 118<br>119 | Mean in Original Scale<br>SD in Original Scale                                                |               |                |                                       |                        |                          | in Log Scale<br>in Log Scale | -0.262<br>0.636 |
| 120        | 95% UTL95% Coverage                                                                           |               |                |                                       |                        |                          | 95% UPL (t)                  | 2.279           |
| 121        | 90% Percentile (z)                                                                            | 1.738         |                |                                       |                        |                          | Percentile (z)               | 2.19            |
| 122<br>123 | 99% Percentile (z)  DL/2 is not a Recommended Meth                                            |               | wided for con  | anaricane a                           | nd historia            | al roseone               | 95% USL                      | 4.735           |
| 124        | DL/2 is flot a Recollillerided Meth                                                           | lou. DL/2 pic | ovided for con | пранвонь а                            | na nistorio            | ai ieasoiis.             |                              |                 |
| 125        | Nonparametric                                                                                 |               |                |                                       | ics                    |                          |                              |                 |
| 126<br>127 | Data appea                                                                                    | r to follow a | Discernible D  | istribution                           |                        |                          |                              |                 |
| 128        | Nonparametric Upper Limits for B                                                              | TVs(no distir | nction made b  | etween det                            | ects and n             | ondetects)               |                              |                 |
| 129        | Order of Statistic, r                                                                         | 39            |                |                                       | 95                     | 5% UTL with95            |                              | 10              |
| 130<br>131 | Approx, f used to compute achieved CC Approximate Sample Size needed to achieve specified CC  | 2.053<br>59   | Approximat     | e Actual Co                           | ntidence C             | oefficient achie         | eved by UTL<br>95% UPL       | 0.865<br>5      |
| 132        | Approximate Sample Size needed to achieve specified CC 95% USL                                | 10            |                |                                       |                        | 95% KM Che               |                              | 2.695           |
| 133        |                                                                                               |               | (DT)           |                                       |                        |                          |                              |                 |
| 134<br>135 | Note: The use of USL tends to yield a conservati Therefore, one may use USL to estimate a BTV |               |                |                                       |                        |                          |                              |                 |
| 136        | and consists of observa                                                                       |               |                |                                       |                        |                          | or oddiolo                   |                 |
| 137        | The use of USL tends to provide a balar                                                       | nce between   | false positive | s and false                           | negatives <sub>l</sub> | provided the da          |                              |                 |
| 138<br>139 | represents a background data set and w                                                        | nen many on   | isite observat | ions need to                          | be compa               | ared with the B          | IV.                          |                 |
| 140        | Arsenic                                                                                       |               |                |                                       |                        |                          |                              |                 |
| 141        |                                                                                               |               |                |                                       |                        |                          |                              |                 |
| 142<br>143 | Total Number of Observations                                                                  | General 3     | Statistics     |                                       | Nimak                  | or of Missins C          | heenvotions                  | 0               |
| 143        | Number of Observations  Number of Distinct Observations                                       | 11            |                |                                       | UNULLI                 | er of Missing C          | noei valioris                |                 |
| 145        | Number of Detects                                                                             | 13            |                |                                       |                        |                          | Non-Detects                  | 26              |
| 146<br>147 | Number of Distinct Detects                                                                    | 9 1.1         |                |                                       | Numl                   | ber of Distinct          |                              | 5               |
| 147        | Minimum Detect Maximum Detect                                                                 |               |                |                                       |                        |                          | Non-Detect                   | 10              |
| 149        | Variance Detected                                                                             | 1.499         |                |                                       |                        |                          | Non-Detects                  | 66.67%          |
| 150        | Mean Detected                                                                                 | 2.623         |                |                                       |                        |                          | SD Detected                  | 1.224           |
| 151<br>152 | Mean of Detected Logged Data                                                                  | 0.853         |                |                                       | SI                     | O of Detected I          | Logged Data                  | 0.509           |
| 153        | Critical Values for                                                                           | or Backgrou   | nd Threshold   | Values (BT                            | Vs)                    |                          |                              |                 |
| 154        | Tolerance Factor K (For UTL)                                                                  | 2.124         |                |                                       |                        | d2m                      | ax (for USL)                 | 2.857           |
| 155<br>156 | Marw                                                                                          | nal GOE Too   | t on Detects ( | Only                                  |                        |                          |                              |                 |
| 157        | Shapiro Wilk Test Statistic                                                                   |               | LON DELECTS    | Jilly                                 | Shapiro V              | Vilk GOF Test            |                              |                 |
| 158        | 1% Shapiro Wilk Critical Value                                                                |               | De             | tected Data                           |                        | rmal at 1% Sig           | nificance Lev                | /el             |
| _          | · · · · · · · · · · · · · · · · · · ·                                                         |               |                | · · · · · · · · · · · · · · · · · · · |                        |                          | ·                            |                 |

|            | A B C D                                 | E                                | F                   | GHIJK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L              |
|------------|-----------------------------------------|----------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 159        |                                         | Test Statistic                   | 0.148               | Lilliefors GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| 160<br>161 | 1% Lilliefors C                         |                                  | 0.271               | Detected Data appear Normal at 1% Significance Level al at 1% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | el             |
| 162        | De                                      | lecteu Data                      | арреат Монт         | ial at 1 % Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 163        | Kaplan Mei                              |                                  |                     | tistics Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 164<br>165 | 05% LITL 05                             | KM Mean<br>% Coverage            | 1.629<br>3.873      | KM SD 95% KM UPL (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.056<br>3.432 |
| 166        |                                         | Percentile (z)                   |                     | 95% KM Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.432          |
| 167        |                                         | Percentile (z)                   |                     | 95% KM USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.647          |
| 168        | DI (0 Ol                                | ala al a a Da ala                |                     | Cation A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 169<br>170 | DL/2 Subs                               | titution Back<br>Mean            | Г                   | stics Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5            |
| 171        | 95% UTL95                               | % Coverage                       | 4.933               | 95% UPL (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.308          |
| 172        |                                         | Percentile (z)                   | 3.669               | 95% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.214          |
| 173<br>174 |                                         | Percentile (z)                   |                     | 95% USL povided for comparisons and historical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.032          |
| 175        | BB2 to flot a reconsti                  | nonaca mou                       | od. DDZ pro         | And to companion and motorical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 176        |                                         |                                  |                     | etected Observations Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 177<br>178 |                                         | Test Statistic<br>Critical Value | 0.366<br>0.736      | Anderson-Darling GOF Test  Detected data appear Gamma Distributed at 5% Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se Level       |
| 179        |                                         | Test Statistic                   | 0.730               | Kolmogorov-Smirnov GOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Level        |
| 180        |                                         | Critical Value                   | 0.238               | Detected data appear Gamma Distributed at 5% Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Level        |
| 181<br>182 | Detected                                | l data appea                     | r Gamma Dis         | stributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 183        |                                         | Gamma                            | Statistics on       | Detected Data Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 184        |                                         | k hat (MLE)                      | 4.641               | k star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.621          |
| 185        |                                         | ta hat (MLE)                     | 0.565               | Theta star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.724          |
| 186<br>187 | r<br>MLE Mean (bia                      | nu hat (MLE)                     | 120.7<br>2.623      | nu star (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.14          |
| 188        |                                         | as corrected)                    | 1.378               | 95% Percentile of Chisquare (2kstar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.42          |
| 189        |                                         |                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 190<br>191 |                                         |                                  |                     | sing Imputed Non-Detects 6 NDs with many tied observations at multiple DLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 192        |                                         |                                  |                     | s <1.0, especially when the sample size is small (e.g., <15-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 193        | For such situati                        | ions, GROS                       | method may          | yield incorrect values of UCLs and BTVs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 194<br>195 |                                         |                                  |                     | en the sample size is small.  By be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 196        | For garrina distributed detected        | Minimum                          |                     | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.178          |
| 197        |                                         | Maximum                          | 5                   | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.829          |
| 198<br>199 |                                         | SD                               | 1.314<br>0.491      | CV<br>k star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.116<br>0.47  |
| 200        | The                                     | k hat (MLE)<br>ta hat (MLE)      | 2.399               | Theta star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.505          |
| 201        |                                         | nu hat (MLE)                     | 38.29               | nu star (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.68          |
| 202        | MLE Mean (bia                           |                                  | 1.178               | MLE Sd (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.718          |
| 203<br>204 | 95% Percentile of Chisqu                | ware (zkstar)<br>% Percentile    | 3.692<br>4.624      | 90% Percentile<br>99% Percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.227<br>8.081 |
| 205        | The following stat                      | istics are co                    | mputed using        | g Gamma ROS Statistics on Imputed Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 206        | Upper Limits                            |                                  |                     | H) and Hawkins Wixley (HW) Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1547         |
| 207<br>208 | 95% Approx. Gamma UTL with 95% Coverage | WH<br>6.442                      | HW<br>7.923         | 95% Approx. Gamma UPL 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HW<br>5.295    |
| 209        | 95% Gamma USL                           |                                  | 14.76               | 30% Approx. dumina of E 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.200          |
| 210        |                                         |                                  |                     | water with 1/04 Fatters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 211<br>212 | Es                                      | stimates of G<br>Mean (KM)       | amma Parar<br>1.629 | meters using KM Estimates SD (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.056          |
| 213        | V                                       | ariance (KM)                     | 1.116               | SE of Mean (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.188          |
| 214        |                                         | k hat (KM)                       | 2.377               | k star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.211          |
| 215<br>216 | 4h                                      | nu hat (KM)<br>eta hat (KM)      | 185.4<br>0.685      | nu star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 172.5<br>0.737 |
| 217        | tn<br>80% gamma per                     |                                  | 2.409               | theta star (KM)<br>90% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.094          |
| 218        | 95% gamma per                           |                                  | 3.744               | 99% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.175          |
| 219<br>220 | The fellowing of                        | otiotico cas                     | omputed ust         | ng gamma distribution and VM astimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 221        |                                         |                                  |                     | ng gamma distribution and KM estimates<br>H) and Hawkins Wixley (HW) Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 222        |                                         | WH                               | HW                  | WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HW             |
| 223<br>224 | 95% Approx. Gamma UTL with 95% Coverage |                                  | 4.003               | 95% Approx. Gamma UPL 3.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.342          |
| 225        | 95% KM Gamma Percentile                 | 3.261                            | 3.251               | 95% Gamma USL 5.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.394          |
| 226        |                                         |                                  |                     | etected Observations Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 227        | Shapiro Wilk 7                          |                                  | 0.922               | Shapiro Wilk GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 228<br>229 | 10% Shapiro Wilk C                      | Critical Value Test Statistic    | 0.889<br>0.165      | Detected Data appear Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Lognormal at 10% Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance Significance | evei           |
| 230        | 10% Lilliefors C                        | Critical Value                   | 0.215               | Detected Data appear Lognormal at 10% Significance Lognormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | evel           |
| 231        |                                         |                                  |                     | mal at 10% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 232<br>233 | Rackground Lognormal D                  | OS Statistics                    | Δeeumina I          | ognormal Distribution Using Imputed Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 234        |                                         | riginal Scale                    |                     | Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0434         |
| 235        | SD in O                                 | riginal Scale                    | 1.157               | SD in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.761          |
| 236<br>237 |                                         | % Coverage                       |                     | 95% BCA UTL95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1            |
| ۷۵/        | 95% Bootstrap (%) UTL95                 |                                  | 5                   | 95% UPL (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.826          |

|            | Α           | В                |        | С         |          | D                         | $\top$    | Е                | ſ        | =                    | G                         |         | Н        |           | ı             |         | J        | т     | K               |         | L              |
|------------|-------------|------------------|--------|-----------|----------|---------------------------|-----------|------------------|----------|----------------------|---------------------------|---------|----------|-----------|---------------|---------|----------|-------|-----------------|---------|----------------|
| 238        |             |                  |        |           |          |                           | Percer    | ntile (z)        |          | 768                  |                           |         |          |           |               |         | 95%      | Per   | centil          |         | 3.648          |
| 239        |             |                  |        |           |          |                           |           | ntile (z)        |          | 126                  |                           |         |          |           |               |         |          |       | 95%             |         | 9.172          |
| 240        |             |                  |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |
| 241<br>242 |             |                  |        | Stat      |          | <b>using K</b><br>Aean of |           |                  |          | <b>ggea i</b><br>336 | Data and A                | Assum   |          |           | <b>UTL</b> (L |         |          | 5%    | Covo            | rago    | 4.109          |
| 243        |             |                  |        |           |          | /ISD of                   |           |                  |          | 507                  |                           |         | 9.       | J /0 KIVI |               |         | (M UPL   |       |                 |         | 3.326          |
| 244        |             |                  |        | 95% KN    |          |                           |           | mal (z)          |          | 222                  |                           |         |          |           |               |         | (M USL   |       |                 |         | 5.958          |
| 245        |             |                  |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |
| 246        |             |                  |        |           |          |                           |           |                  |          |                      | suming Lo                 | gnorm   | nal Dis  | tributio  | n             |         |          |       |                 |         |                |
| 247<br>248 |             |                  |        |           |          | ean in C                  |           |                  |          | 746                  |                           |         |          |           |               |         | Mean     |       | Log S<br>Log S  |         | 0.207<br>0.849 |
| 249        |             |                  |        |           |          | SD in C                   |           | verage           |          |                      |                           |         |          |           |               |         | 30       |       | % UP            |         | 5.236          |
| 250        |             |                  |        |           | 337      |                           |           | ntile (z)        |          | 648                  |                           |         |          |           |               |         | 95%      |       | centil          |         | 4.966          |
| 251        |             |                  |        |           |          | 99%                       | Percer    | ntile (z)        | 8.8      | 854                  |                           |         |          |           |               |         |          |       | 95%             |         | 13.89          |
| 252        |             |                  |        | OL/2 is   | not a    | Recom                     | mende     | ed Meth          | ıod. Dl  | L/2 pr               | ovided for                | compa   | arisons  | and h     | istorica      | al reas | ons.     |       |                 |         |                |
| 253<br>254 |             |                  |        |           |          | N                         | onnar     | ametric          | Dietrik  | ution                | Free Back                 | karour  | d Stati  | ietice    |               |         |          |       |                 |         |                |
| 255        |             |                  |        |           |          | 14                        |           |                  |          |                      | Discernib                 |         |          |           |               |         |          |       |                 |         |                |
| 256        |             |                  |        |           |          |                           |           | . сррос          |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |
| 257        |             |                  | 1      | Vonpar    | ametri   |                           |           |                  |          |                      | nction mad                | de bet  | veen d   | letects   |               |         |          |       |                 |         |                |
| 258        |             |                  |        |           |          |                           |           | atistic, r       |          |                      |                           |         |          |           |               |         | _ with9! |       |                 |         | 10             |
| 259<br>260 | Approvin    | A<br>nate Sample | Approx | K, f use  | a to co  | ompute                    | acniev    | red CC           | 59       | 053                  | Approxir                  | mate A  | ctual (  | ontide    | nce Co        | efficie | ent acn  |       | 95%             |         | 0.865<br>10    |
| 261        |             | iale Sallipli    | اکاک ت | o needt   | ,u 10 8  | ioi iieve                 |           | % USL            |          |                      |                           |         |          |           |               | 95%     | KM Ch    |       |                 |         | 6.292          |
| 262        |             |                  |        |           |          |                           |           |                  |          |                      | <u>'</u>                  |         |          |           |               |         |          |       |                 |         |                |
| 263        |             | Note: The        | e use  | of USL    | . tends  | to yield                  | d a cor   | nservati         | ive est  | imate                | of BTV, es                | special | ly whe   | n the s   | ample         | size s  | tarts ex | ксеє  | ding            | 20.     |                |
| 264        |             | Therefore        | re, on | e may ι   |          |                           |           |                  |          |                      | he data set               |         |          |           |               | data    | set free | e of  | outlie          | rs      |                |
| 265<br>266 |             |                  | The    | se of H   |          |                           |           |                  |          |                      | ted from cl<br>false posi |         |          |           |               | rovida  | ad the c | data  |                 |         |                |
| 267        |             |                  |        |           |          |                           |           |                  |          |                      | naise posi<br>nsite obser |         |          |           |               |         |          |       |                 |         |                |
| 268        |             |                  |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |
|            | Barium      |                  |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |
| 270<br>271 | Conoral Cto | Hatlas           |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |
| 272        | General Sta | usucs            |        | Tots      | al Niun  | nber of                   | Ohser     | vations          | 39       |                      |                           |         |          |           | Numbe         | ar of D | istinct  | Ohs   | ervat           | tions   | 37             |
| 273        |             |                  |        | 1010      | ai ivuii | IDCI OI                   |           | inimum           |          |                      |                           |         |          |           | IVUITIBO      | )       |          |       | st Qua          |         | 13.8           |
| 274        |             |                  |        |           |          | Se                        |           | Largest          | 46       |                      |                           |         |          |           |               |         |          |       |                 | edian   | 18.1           |
| 275        |             |                  |        |           |          |                           | Ма        | aximum           |          |                      |                           |         |          |           |               |         | -        | Thir  | d Qua           |         | 24.75          |
| 276<br>277 |             |                  |        |           |          | oofficier                 | nt of \/. | Mean             |          |                      |                           |         |          |           |               |         |          |       | Skova           | SD      | 10.16          |
| 278        |             |                  |        |           |          | oefficier<br>Mean of      |           |                  |          | 489<br>944           |                           |         |          |           |               |         | SDo      |       | Skewr<br>gged [ |         | 1.951<br>0.412 |
| 279        |             |                  |        |           |          | vicari o                  | i loggo   | a Data           |          | J 1 1                |                           |         |          |           |               |         | 000      | 1 109 | ,gca i          | Duta    | 0.412          |
| 280        |             |                  |        |           |          |                           |           |                  |          |                      | nd Thresh                 | old Va  | lues (E  | 3TVs)     |               |         |          |       |                 |         |                |
| 281        |             |                  |        | Tol       | erance   | e Facto                   | r K (Fc   | or UTL)          | 2.1      | 124                  |                           |         |          |           |               |         | d2r      | max   | (for L          | JSL)    | 2.857          |
| 282<br>283 |             |                  |        |           |          |                           |           |                  | No       | rmal (               | GOF Test                  |         |          |           |               |         |          |       |                 |         |                |
| 284        |             |                  |        |           | Shapi    | ro Wilk                   | Test S    | Statistic        |          | 821                  | GOI 1631                  |         |          | Sha       | piro W        | ilk G0  | OF Tes   | t     |                 |         |                |
| 285        |             |                  |        |           |          | ro Wilk                   |           |                  |          | 917                  |                           |         | Data N   | Not No    | rmal at       | 1% S    | ignifica |       | Leve            | el      |                |
| 286        |             |                  |        |           |          | illiefors                 |           |                  |          | 149                  |                           |         |          |           | illiefors     |         |          |       |                 |         |                |
| 287        |             |                  |        |           | 1% Li    |                           |           | l Value          |          | 163                  |                           |         |          |           | ormal a       | at 1%   | Signific | cand  | ce Le           | vel     |                |
| 288<br>289 |             |                  |        |           |          | Data                      | a appe    | ar Appı          | roxima   | ite No               | rmal at 1%                | o Signi | ncanc    | e Leve    | ı             |         |          |       |                 |         |                |
| 290        |             |                  |        |           |          |                           | Backor    | round S          | tatistic | s Ass                | suming No                 | rmal C  | istribu  | tion      |               |         |          |       |                 |         |                |
| 291        |             |                  |        | 95%       | UTL      |                           |           | verage           | 42.      | .4                   |                           |         |          |           |               |         | 90%      | Per   | centil          | e (z)   | 33.83          |
| 292        |             |                  |        |           |          |                           | 95% (     | UPL (t)          | 38.      | .16                  |                           |         |          |           |               |         | 95%      | Per   | centil          | le (z)  | 37.52          |
| 293        |             |                  |        |           |          |                           | 95%       | % USL            | 49.      | .84                  |                           |         |          |           |               |         | 99%      | Per   | centil          | e (z)   | 44.45          |
| 294<br>295 |             |                  |        |           |          |                           |           |                  | Go       | mme                  | GOF Test                  |         |          |           |               |         |          |       |                 |         |                |
| 296        |             |                  |        |           |          | A-D                       | Test S    | Statistic        |          | mma<br>761           | GO1 1881                  |         | And      | erson-    | Darling       | ı Gam   | ma GC    | OF T  | est             |         |                |
| 297        |             |                  |        |           | 5        | % A-D                     |           |                  |          | 751                  |                           | Data    | Not Ga   | ımma [    | Distribu      | ited at | 5% Si    | gnifi | icance          |         | el             |
| 298        |             |                  |        |           |          |                           |           | Statistic        | 0.1      | 104                  |                           |         | Kolmo    | ogorov    | -Smirno       | ov Ga   | mma C    | ĞOF   | Test            | t       |                |
| 299        |             |                  |        |           |          | % K-S                     |           |                  |          | 142                  |                           |         |          |           |               |         | uted at  | 5%    | Signi           | ificanc | e Level        |
| 300<br>301 |             |                  |        |           | Det      | ected d                   | iata fol  | iow Ap           | pr. Gai  | mma                  | Distributio               | n at 59 | % Sign   | iricanc   | e Level       | 1       |          |       |                 |         |                |
| 302        |             |                  |        |           |          |                           |           |                  | Ga       | mma                  | Statistics                |         |          |           |               |         |          |       |                 |         |                |
| 303        |             |                  |        |           |          |                           |           | t (MLE)          | 5.6      | 671                  |                           |         |          |           | k             | star (  | bias co  | orrec | cted N          | ЛLE)    | 5.252          |
| 304        |             |                  |        |           |          |                           |           | t (MLE)          |          | 668                  |                           |         |          |           | Theta         |         | bias co  |       |                 |         | 3.961          |
| 305<br>306 |             |                  |        |           | AL E     |                           |           | t (MLE)          |          |                      |                           |         |          |           |               |         | star (bi |       |                 |         | 409.7          |
| 306        |             |                  |        | N         | /ILE IV  | ı <del>c</del> an (Di     | as cor    | rected)          | 20.      | .0                   |                           |         |          |           |               | IVILE   | Sd (bi   | ias C | orrec           | Jiea)   | 9.077          |
| 308        |             |                  |        |           |          | E                         | 3ackar    | ound S           | tatistic | s Ass                | uming Ga                  | mma [   | Distribu | ition     |               |         |          |       |                 |         |                |
| 309        |             | 95% Wils         |        |           |          | Approx.                   | Gamm      | na UPL           | 37.      | .9                   |                           |         |          |           |               |         |          |       | Perce           |         | 32.95          |
| 310        |             | 95% Hawk         | kins V | Vixley (I | HW) A    | Approx.                   | Gamm      | na UPL           | 37.      |                      |                           |         |          |           |               |         |          |       | Perce           |         | 37.63          |
| 311<br>312 |             | WH App           |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         | 99       | 9% F  | Perce           | ntile   | 47.48          |
| 312        | 95          | % HW App         | лох. С | amma      | UIL      |                           |           | verage<br>/H USL |          |                      |                           |         |          |           |               |         | (        | 95%   | HW              | USI     | 56.43          |
| 314        |             |                  |        |           |          |                           | 70 70 VV  | 11 UUL           |          | . 1 /                | 1                         |         |          |           |               |         |          | JU /0 |                 | JUL     | 50.45          |
| 315        |             |                  |        |           |          |                           |           |                  |          | norma                | GOF Tes                   | st      |          |           |               |         |          |       |                 |         |                |
| 316        |             |                  |        |           | Shapi    | ro Wilk                   | Test S    | Statistic        |          | 952                  |                           |         | Sh       | apiro V   | Vilk Log      | gnorn   | nal GO   | F Te  | ∍st             |         |                |
|            |             |                  |        |           |          |                           |           |                  |          |                      |                           |         |          |           |               |         |          |       |                 |         |                |

|                                                                    | A B C D E                                                                                                                               | F                                         | G              | Н               | l I J K I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                 |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 317                                                                | 10% Shapiro Wilk Critical Value                                                                                                         | 0.948                                     |                | Data appea      | ar Lognormal at 10% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                 |
| 318                                                                | Lilliefors Test Statistic                                                                                                               | 0.0807                                    |                |                 | illiefors Lognormal GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 319<br>320                                                         | 10% Lilliefors Critical Value  Data appear                                                                                              | 0.129                                     |                |                 | ar Lognormal at 10% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 321                                                                | рака арреат                                                                                                                             | Lognonial                                 | ac 1070 Sigili | ilogrice Lev    | OI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 322                                                                | Background Sta                                                                                                                          |                                           | ming Lognor    | mal Distribu    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 323<br>324                                                         | 95% UTL with 95% Coverage                                                                                                               |                                           |                |                 | 90% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.23<br>37.44    |
| 325                                                                | 95% UPL (t)<br>95% USL                                                                                                                  |                                           |                |                 | 95% Percentile (z)<br>99% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.58             |
| 326                                                                | 30% 332                                                                                                                                 | 01.72                                     |                |                 | 3370 T Groenine (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.00             |
| 327                                                                | Nonparametric                                                                                                                           |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 328<br>329                                                         | Data appear App                                                                                                                         | roximate No                               | rmal at 1% S   | Significance    | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| 330                                                                | Nonparametric Upp                                                                                                                       | per Limits for                            | Background     | I Threshold     | l Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 331                                                                | Order of Statistic, order                                                                                                               | 39                                        |                |                 | 95% UTL with 95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.2              |
| 332<br>333                                                         | Approx, f used to compute achieved CC                                                                                                   | 2.053                                     |                |                 | onfidence Coefficient achieved by UTL e Size needed to achieve specified CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.865<br>59       |
| 334                                                                | 95% Percentile Bootstrap UTL with 95% Coverage                                                                                          | 59.2                                      | Approxim       |                 | CA Bootstrap UTL with 95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.2              |
| 335                                                                | 95% UPL                                                                                                                                 | 46                                        |                | 007020          | 90% Percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.54             |
| 336                                                                | 90% Chebyshev UPL                                                                                                                       | 51.69                                     |                |                 | 95% Percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.07             |
| 337<br>338                                                         | 95% Chebyshev UPL                                                                                                                       | 65.67<br>59.2                             |                |                 | 99% Percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.18             |
| 339                                                                | 95% USL                                                                                                                                 | 59.2                                      |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 340                                                                | Note: The use of USL tends to yield a conservat                                                                                         | ive estimate                              | of BTV, espe   | ecially when    | the sample size starts exceeding 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 341                                                                | Therefore, one may use USL to estimate a BTV                                                                                            | only when th                              | ne data set re | epresents a     | background data set free of outliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 342<br>343                                                         | and consists of observa The use of USL tends to provide a balar                                                                         |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 344                                                                | represents a background data set and w                                                                                                  | hen many or                               | nsite observa  | tions need      | to be compared with the BTV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 345                                                                |                                                                                                                                         | ,                                         |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 346<br>347                                                         | Beryllium                                                                                                                               |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 347                                                                |                                                                                                                                         | General                                   | Statistics     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 349                                                                | Total Number of Observations                                                                                                            | 39                                        |                |                 | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 |
| 350                                                                | Number of Distinct Observations                                                                                                         | 5                                         |                |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 351<br>352                                                         | Number of Detects Number of Distinct Detects                                                                                            |                                           |                |                 | Number of Non-Detects Number of Distinct Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39<br>5           |
| 353                                                                | Minimum Detects  Minimum Detects                                                                                                        |                                           |                |                 | Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5               |
| 354                                                                | Maximum Detect                                                                                                                          | N/A                                       |                |                 | Maximum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                 |
| 355                                                                | Variance Detected                                                                                                                       |                                           |                |                 | Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100%              |
| 356<br>357                                                         | Mean Detected  Mean of Detected Logged Data                                                                                             |                                           |                |                 | SD Detected SD of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A        |
| 358                                                                | Mean of Detected Logged Data                                                                                                            | IN/A                                      |                |                 | 3D of Defected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN/A              |
| 359                                                                | Warning: All observations are Non-Detect                                                                                                |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 360<br>361                                                         | Specifically, sample mean, UCLs, UPLs, and                                                                                              | d other statis                            | stics are also | NDs lying       | below the largest detection limit!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 362                                                                | The Project Team may decide to use alternative si                                                                                       | ite specific v                            | alues to estir | nate enviro     | onmental parameters (e.g., EPC, BTV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| 363                                                                | The data set for                                                                                                                        | r variable Be                             | eryllium was   | not process     | sed!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 364                                                                |                                                                                                                                         |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 365<br>366                                                         | Cadmium                                                                                                                                 |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 367                                                                | <u> </u>                                                                                                                                |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 368                                                                |                                                                                                                                         |                                           | Statistics     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 369<br>370                                                         | Total Number of Observations                                                                                                            | 39                                        |                |                 | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 |
| 370                                                                | Number of Distinct Observations Number of Detects                                                                                       |                                           |                |                 | Number of Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38                |
| 372                                                                | Number of Distinct Detects                                                                                                              | 1                                         |                |                 | Number of Distinct Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                 |
| 373                                                                | Minimum Detect                                                                                                                          | 0.1                                       |                |                 | Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08              |
| 374<br>375                                                         | Maximum Detect Variance Detected                                                                                                        |                                           |                |                 | Maximum Non-Detect Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>97.44%       |
| 376                                                                | Variance Detected Mean Detected                                                                                                         |                                           |                |                 | SD Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.44%<br>N/A     |
| 377                                                                | Mean of Detected Logged Data                                                                                                            |                                           |                |                 | SD of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A               |
| 378                                                                | Maming Only and distant days                                                                                                            | ALD LUCE 1                                |                | a of the second | hands as he was a such a few at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 379<br>380                                                         | Warning: Only one distinct data value was detected<br>It is suggested to use alternative site specific values determ                    |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : BTV)            |
| 381                                                                | Suggested to des diterributes one specific raides determ                                                                                | ioa by tile                               | . rejout real  |                 | C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. C.I. I. I. C.I. I. C.I. I. I. I. I. I. I. I. I. I. I. I. I. | ., <sub>/</sub> . |
| 382                                                                | The data set fo                                                                                                                         | r variable Ca                             | admium was     | not proces      | sed!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 383                                                                |                                                                                                                                         |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                                                                    |                                                                                                                                         |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 384                                                                | Chromium                                                                                                                                |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 384<br>385<br>386                                                  | Chromium                                                                                                                                |                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 384<br>385<br>386<br>387                                           |                                                                                                                                         |                                           | Statistics     |                 | N 1 22 22 22 22 22 22 22 22 22 22 22 22 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 384<br>385<br>386<br>387<br>388                                    | Total Number of Observations                                                                                                            | 39                                        | Statistics     |                 | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 |
| 384<br>385<br>386<br>387                                           |                                                                                                                                         | 39<br>12                                  | Statistics     |                 | Number of Missing Observations  Number of Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                 |
| 384<br>385<br>386<br>387<br>388<br>389<br>390<br>391               | Total Number of Observations<br>Number of Distinct Observations                                                                         | 39<br>12<br>8<br>7                        | Statistics     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31<br>6           |
| 384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392        | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect                | 39<br>12<br>8<br>7<br>1.1                 | Statistics     |                 | Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31<br>6<br>1      |
| 384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392<br>393 | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect | 39<br>12<br>8<br>7<br>1.1<br>2.9          | Statistics     |                 | Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31<br>6<br>1      |
| 384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392        | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect                | 39<br>12<br>8<br>7<br>1.1<br>2.9<br>0.291 | Statistics     |                 | Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31<br>6<br>1      |

| 222                                                                                                                                                                                                                   | A B             |         | С                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G                                                              | П                      | Н                            |                                  | ı                                   |                                                                                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                       | L                                                                                                                                                         | 1                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|------------------------------|----------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 396                                                                                                                                                                                                                   | •               |         | Mean                                                    | of De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | etected                                                                                                                   | Logo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a 0                                      | .572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  | 5                                   | SD of I                                                                                                          | Detecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ogge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ia                                                      | 0.286                                                                                                                                                     |                                                     |
| 397                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.                                       | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | . 1 .1 3 4             | -1 /                         | DT (-)                           |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | _                                                   |
| 398<br>399                                                                                                                                                                                                            |                 |         | Tolo                                                    | rance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Values</b><br>For UTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | <b>ckgrou</b> i<br>2.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd Thresho                                                     | old V                  | alues (                      | BIVs)                            |                                     |                                                                                                                  | ۹,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v (fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                       | 2.857                                                                                                                                                     | -                                                   |
| 400                                                                                                                                                                                                                   |                 |         | 1016                                                    | anic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o i acio                                                                                                                  | ו) או וע                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                        | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                        |                              |                                  |                                     |                                                                                                                  | u,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZIIIa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | א (וט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ii USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -)                                                      | 2.007                                                                                                                                                     | -                                                   |
| 401                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | OF Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t on Detec                                                     | ts Or                  | nly                          |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           |                                                     |
| 402                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Statisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | .935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     |                                                                                                                  | GOF Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | _                                                   |
| 403<br>404                                                                                                                                                                                                            |                 |         | 1% S                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cal Value<br>Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | .749<br>.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                | Dete                   | cted Da                      | ata app                          | ear N                               | ormal                                                                                                            | at 1% :<br><b>F Test</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sigr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ince L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .eve                                                    | l                                                                                                                                                         | -                                                   |
| 405                                                                                                                                                                                                                   |                 |         | 1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | .333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | Dete                   | cted Da                      |                                  |                                     |                                                                                                                  | at 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nce I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eve                                                     | I                                                                                                                                                         | -                                                   |
| 406                                                                                                                                                                                                                   |                 |         | •                                                       | 70 =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al at 1% S                                                     |                        |                              |                                  |                                     | omia                                                                                                             | <b>u</b> t 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | •                                                                                                                                                         | -                                                   |
| 407                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           |                                                     |
| 408<br>409                                                                                                                                                                                                            |                 |         |                                                         | Kap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olan Me                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>KM) Ba</b> d<br>(M Meai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | <b>nd Stat</b><br>.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | istics Assu                                                    | ımin                   | y Norm                       | al Dis                           | tributio                            | on                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KM SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                       | 0.448                                                                                                                                                     | -                                                   |
| 410                                                                                                                                                                                                                   |                 |         |                                                         | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UTI 9                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | .223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     |                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UPL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | 1.989                                                                                                                                                     |                                                     |
| 411                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | entile (z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 1                                      | .798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     | ,                                                                                                                | 95% KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 1.96                                                                                                                                                      |                                                     |
| 412                                                                                                                                                                                                                   |                 |         |                                                         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % KM                                                                                                                      | Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entile (z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 2                                      | .266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                       | 2.504                                                                                                                                                     | _                                                   |
| 413<br>414                                                                                                                                                                                                            |                 |         |                                                         | ы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /2 Cub                                                                                                                    | atitu ıt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion Boo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | karoun                                   | ad Stati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | otico Acous                                                    | mina                   | Norma                        | al Diet                          | ributio                             | <u> </u>                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | -                                                   |
| 415                                                                                                                                                                                                                   |                 |         |                                                         | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /Z Sub                                                                                                                    | Sulul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Meaı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | .176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stics Assu                                                     | ıııııg                 | INOITIE                      | ואוט ווג                         | ibulio                              | 11                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                       | 0.964                                                                                                                                                     | -                                                   |
| 416                                                                                                                                                                                                                   |                 |         |                                                         | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UTL9                                                                                                                      | 5% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | .224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UPL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | 2.822                                                                                                                                                     | -                                                   |
| 417                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90%                                                                                                                       | Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entile (z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 2                                      | .411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     |                                                                                                                  | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ercer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ntile (z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | z)                                                      | 2.761                                                                                                                                                     | 1                                                   |
| 418<br>419                                                                                                                                                                                                            |                 |         | DI /0 !- :                                              | not -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | entile (z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | .418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vided for:                                                     |                        | orlo                         | 0 00-4                           | bictor'                             | ool                                                                                                              | 00077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                       | 3.93                                                                                                                                                      | -                                                   |
| 419                                                                                                                                                                                                                   |                 |         | טווע IS I                                               | нот а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recom                                                                                                                     | meno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ueu mei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | noa. D                                   | ı⊔∠ pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vided for o                                                    | omp                    | anson                        | s and                            | IIISTOII                            | cai re                                                                                                           | аѕопѕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | -                                                   |
| 421                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ma GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = Tests                                  | s on De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tected Ob                                                      | serva                  | ations (                     | Only                             |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | 1                                                   |
| 422                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-D                                                                                                                       | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Statisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                        | .255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              | Ande                             |                                     |                                                                                                                  | g GOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | -                                                   |
| 423<br>424                                                                                                                                                                                                            |                 |         |                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cal Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | .715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detec                                                          | ted d                  | ata app                      |                                  |                                     |                                                                                                                  | ibuted a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gnifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ance                                                    | Level                                                                                                                                                     | -                                                   |
| 424                                                                                                                                                                                                                   |                 |         |                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Statistical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | .203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detec                                                          | ted d                  | ata anr                      |                                  |                                     |                                                                                                                  | <b>irnov C</b><br>ibuted a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gnifics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ance                                                    | Level                                                                                                                                                     | -                                                   |
| 426                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stributed a                                                    |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . J OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                                                                                                                           | 1                                                   |
| 427                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | 1                                                   |
| 428<br>429                                                                                                                                                                                                            |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detected                                                       | Data                   | Only                         |                                  |                                     | 1                                                                                                                | . /1-!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1 8 41 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -\                                                      | 0.04                                                                                                                                                      | _                                                   |
| 430                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Th                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at (MLE<br>at (MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 4.01<br>).131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                        |                              |                                  | The                                 |                                                                                                                  | r (bias o<br>r (bias o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 8.84<br>0.208                                                                                                                                             | -                                                   |
| 431                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at (MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                        |                              |                                  | 1110                                |                                                                                                                  | u star (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 141.4                                                                                                                                                     | -                                                   |
| 432                                                                                                                                                                                                                   |                 |         | М                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | ias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) 1                                      | .838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | 1                                                   |
| 433<br>434                                                                                                                                                                                                            |                 |         |                                                         | MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sd (bi                                                                                                                    | ias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) 0                                      | .618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                        |                              | 959                              | % Per                               | centile                                                                                                          | of Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | squa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | are (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2ksta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r)                                                      | 28.46                                                                                                                                                     | -                                                   |
| 434                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ma RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S Stati                                  | istics us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sing Imput                                                     | ed N                   | on-Det                       | ects                             |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | -                                                   |
| 436                                                                                                                                                                                                                   |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | be use                                                                                                                    | d whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | set has                                  | s > 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NDs with                                                       | man                    | y tied c                     | bserv                            |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | 1                                                   |
| 437                                                                                                                                                                                                                   | GROS            | may no  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s <1.0, esp                                                    |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I (e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g., <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J)                                                      |                                                                                                                                                           | 1                                                   |
| 438<br>439                                                                                                                                                                                                            |                 |         | Fo                                                      | or suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yield incor                                                    |                        |                              |                                  | _s and                              | BTVs                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                           | -                                                   |
| 440                                                                                                                                                                                                                   | Eor             | aamma   | distribu                                                | ted d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                | ne S                   |                              |                                  | a distri                            | ibutior                                                                                                          | n on KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | timat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                                                                                                                           | 1                                                   |
| י טדד                                                                                                                                                                                                                 | 1 ()            | yanını  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y be comm                                                      |                        |                              |                                  |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 0.719                                                                                                                                                     | 1                                                   |
| 441                                                                                                                                                                                                                   | 1 01            | gairiin |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y be comp                                                      |                        | uonig (                      | Jan                              |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                       |                                                                                                                                                           | 1                                                   |
| 441<br>442                                                                                                                                                                                                            | 101             | gamma   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1aximun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2                                      | .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y be comp                                                      |                        | uomig (                      | Julilia                          |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                                                       | 0.571                                                                                                                                                     | -                                                   |
| 441<br>442<br>443                                                                                                                                                                                                     | 101             | yanni   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | laximun<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 2                                      | 9<br>721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y be comp                                                      |                        | uomg (                       |                                  |                                     | k sto                                                                                                            | r (biog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Media<br>C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n<br>V                                                  | 1.002                                                                                                                                                     |                                                     |
| 441<br>442<br>443<br>444                                                                                                                                                                                              | 101             | yanina  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Th                                                                                                                        | k h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | laximun<br>SI<br>at (MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n 2<br>0 0<br>) 0                        | .9<br>.721<br>.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y be comp                                                      |                        | uomg (                       |                                  |                                     |                                                                                                                  | r (bias o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Media<br>C'<br>d MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>V<br>E)                                            | 1.002<br>0.564                                                                                                                                            | -                                                   |
| 441<br>442<br>443<br>444<br>445<br>446                                                                                                                                                                                | 101             | yamma   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Th                                                                                                                        | k h<br>eta h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | laximun<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2<br>0 0<br>) 0<br>) 1                 | 9<br>721<br>592<br>214<br>619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y be comp                                                      |                        |                              |                                  |                                     | ta sta                                                                                                           | r (bias o<br>r (bias o<br>u star (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Media<br>C'<br>d MLE<br>d MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>V<br>E)                                           | 1.002<br>0.564<br>1.276<br>43.97                                                                                                                          |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447                                                                                                                                                                         |                 |         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lean (bi                                                                                                                  | k h<br>eta h<br>nu h<br>ias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximun<br>SI<br>at (MLE<br>at (MLE<br>at (MLE<br>orrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>0.721<br>0.592<br>0.214<br>6.19<br>0.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y be comp                                                      |                        | uomig (                      |                                  |                                     | ta sta<br>n                                                                                                      | r (bias d<br>u star (<br>LE Sd (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | corre<br>corre<br>bias<br>bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ected<br>ected<br>s cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Media<br>C'<br>d MLE<br>d MLE<br>rected<br>rected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>V<br>E)<br>E)<br>d)                               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958                                                                                                                 |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448                                                                                                                                                                  |                 |         | M<br>% Percer                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lean (bi                                                                                                                  | k h<br>eta h<br>nu h<br>ias co<br>quare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximun<br>SI<br>at (MLE<br>at (MLE<br>at (MLE<br>orrected<br>e (2kstar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>0.721<br>0.592<br>0.214<br>6.19<br>0.719<br>0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | у ве сотпр                                                     |                        |                              |                                  |                                     | ta sta<br>n                                                                                                      | r (bias d<br>u star (<br>LE Sd (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | corre<br>corre<br>bias<br>bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ected<br>ected<br>s con<br>s con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Media<br>C'<br>d MLE<br>d MLE<br>rected<br>rected<br>rcentil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896                                                                                                        | -<br>-<br>-<br>-                                    |
| 441<br>442<br>443<br>444<br>445<br>446<br>447                                                                                                                                                                         |                 |         | % Percer                                                | ntile o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lean (bi<br>of Chiso                                                                                                      | k h<br>eta h<br>nu h<br>ias co<br>quare<br>5% P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximun<br>SI<br>at (MLE<br>at (MLE<br>at (MLE<br>orrected<br>e (2kstar<br>ercentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>1.721<br>1.592<br>1.214<br>6.19<br>1.719<br>1.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | uted                   |                              |                                  | The                                 | ta sta<br>n<br>Mi                                                                                                | r (bias o<br>u star (<br>LE Sd (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | corre<br>corre<br>bias<br>bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ected<br>ected<br>s con<br>s con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Media<br>C'<br>d MLE<br>d MLE<br>rected<br>rected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958                                                                                                                 | -<br>-<br>-<br>-<br>-                               |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451                                                                                                                                             |                 |         | % Percer                                                | ntile o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lean (bi<br>of Chiso<br>95<br>ving sta                                                                                    | k h<br>eta h<br>nu h<br>ias co<br>quare<br>5% P<br>atistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximun SI at (MLE at (MLE at (MLE brrected e (2kstar ercentile s are cong Wilso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>0.721<br>0.592<br>0.214<br>6.19<br>0.719<br>0.149<br>0.646<br><b>ed using</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g Gamma                                                        | ROS                    | Statist                      | ics on                           | The                                 | ta sta<br>n<br>Mi                                                                                                | r (bias o<br>u star (<br>LE Sd (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | corre<br>corre<br>bias<br>bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ected<br>ected<br>s corr<br>s corr<br>Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Media<br>C'<br>d MLE<br>d MLE<br>rected<br>rected<br>rected<br>rectile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452                                                                                                                                      |                 | 95      | % Percer<br>The 1                                       | ntile of<br>follow<br>Uppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lean (bi<br>of Chiso<br>95<br>ving sta<br>r Limits                                                                        | k h<br>eta h<br>nu h<br>ias co<br>quare<br>5% P<br>atistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximun SI at (MLE at (MLE at (MLE orrected e (2kstar ercentile s are co ng Wilso WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g Gamma I                                                      | ROS                    | Statist                      | iics on                          | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias d<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corre<br>bias<br>bias<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ected<br>ected<br>s corr<br>s corr<br>Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Media<br>C'd MLE<br>d MLE<br>rected<br>rected<br>rected<br>rectific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-      |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453                                                                                                                               | 95% Approx. Gan | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chiso<br>95<br>ving sta<br>r Limits                                                                        | k h<br>eta h<br>nu h<br>ias co<br>quare<br>5% P<br>atistic<br>s usin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximun SI at (MLE at (MLE at (MLE priected c) (2kstar ercentile as are co ng Wilso WH 3.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.149<br>2.646<br>ed using<br>erty (WH)<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g Gamma I                                                      | ROS                    | Statist                      | iics on                          | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias o<br>u star (<br>LE Sd (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | corre<br>bias<br>bias<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ected<br>ected<br>s corr<br>s corr<br>Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Media<br>C'<br>d MLE<br>d MLE<br>rected<br>rected<br>rected<br>rectile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-      |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454                                                                                                                        |                 | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chiso<br>95<br>ving sta<br>r Limits                                                                        | k h<br>eta h<br>nu h<br>ias co<br>quare<br>5% P<br>atistic<br>s usin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximun SI at (MLE at (MLE at (MLE orrected e (2kstar ercentile s are co ng Wilso WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g Gamma I                                                      | ROS                    | Statist                      | iics on                          | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias d<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corre<br>bias<br>bias<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ected<br>ected<br>s corr<br>s corr<br>Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Media<br>C'd MLE<br>d MLE<br>rected<br>rected<br>rected<br>rectile<br>centile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456                                                                                                          |                 | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chiso<br>90<br>ving sta<br>r Limits<br>overage<br>ma USI                                                   | k h eta h nu h ias co quare 5% P atistic s usin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximun SI at (MLE at (MLE at (MLE brrected c (2kstar ercentile as are co ng Wilso WH 3.673 5.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHW)<br>2.447<br>2.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias d<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corre<br>bias<br>bias<br>90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ected<br>ected<br>s corr<br>s corr<br>Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Media<br>C'd MLE<br>d MLE<br>rected<br>rected<br>rected<br>rectile<br>centile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>V<br>E)<br>E)<br>d)<br>d)                         | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471                                                                                               |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457                                                                                                   |                 | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chisco<br>95<br>ving star<br>r Limits<br>overago<br>ma USI                                                 | k h eta h nu h ias co quare 5% P atistic s usin e L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximun SI at (MLE at (MLE at (MLE corrected c) (2kstar ercentile as are co ng Wilso WH 3.673 5.987 ates of 6 ean (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHA)<br>2.447<br>2.005<br>a Parar<br>2.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control co | ectedectedectedectedectedectedectedecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Media<br>C'<br>d MLE<br>d MLE<br>rected<br>rected<br>recentile<br>centile<br>/H<br>672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nn V E) E) E) E) E) E) E) E) E) E) E) E) E)             | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048                                                                                |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458                                                                                            |                 | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chisco<br>95<br>ving star<br>r Limits<br>overago<br>ma USI                                                 | k h eta h nu h ias co quare fying the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile as are co ng Wilso WH 3.673 5.987 ates of G ean (KM nce (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHW)<br>2.447<br>2.005<br>a Parar<br>2.223<br>2.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections corrections correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly correctly co | ectec<br>ectec<br>s corr<br>s corr<br>Pero<br>W<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Media<br>C'd MLE<br>d MLE<br>rected<br>rected<br>recentile<br>centile<br>/H<br>672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MN V E) E) E) E) H) H) H) H) H) H) H) H) H) H) H) H) H) | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048                                                                                |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459                                                                                     |                 | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chisco<br>95<br>ving star<br>r Limits<br>overago<br>ma USI                                                 | k h eta h nu h hias co quare P55% P atistic s usin Me //ariar k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximun SI at (MLE at (MLE at (MLE corrected e (2kstar ercentile as are co g Wilso WH 3.673 5.987  ates of e ean (KM hat (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.14<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHA)<br>2.447<br>2.005<br>a Parar<br>2.23<br>2.201<br>2.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections bias bias bias bias bias bias bias bia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ectec<br>ectec<br>s corr<br>s corr<br>Perd<br>W<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Media<br>C'd MLE<br>d MLE<br>rected<br>rected<br>rectificantile<br>centile<br>//H<br>672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)                 | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048                                                                                |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461                                                                       |                 | 95      | % Percer The 1 U                                        | ntile of following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | lean (bi<br>of Chiso<br>99<br>ving star<br>r Limits<br>overage<br>ma USI<br>E                                             | k h heta h nu h hias coquare quare s usin Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile as are co ng Wilso WH 3.673 5.987 ates of G ean (KM nce (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.14<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHA)<br>2.447<br>2.005<br>a Parar<br>2.23<br>2.201<br>2.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The<br>Imput                        | ta sta<br>n<br>Mi<br>ted Da                                                                                      | r (bias c<br>u star (<br>LE Sd (<br>9<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections bias bias 90% PL  E of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ected<br>ected<br>s corn<br>S Per<br>Per<br>W<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Media<br>C'd MLE<br>d MLE<br>rected<br>rected<br>recentile<br>centile<br>/H<br>672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M()  (A)  (A)  (A)  (A)  (A)  (A)  (A)                  | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048                                                                                |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462                                                                |                 | 95      | The t                                                   | follow<br>Uppe<br>5% Co<br>Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lean (bi<br>of Chiso<br>99<br>ving star<br>r Limits<br>overage<br>ma USI<br>E                                             | k h eta h nu h nu h nu h ias ccquare 5% P atistic s usin Me /ariar k nu h eta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile sa are con g Wilso WH 3.673 5.987 ates of (ean (KM hat (KM hat (KM hat (KM hat (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>2.646<br>2.646<br>2.6447<br>2.005<br>2.23<br>2.201<br>2.433<br>2.8<br>2.165<br>2.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The Imput) Meth                     | ta sta<br>n<br>Mi<br>ted Da<br>nods<br>x. Gai                                                                    | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections corrections and corrections are corrections as a correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the corre | ectedectedectedectedectedectedectedecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Media C MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845                                  |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463                                                         |                 | 95      | The t                                                   | follow<br>Uppe<br>5% Co<br>Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lean (bi<br>of Chiso<br>99<br>ving star<br>r Limits<br>overage<br>ma USI<br>E                                             | k h eta h nu h nu h nu h ias ccquare 5% P atistic s usin Me /ariar k nu h eta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile cs are con g Wilso WH 3.673 5.987 ates of (ean (KM hat (KM hat (KM hat (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.149<br>2.646<br>2.646<br>2.646<br>2.646<br>2.647<br>2.005<br>2.23<br>2.23<br>2.201<br>2.433<br>2.8<br>2.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g Gamma I                                                      | ROS                    | Statist<br>Wixley            | iics on<br>y (HW)<br>95%         | The Imput) Meth                     | ta sta<br>n<br>Mi<br>ted Da<br>nods<br>x. Gai                                                                    | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections corrections and corrections are corrections as a correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the corre | ectedectedectedectedectedectedectedecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Media C MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178                                           |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464                                                  |                 | 95      | ## Percer  The 1  L with 95  95%  809  959              | follow<br>Uppe<br>5% Co<br>Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lean (bi<br>of Chiso<br>98<br>ving star<br>Limits<br>Deverage<br>ma USI<br>E                                              | k h eta h nu h hias coquare 5% P tistica s usin Me / ariar k nu h heta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile sa are co g Wilso WH 3.673 5.987  ates of co ean (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using orty (Wh. W. 2.447<br>2.005<br>a Parara 2.23<br>2.201<br>2.433<br>2.9.8<br>2.165<br>2.588<br>2.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g Gamma<br>H) and Hav                                          | ROS<br>wkins           | Statisi<br>Wixley            | ics on<br>y (HW)<br>95%<br>nates | Imput<br>) Meth<br>Appro            | ta sta<br>n<br>Mi<br>ted Da<br>nods<br>xx. Gan                                                                   | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata<br>mma Ul<br>SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections corrections and corrections are corrections as a correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the corre | ectedectedectedectedectedectedectedecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Media C MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845                                  |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466                                    |                 | 95      | % Percer  The 1  L with 95  95%  809  959               | follow Uppe Gam  % gar % gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lean (bi<br>of Chiso<br>98<br>ving star<br>r Limits<br>overage<br>ma USI<br>E<br>temma pe                                 | k h eta h nu h hias coquare 5% P tistica s usin Me / Ariar k nu heta ercen ercen tatist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile sare co g Wilso WH 3.673 5.987  ates of (Maximus) hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using orty (WHV)<br>2.447<br>2.005<br>a Parar 223<br>2.201<br>2.433<br>2.9.8<br>2.165<br>2.588<br>2.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g Gamma I                                                      | ROS<br>wkins           | Statist<br>Wixley<br>M Estin | ics on<br>y (HW)<br>95%<br>nates | Imput ) Meth Appro                  | ta sta<br>n<br>Mi<br>ted Da<br>lods<br>x. Gai                                                                    | r (bias c<br>u star (<br>LE Sd (<br>g<br>ata<br>mma Ul<br>SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corrections corrections and corrections are corrections as a correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the correction of the corre | ectedectedectedectedectedectedectedecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Media C MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845                                  |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467                                           | 95% Approx. Gan | 95°     | % Percer  The f U L with 95 95%  809 959                | follow<br>Uppe<br>5% CG<br>Gam % gar % gar % gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lean (bi<br>of Chiso<br>98<br>ving star<br>r Limits<br>overage<br>ma USI<br>t<br>mma pe<br>mma pe<br>mma pe               | k h eta h nu h heta h s usin h heta h nu h ta s usin h heta h s usin h heta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s usin h ta s | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile s are co g Wilso WH 3.673 5.987  ates of c ean (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM ha | 2   0   0   0   0   0   0   0   0   0    | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHW)<br>2.447<br>2.005<br>a Parar<br>2.23<br>2.201<br>2.433<br>9.8<br>2.165<br>5.588<br>2.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g Gamma<br>H) and Hav<br>meters usin                           | ROS<br>wkins           | Statist<br>Wixley<br>M Estin | ics on<br>y (HW)<br>95%<br>nates | Imput) Meth                         | eta sta<br>n<br>Mi<br>ted Da<br>lods<br>x. Gai<br>90% g<br>99% g                                                 | r (bias of u star ( LE Sd ( ) gata  mma Ul  SE  amma pamma rrections bias bias 90% PL E of not thete percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the percentage of the perc | s corribe Perd W 2 SI Mea k stataa stateentiil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Media C' d MLE d MLE rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec re | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845<br>2.559                         |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>468<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468                                    |                 | 95°     | % Percer  The 1  L with 95  95%  The 1  L with 95       | follow<br>Uppe<br>55% CG<br>Gam % gar<br>% gar<br>% gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lean (bi<br>of Chiso<br>98<br>ving star<br>r Limits<br>overage<br>ma USI<br>t<br>mma pe<br>mma pe<br>owing s<br>r Limits  | k h eta h nu h hias coquaree 5% P tatistic s usin Me /ariar k nu heta heta s usin ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile s are co g Wilso WH 3.673 5.987  ates of ( ce) (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM ha | 2   0   0   0   0   0   0   0   0   0    | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed usingerty (WHW)<br>2.447<br>2.005<br>a Parar<br>2.23<br>2.201<br>2.433<br>9.8<br>2.165<br>2.588<br>2.077<br>2.588<br>2.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g Gamma<br>H) and Hav<br>meters usin                           | ROS<br>wkins           | Statist<br>Wixley<br>M Estin | ics on<br>y (HW)<br>95%<br>nates | Imput) Meth Appro                   | eta sta<br>n<br>Milited Da<br>lods<br>x. Gai                                                                     | r (bias c<br>u star (<br>LE Sd (<br>g<br>sata<br>mma Ul<br>SE<br>amma p<br>amma p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | corrections bias bias 90% PL E of not thet perconnections perconnections perconnections are perconnections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s corried by the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the | Media C' d MLE d MLE rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec re | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845<br>2.559                         |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469                      | 95% Approx. Gan | 95°     | % Percer  The f U L with 95 95%  809 959                | follow<br>Uppe<br>55% CG<br>Gam % gar<br>% gar<br>% gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lean (bi<br>of Chiso<br>98<br>ving star<br>r Limits<br>overage<br>ma USI<br>t<br>mma pe<br>mma pe<br>owing s<br>r Limits  | k h eta h nu h hias coquaree 5% P tatistic s usin Me /ariar k nu heta heta s usin ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile s are co g Wilso WH 3.673 5.987  ates of c ean (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM ha | 2   0   0   0   0   0   0   0   0   0    | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using<br>erty (WHW)<br>2.447<br>2.005<br>a Parar<br>2.23<br>2.201<br>2.433<br>9.8<br>2.165<br>5.588<br>2.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g Gamma<br>H) and Hav<br>meters usin                           | ROS<br>wkins           | Statist<br>Wixley<br>M Estin | ics on<br>y (HW)<br>95%<br>nates | Imput) Meth Appro                   | eta sta<br>n<br>Milited Da<br>lods<br>x. Gai                                                                     | r (bias of u star ( LE Sd ( ) gata  mma Ul  SE  amma pamma rrections bias bias 90% PL E of not thet perconnections perconnections perconnections are perconnections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s corries of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect | Media C' d MLE d MLE rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec re | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845<br>2.559                         |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>468<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468                                    | 95% Approx. Gan | 95°     | % Percer  The 1  L with 95  95%  The 1  L with 95       | follow<br>Uppe<br>55% CG<br>Gam % gar<br>% gar<br>% gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lean (bi<br>of Chiso<br>98<br>ving star<br>Limits<br>overage<br>ma USI<br>t<br>mma pe<br>mma pe<br>owing s<br>r Limits    | k h eta h nu h heta h s usin h heta h nu h heta h s usin h heta h tatistic s usin h heta h e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile ss are co g Wilso WH 3.673 5.987  ates of ( ean (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM h | 2   0   0   0   0   0   0   0   0   0    | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br><b>ed using</b><br><b>erty (WH</b> )<br>2.447<br>2.005<br><b>a Parar</b><br>2.23<br>2.201<br>2.433<br>9.8<br>2.165<br>2.588<br>2.077<br><b>ited using</b><br><b>ited using</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Gamma<br>H) and Hav<br>meters usin                           | ROS<br>wkins           | Statist<br>Wixley<br>M Estir | 95% nates                        | Imput) Meth Appro                   | eta sta<br>n<br>Milited Da<br>lods<br>x. Gai                                                                     | r (bias c<br>u star (<br>LE Sd (<br>g<br>sata<br>mma Ul<br>SE<br>amma p<br>amma p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | corrections bias bias 90% PL E of not thet perconnections perconnections perconnections are perconnections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s corries of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect | Media C' d MLE d MLE rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec re | M) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A               | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845<br>2.559                         |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>471<br>472 | 95% Approx. Gan | 95°     | M Percer  The 1  L with 95  95%  The  L with 95  M Gamn | follow Uppe  % gan % gan follow Uppe Some follow Uppe Some Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lean (bi of Chiso 98 ving sta r Limits overage ma USI  t mma pe mma pe owing s r Limits overage creentile                 | k h eta h. nu h ias coquare 5% P tatistic s usin Me /ariar k nu heta heta s usin ee e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximun SI at (MLE at (MLE at (MLE corrected colorected | 2   0   0   0   0   0   0   0   0   0    | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br>ed using or by (Why)<br>2.447<br>2.005<br>a Parara<br>2.23<br>2.201<br>2.433<br>9.8<br>2.165<br>2.588<br>2.077<br>ated using or by (Why)<br>2.446<br>2.889<br>st on D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g Gamma<br>H) and Hav<br>meters usin<br>ng gamma<br>H) and Hav | ROS<br>wkins<br>distri | Statist<br>Wixley<br>M Estin | 95% nates and h                  | Imput ) Meth Appro  (Mest) Appro 95 | eta sta<br>n<br>Mil<br>ted Da<br>lods<br>x. Gai<br>90% g<br>99% g<br>timate<br>lods<br>x. Gai                    | r (bias c<br>u star (<br>LE Sd (<br>9<br>ata<br>mma Ul<br>SE<br>amma p<br>amma p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | corrections bias bias 90% 99% PL For the the the the the the the the the the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s corries of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect | Media C' d MLE d MLE rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec re | ### And And And And And And And And And And             | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845<br>2.559<br>HW<br>1.921<br>2.589 |                                                     |
| 441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455<br>456<br>457<br>458<br>459<br>460<br>461<br>462<br>463<br>464<br>465<br>466<br>467<br>468<br>469<br>470<br>471 | 95% Approx. Gan | 95°     | M Percer  The 1  L with 95  95%  The  L with 95  M Gamn | follow Uppe  % gan % gan follou Uppe follou Uppe follou Uppe follou Uppe follou Uppe follou Uppe follou Uppe follou Uppe follou Uppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lean (bi of Chiso 98 ving sta r Limits overage ma USI  t mma pe mma pe owing s r Limits overage creentile to Wilk to Wilk | k h eta h nu h lias coquare 5% P restima ke la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximun SI at (MLE at (MLE at (MLE corrected c (2kstar ercentile ss are co ng Wilso WH 3.673 5.987  ates of ( ean (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM hat (KM  | 2   0   0   0   0   0   0   0   0   0    | 2.9<br>2.721<br>2.592<br>2.214<br>6.19<br>2.719<br>2.646<br><b>ed usingerty (WHW)</b><br>2.447<br>2.005<br><b>a Parar</b><br>2.23<br>2.201<br>2.433<br>9.8<br>2.165<br>2.588<br>2.077<br>2.588<br>2.077<br>2.446<br>2.588<br>2.677<br>2.588<br>2.677<br>2.688<br>2.77<br>2.77<br>2.889<br>3.89<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3.80<br>3. | g Gamma<br>H) and Hav<br>meters usin<br>ng gamma<br>H) and Hav | ROS<br>wkins<br>distri | Statist<br>Wixley<br>M Estin | ics on<br>y (HW)<br>95%<br>nates | Imput Meth Appro  (Mest) Appro 95   | eta sta<br>n<br>Mil<br>ted Da<br>lods<br>x. Gai<br>90% g<br>99% g<br>timate<br>lods<br>x. Gai<br>Wilk C<br>norma | r (bias c<br>u star (<br>LE Sd (<br>9<br>sata<br>mma Ul<br>SE<br>amma p<br>amma p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | corrections bias bias 90% 99% PL For the the the the the the the the the the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s corries of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect | Media C' d MLE d MLE rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec rectec re | ### And And And And And And And And And And             | 1.002<br>0.564<br>1.276<br>43.97<br>0.958<br>1.896<br>4.471<br>HW<br>3.048<br>0.0869<br>6.878<br>536.5<br>0.178<br>1.845<br>2.559<br>HW<br>1.921<br>2.589 |                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                     | GHIJK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10% Lilliefors Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.265                                                                                                                                                                                                 | Detected Data appear Lognormal at 10% Significance Lognormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evel                                                                                                                                      |
| 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pear Lognon                                                                                                                                                                                           | mal at 10% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
| 477<br>478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dooleanound Lamanes DOO Garteries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Accumis - 1                                                                                                                                                                                           | ognormal Distribution Using Imputed Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |
| 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.98                                                                                                                                                                                                  | ognormal distribution using imputed Non-Detects  Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.156                                                                                                                                    |
| 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.555                                                                                                                                                                                                 | SD in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.522                                                                                                                                     |
| 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% UTL95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.593                                                                                                                                                                                                 | 95% BCA UTL95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9                                                                                                                                       |
| 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% Bootstrap (%) UTL95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.9                                                                                                                                                                                                   | 95% UPL (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.086                                                                                                                                     |
| 483<br>484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90% Percentile (z)<br>99% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.67<br>2.882                                                                                                                                                                                         | 95% Percentile (z)<br>95% USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.019<br>3.802                                                                                                                            |
| 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 % Percentile (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.002                                                                                                                                                                                                 | 95 % USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.002                                                                                                                                     |
| 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on Logged [                                                                                                                                                                                           | Data and Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |
| 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KM Mean of Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.153                                                                                                                                                                                                 | 95% KM UTL (Lognormal)95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.141                                                                                                                                     |
| 488<br>489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KM SD of Logged Data<br>95% KM Percentile Lognormal (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.286<br>1.866                                                                                                                                                                                        | 95% KM UPL (Lognormal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9<br>2.641                                                                                                                              |
| 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% KM Percentile Lognormai (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.800                                                                                                                                                                                                 | 95% KM USL (Lognormal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.041                                                                                                                                     |
| 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Background DL/2 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistics As                                                                                                                                                                                         | suming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
| 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.176                                                                                                                                                                                                 | Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0958                                                                                                                                   |
| 493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.964                                                                                                                                                                                                 | SD in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.696                                                                                                                                     |
| 494<br>495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% UTL95% Coverage<br>90% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.985<br>2.216                                                                                                                                                                                        | 95% UPL (t)<br>95% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.981<br>2.854                                                                                                                            |
| 496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99% Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.585                                                                                                                                                                                                 | 95% USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.634                                                                                                                                     |
| 497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DL/2 is not a Recommended Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | od. DL/2 pro                                                                                                                                                                                          | ovided for comparisons and historical reasons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                     |
| 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |
| 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       | Free Background Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |
| 500<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data appea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r to tollow a                                                                                                                                                                                         | Discernible Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |
| 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nonparametric Upper Limits for B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΓVs(no distir                                                                                                                                                                                         | nction made between detects and nondetects)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                           |
| 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Order of Statistic, r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39                                                                                                                                                                                                    | 95% UTL with95% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                        |
| 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approx, f used to compute achieved CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.053                                                                                                                                                                                                 | Approximate Actual Confidence Coefficient achieved by UTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.865                                                                                                                                     |
| 505<br>506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approximate Sample Size needed to achieve specified CC 95% USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59<br>10                                                                                                                                                                                              | 95% UPL<br>95% KM Chebyshev UPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>3.203                                                                                                                                |
| 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93 % USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                    | 95 % KIVI CHEDYSHEV OFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.203                                                                                                                                     |
| 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: The use of USL tends to yield a conservati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve estimate                                                                                                                                                                                           | of BTV, especially when the sample size starts exceeding 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |
| 509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Therefore, one may use USL to estimate a BTV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | only when th                                                                                                                                                                                          | ne data set represents a background data set free of outliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
| 510<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       | ed from clean unimpacted locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           |
| 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       | false positives and false negatives provided the data usite observations need to be compared with the BTV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |
| 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | represents a background data set and wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ici many or                                                                                                                                                                                           | isite observations freed to be compared with the BTV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |
| 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |
| 514<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conord                                                                                                                                                                                                | Chatlatia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |
| 514<br>515<br>516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       | Statistics Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                         |
| 514<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobalt  Total Number of Observations Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General                                                                                                                                                                                               | Statistics  Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                         |
| 514<br>515<br>516<br>517<br>518<br>519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Number of Observations<br>Number of Distinct Observations<br>Number of Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39<br>10<br>14                                                                                                                                                                                        | Number of Missing Observations  Number of Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                        |
| 514<br>515<br>516<br>517<br>518<br>519<br>520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Number of Observations<br>Number of Distinct Observations<br>Number of Detects<br>Number of Distinct Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39<br>10<br>14<br>8                                                                                                                                                                                   | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25<br>5                                                                                                                                   |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39<br>10<br>14<br>8<br>1                                                                                                                                                                              | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25<br>5<br>1                                                                                                                              |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39<br>10<br>14<br>8<br>1                                                                                                                                                                              | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25<br>5<br>1<br>10                                                                                                                        |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39<br>10<br>14<br>8<br>1                                                                                                                                                                              | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25<br>5<br>1                                                                                                                              |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>10<br>14<br>8<br>1<br>3<br>0.341                                                                                                                                                                | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25<br>5<br>1<br>10<br>64.1%                                                                                                               |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334                                                                                                                                              | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25<br>5<br>1<br>10<br>64.1%<br>0.584                                                                                                      |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for                                                                                                                                                                                                                                                                                                                                                                                                                              | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334<br>or Backgrou                                                                                                                               | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334                                                                                                                                              | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25<br>5<br>1<br>10<br>64.1%<br>0.584                                                                                                      |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)                                                                                                                                                                                                                                                                                                                                                                                                 | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334<br>or Backgrout<br>2.124                                                                                                                     | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  and Threshold Values (BTVs)  d2max (for USL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic                                                                                                                                                                                                                                                                                                                                    | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334<br>or Backgrout<br>2.124<br>all GOF Tes<br>0.818                                                                                             | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  d2max (for USL)  t on Detects Only Shapiro Wilk GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value                                                                                                                                                                                                                                                                                            | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334<br>or Backgrout<br>2.124<br>all GOF Tes<br>0.818<br>0.825                                                                                    | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  d2max (for USL)  t on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level                                                                                                                                                                                                                                                                                                                                                                                      | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic                                                                                                                                                                                                                                                                           | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334<br>or Backgrout<br>2.124<br>all GOF Tes<br>0.818                                                                                             | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  d2max (for USL)  t on Detects Only Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test                                                                                                                                                                                                                                                                                                                                                                    | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535                                                                                                                                                                                                                                                                                                                                                                                                  | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic                                                                                                                                                                                                                                                                                             | 39<br>10<br>14<br>8<br>1<br>3<br>0.341<br>1.486<br>0.334<br>or Backgroun<br>2.124<br>all GOF Tes<br>0.818<br>0.825<br>0.203<br>0.263                                                                  | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  d2max (for USL)  t on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level                                                                                                                                                                                                                                                                                                                                                                                      | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536                                                                                                                                                                                                                                                                                                                                                                                           | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear                                                                                                                                                                                                                | 39 10 14 8 1 3 0.341 1.486 0.334   or Backgroun 2.124  all GOF Tes 0.818 0.825 0.203 0.263  Approximate                                                                                               | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  t on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level                                                                                                                                                                                                                                                                                            | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352                                                                                             |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537                                                                                                                                                                                                                                                                                                                                                                                    | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear                                                                                                                                                                                                                         | 39 10 14 8 1 3 0.341 1.486 0.334  or Backgroun 2.124  all GOF Tes 0.818 0.825 0.203 0.263  Approximating                                                                                              | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  and Threshold Values (BTVs)  t on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution                                                                                                                                                                                                                                    | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857                                                                                    |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538                                                                                                                                                                                                                                                                                                                                                                             | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean                                                                                                                                                                                                           | 39 10 14 8 1 3 0.341 1.486 0.334  or Backgroun 2.124  all GOF Tes 0.818 0.825 0.203 0.263  Approximate sground Stat 1.218                                                                             | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  and Threshold Values (BTVs)  t on Detects Only Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD                                                                                                                                                                                                                              | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857                                                                                    |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540                                                                                                                                                                                                                                                                                                                                                               | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear                                                                                                                                                                                                                         | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Dal GOF Tes 0.818 0.825 0.203 0.263 Approximate sground Stat 1.218 2.145 1.777                                                                  | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  and Threshold Values (BTVs)  t on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution                                                                                                                                                                                                                                    | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857                                                                                    |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541                                                                                                                                                                                                                                                                                                                                                        | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage                                                                                                                                                                     | 39 10 14 8 1 3 0.341 1.486 0.334  or Backgroun 2.124  all GOF Tes 0.818 0.825 0.203 0.263  Approximate sground Stat 1.218 2.145                                                                       | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  It on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t)                                                                                                                                                                                                             | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857                                                                                    |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542                                                                                                                                                                                                                                                                                                                                                 | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z)                                                                                                                         | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233                                                                         | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  It on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD  95% KM UPL (t) 95% KM Percentile (z) 95% KM USL                                                                                                                                                                           | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el<br>0.436<br>1.963<br>1.935                                                   |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543                                                                                                                                                                                                                                                                                                                                          | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z)                                                                                                                                           | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233  ground Stati                                                           | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  It on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (z) 95% KM USL  stics Assuming Normal Distribution                                                                                                                                        | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464                                            |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544                                                                                                                                                                                                                                                                                                                                   | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z)                                                                                                                                           | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233  ground Stati 1.238                                                     | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  It on Detects Only Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (z) 95% KM USL  stics Assuming Normal Distribution                                                                                                                                         | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464                                            |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547<br>548<br>549<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547<br>548<br>549<br>540<br>540<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547<br>547<br>548<br>549<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540 | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z)  DL/2 Substitution Back Mean 95% UTL95% Coverage 90% Percentile (z)                                                     | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233  ground Stati 1.238 3.211 2.429                                         | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  It on Detects Only  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (z) 95% KM USL  stics Assuming Normal Distribution                                                                                                                                        | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464  0.929<br>2.824<br>2.766                   |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>542<br>543<br>544<br>545<br>546<br>547                                                                                                                                                                                                                                                                                                       | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values fe Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z) 99% Percentile (z) 99% Percentile (z)                                                                     | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233  ground Stati 1.238 3.211 2.429 3.399                                   | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM USL  stics Assuming Normal Distribution  SD 95% UPL (t) 95% UPL (t) 95% UPL (t)                                                                                                                                          | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464                                            |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547<br>548                                                                                                                                                                                                                                                                                                       | Total Number of Observations Number of Distinct Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values fe Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z) 99% Percentile (z) 99% Percentile (z)                                                                     | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233  ground Stati 1.238 3.211 2.429 3.399                                   | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level e Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (z) 95% UPL (t) 95% Percentile (z)                                                                                                                                                                            | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464  0.929<br>2.824<br>2.766                   |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>542<br>543<br>544<br>545<br>546<br>547<br>548<br>549                                                                                                                                                                                                                                                                                         | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z)                                                                                  | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximate 1.218 2.145 1.777 2.233  Ground Stati 1.238 3.211 2.429 3.399 od. DL/2 products                | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level Normal at 1% Significance Level Itistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (2) 95% UPL (t) 95% Percentile (2) 95% USL  Ovided for comparisons and historical reasons                                                                                                                      | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464  0.929<br>2.824<br>2.766                   |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547<br>548                                                                                                                                                                                                                                                                                                       | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z)                                                                                  | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximate 1.218 2.145 1.777 2.233  Ground Stati 1.238 3.211 2.429 3.399 od. DL/2 products                | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level Normal at 1% Significance Level Listics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (2) 95% UPL (t) 95% Percentile (2) 95% USL Divided for comparisons and historical reasons                                                                                                                       | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.935<br>2.464  0.929<br>2.824<br>2.766                   |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>545<br>546<br>547<br>548<br>549<br>550<br>551<br>552                                                                                                                                                                                                                                                                    | Total Number of Observations Number of Distinct Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Norm Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z) 99% Recentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) DL/2 is not a recommended meth | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Data GOF Tes 0.818 0.825 0.203 0.263 Approximate 1.218 2.145 1.777 2.233  Ground Stati 1.238 3.211 2.429 3.399 od. DL/2 processors Tests on Des | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detected Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level Normal at 1% Significance Level Listics Assuming Normal Distribution  KM SD  95% KM UPL (t) 95% KM UPL (t) 95% VPL (t) 95% UPL (t) 95% UPL (t) 95% USL Devided for comparisons and historical reasons  Steected Observations Only Anderson-Darling GOF Test Data Not Gamma Distributed at 5% Significance Level | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.963<br>1.935<br>2.464  0.929<br>2.824<br>2.766<br>3.892 |
| 514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541<br>542<br>543<br>544<br>545<br>546<br>547<br>548<br>549<br>550<br>551                                                                                                                                                                                                                                                                                  | Total Number of Observations Number of Distinct Observations Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detected Mean Detected Mean Of Detected Logged Data  Critical Values for Tolerance Factor K (For UTL)  Nom Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Detected Data appear  Kaplan Meier (KM) Back KM Mean 95% UTL95% Coverage 90% KM Percentile (z) 99% KM Percentile (z) 99% KM Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z) 99% Percentile (z)               | 39 10 14 8 1 3 0.341 1.486 0.334  Dr Backgroun 2.124  Dal GOF Tes 0.818 0.825 0.203 0.263 Approximat 1.218 2.145 1.777 2.233  Drougle Stati 1.238 3.211 2.429 3.399 Dod. DL/2 pro 0.778               | Number of Missing Observations  Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detect Percent Non-Detects SD Detected SD of Detected Logged Data  Ind Threshold Values (BTVs)  Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Detected Data appear Normal at 1% Significance Level Normal at 1% Significance Level tistics Assuming Normal Distribution  KM SD 95% KM UPL (t) 95% KM Percentile (z) 95% KM USL  stics Assuming Normal Distribution  SD 95% UPL (t) 95% Percentile (z) 95% USL byided for comparisons and historical reasons                                                                     | 25<br>5<br>1<br>10<br>64.1%<br>0.584<br>0.352<br>2.857<br>el  0.436<br>1.963<br>1.963<br>1.935<br>2.464  0.929<br>2.824<br>2.766<br>3.892 |

|            | Α       | В          | С             | D                                           | E                             | F                   | G                                  | Н          |             | J                                    | K                            | L              |
|------------|---------|------------|---------------|---------------------------------------------|-------------------------------|---------------------|------------------------------------|------------|-------------|--------------------------------------|------------------------------|----------------|
| 554<br>555 |         |            |               |                                             | Critical Value                |                     | Detected of Distribution at !      |            |             | a Distributed at 5°                  | % Significand                | e Level        |
| 556        |         |            |               | Detected da                                 | ata follow Ap                 | pr. Gamma           | Distribution at :                  | 5% Signi   | mcance Le   | evei                                 |                              |                |
| 557        |         |            |               |                                             | Gamma                         | Statistics of       | n Detected Data                    | a Only     |             |                                      |                              |                |
| 558        |         |            |               |                                             | k hat (MLE)                   |                     |                                    |            |             | k star (bias corr                    |                              | 6.553          |
| 559<br>560 |         |            |               |                                             | eta hat (MLE)<br>nu hat (MLE) |                     |                                    |            | ın          | eta star (bias corr<br>nu star (bias |                              | 0.227<br>183.5 |
| 561        |         |            | N             | /ILE Mean (bia                              |                               |                     |                                    |            |             | na star (blas                        | Corrected                    | 100.0          |
| 562        |         |            |               |                                             | as corrected                  |                     |                                    |            | 95% Pe      | rcentile of Chisqu                   | are (2kstar)                 | 22.5           |
| 563<br>564 |         |            |               |                                             | Commo PO                      | 2 Statistics        | ısing Imputed N                    | lon Doto   | ote         |                                      |                              |                |
| 565        |         |            | GROS ma       |                                             |                               |                     |                                    |            |             | s at multiple DLs                    |                              |                |
| 566        |         | GROS ma    | y not be use  | ed when kstar                               | of detects is                 | small such          | as <1.0, especia                   | illy when  | the samp    | le size is small (e.                 | g., <15-20)                  |                |
| 567<br>568 |         |            | F             |                                             |                               |                     | yield incorrect<br>en the sample s |            |             | d BTVs                               |                              |                |
| 569        |         | For ga     | mma distribi  |                                             |                               |                     |                                    |            |             | ribution on KM es                    | timates                      |                |
| 570        |         |            |               |                                             | Minimum                       | 0.01                |                                    |            |             |                                      | Mean                         | 0.84           |
| 571<br>572 |         |            |               |                                             | Maximum<br>SD                 |                     |                                    |            |             |                                      | Median<br>CV                 | 0.73<br>0.795  |
| 573        |         |            |               |                                             | k hat (MLE)                   |                     |                                    |            |             | k star (bias corr                    |                              | 0.793          |
| 574        |         |            |               |                                             | eta hat (MLE)                 | 0.857               |                                    |            | Th          | eta star (bias corr                  | ected MLE)                   | 0.911          |
| 575<br>576 |         |            |               |                                             | nu hat (MLE)                  |                     |                                    |            |             | nu star (bias                        |                              | 71.95          |
| 577        |         |            |               | ALE Mean (bia<br>entile of Chisq            |                               |                     |                                    |            |             | MLE Sd (bias                         | 6 Percentile                 | 0.875<br>1.973 |
| 578        |         |            |               | 95                                          | % Percentile                  | 2.59                |                                    |            |             | 99%                                  | Percentile                   | 4.03           |
| 579        |         |            |               |                                             |                               |                     | ng Gamma ROS                       |            |             |                                      |                              |                |
| 580<br>581 |         |            |               | Upper Limits                                | using Wilso<br>WH             | n Hilferty (W<br>HW | H) and Hawkins                     | 3 Wixley   | (HW) Met    | hods                                 | WH                           | HW             |
| 582        | 95% App | rox. Gamma | UTL with 9    | 5% Coverage                                 |                               | 3.995               |                                    |            | 95% Appr    | ox. Gamma UPL                        | 2.614                        | 2.927          |
| 583        |         |            |               | Gamma USL                                   |                               | 6.545               |                                    |            | I. L.       |                                      |                              |                |
| 584<br>585 |         |            |               |                                             | atimataa af (                 | Samma Bar           | meters using K                     | M Estim    | otoo        |                                      |                              |                |
| 586        |         |            |               |                                             | Mean (KM)                     |                     | illieters using N                  | IVI ESUIII | iales       |                                      | SD (KM)                      | 0.436          |
| 587        |         |            |               | V                                           | ariance (KM)                  | 0.19                |                                    |            |             | SE of                                | Mean (KM)                    | 0.0796         |
| 588<br>589 |         |            |               |                                             | k hat (KM)                    |                     |                                    |            |             | _                                    | k star (KM)                  | 7.206          |
| 590        |         |            |               | th                                          | nu hat (KM)<br>neta hat (KM)  |                     |                                    |            |             |                                      | nu star (KM)<br>ta star (KM) | 562.1<br>0.169 |
| 591        |         |            |               | % gamma pe                                  | rcentile (KM)                 | 1.574               |                                    |            |             | 90% gamma pero                       | centile (KM)                 | 1.823          |
| 592        |         |            | 95            | % gamma pe                                  | rcentile (KM)                 | 2.047               |                                    |            |             | 99% gamma pero                       | centile (KM)                 | 2.512          |
| 593<br>594 |         |            | Th            | e following st                              | atistics are o                | computed us         | ing gamma dist                     | ribution   | and KM e    | stimates                             |                              |                |
| 595        |         |            |               | Upper Limits                                | using Wilso                   | n Hilferty (W       | H) and Hawkins                     | s Wixley   | (HW) Met    | hods                                 |                              |                |
| 596        | 050/ 4  |            | 1171 31 0     | F0/ O                                       | WH                            | HW                  |                                    |            | 050/ 4      | 0 1101                               | WH                           | HW             |
| 597<br>598 | 95% App |            |               | 5% Coverage<br>ma Percentile                |                               | 2.106<br>1.859      |                                    |            |             | ox. Gamma UPL<br>5% Gamma USL        | 1.898<br>2.517               | 1.89<br>2.528  |
| 599        |         |            | 70 INVI Gaini | na i ciccitale                              | 1.007                         | 1.000               |                                    |            |             | 770 Gamma 00E                        | 2.017                        | 2.020          |
| 600        |         |            |               |                                             |                               |                     | Detected Obser                     | vations (  |             |                                      |                              |                |
| 601<br>602 |         |            |               | Shapiro Wilk <sup>*</sup><br>Shapiro Wilk ( |                               |                     |                                    | Data Not   | Shapiro     | Wilk GOF Test at 10% Signification   | ance I evel                  |                |
| 603        |         |            | 1070          |                                             | Test Statistic                |                     |                                    | Data Hot   |             | ors GOF Test                         | IIIOO EOVOI                  |                |
| 604        |         |            | 1             | 0% Lilliefors (                             |                               |                     |                                    |            |             | gnormal at 10% S                     | ignificance L                | evel           |
| 605<br>606 |         |            |               | Detected Da                                 | ata appear A                  | pproximate          | Lognormal at 1                     | u% Sign    | nificance L | evel                                 |                              |                |
| 607        |         | F          | 3ackground    | Lognormal R                                 | OS Statistic                  | s Assuming          | Lognormal Dist                     | ribution   | Using Imp   | uted Non-Detects                     | ;<br>;                       |                |
| 608        |         |            |               | Mean in O                                   | riginal Scale                 | 0.98                |                                    |            |             | Mean ir                              | n Log Scale                  | -0.15          |
| 609<br>610 |         |            |               |                                             | original Scale Coverage       |                     |                                    |            | •           | SD ir<br>95% BCA UTL959              | 6 Coverage                   | 0.509<br>2.1   |
| 611        |         |            | 95% Bootstr   | 95% 01L95<br>ap (%) UTL95                   |                               |                     |                                    |            |             |                                      | 95% UPL (t)                  | 2.053          |
| 612        |         |            |               | 90% F                                       | Percentile (z)                | 1.652               |                                    |            |             |                                      | ercentile (z)                | 1.988          |
| 613<br>614 |         |            |               | 99% F                                       | Percentile (z                 | 2.813               |                                    |            |             |                                      | 95% USL                      | 3.686          |
| 615        |         |            | Stat          | istics usina K                              | M estimates                   | on Logged           | Data and Assur                     | nina Loc   | normal Di   | stribution                           |                              |                |
| 616        |         |            |               | KM Mean of                                  | Logged Data                   | 0.152               |                                    |            |             | L (Lognormal)95%                     |                              | 2.098          |
| 617        |         |            | 050/ 1/1      |                                             | Logged Data                   |                     |                                    |            |             | 95% KM UPL (                         |                              | 1.869          |
| 618<br>619 |         |            | 95% KN        | // Percentile L                             | ognormai (z                   | 1.837               |                                    |            |             | 95% KM USL (                         | Lognormai)                   | 2.571          |
| 620        |         |            |               |                                             |                               |                     | ssuming Lognor                     | mal Dist   | tribution   |                                      |                              |                |
| 621        |         |            |               |                                             | riginal Scale                 |                     |                                    |            |             |                                      | n Log Scale                  | -0.00365       |
| 622<br>623 |         |            |               |                                             | riginal Scale % Coverage      |                     |                                    |            |             |                                      | n Log Scale<br>95% UPL (t)   | 0.649<br>3.016 |
| 624        |         |            |               |                                             | Percentile (z)                | 2.288               |                                    |            |             |                                      | ercentile (z)                | 2.896          |
| 625        |         |            | DI /0.1       | 99% F                                       | Percentile (z                 | 4.505               |                                    |            |             |                                      | 95% USL                      | 6.357          |
| 626<br>627 |         |            | υL/2 is i     | not a Recomr                                | nended Met                    | noa. DL/2 p         | ovided for com                     | oarisons   | and histo   | ricai reasons.                       |                              |                |
| 628        |         |            |               | No                                          | onparametric                  | Distribution        | Free Backgrou                      | ınd Stati  | istics      |                                      |                              |                |
| 629        |         |            |               |                                             |                               |                     | Discernible Di                     |            |             |                                      |                              |                |
| 630<br>631 |         |            | Nonner        | ametric I Inno                              | r I imite for P               | TVe/no diet         | inction made ha                    | atween d   | latacte and | I nondetecte)                        |                              |                |
| 632        |         |            | Nonbala       |                                             | of Statistic,                 |                     | inction made be                    | irweeli a  |             | i nondetects)<br>95% UTL with95%     | 6 Coverage                   | 10             |
|            |         |            |               | 3.00                                        | ,                             |                     |                                    |            |             | =                                    |                              |                |

|            | A B C D E                                                         | F                    | GHIJK                                                                                                             | L               |
|------------|-------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|
| 633        | Approx, f used to compute achieved CC                             |                      | Approximate Actual Confidence Coefficient achieved by UTL                                                         | 0.865           |
| 634<br>635 | Approximate Sample Size needed to achieve specified CC 95% USL    |                      | 95% UPL<br>95% KM Chebyshev UPL                                                                                   | 5<br>3.144      |
| 636        | 30 / 0 000                                                        | . 10                 | 33 /8 KW Chebyshev Of L                                                                                           | 0.177           |
| 637<br>638 |                                                                   |                      | of BTV, especially when the sample size starts exceeding 20.                                                      |                 |
| 639        |                                                                   |                      | ne data set represents a background data set free of outliers led from clean unimpacted locations.                |                 |
| 640        | The use of USL tends to provide a bala                            | nce between          | false positives and false negatives provided the data                                                             |                 |
| 641<br>642 | represents a background data set and w                            | hen many or          | nsite observations need to be compared with the BTV.                                                              |                 |
|            | Fluoride                                                          |                      |                                                                                                                   |                 |
| 644        |                                                                   | 0                    | Observation .                                                                                                     |                 |
| 645<br>646 | Total Number of Observations                                      |                      | Statistics  Number of Missing Observations                                                                        | 0               |
| 647        | Number of Distinct Observations                                   | 16                   |                                                                                                                   |                 |
| 648<br>649 | Number of Detects Number of Distinct Detects                      |                      | Number of Non-Detects Number of Distinct Non-Detects                                                              | 21<br>1         |
| 650        | Minimum Detects                                                   |                      | Minimum Non-Detect                                                                                                | 0.2             |
| 651        | Maximum Detect                                                    |                      | Maximum Non-Detect                                                                                                | 0.2             |
| 652<br>653 | Variance Detected  Mean Detected                                  |                      | Percent Non-Detects SD Detected                                                                                   | 53.85%<br>0.493 |
| 654        | Mean of Detected Logged Data                                      |                      | SD of Detected Logged Data                                                                                        | 0.621           |
| 655<br>656 | Original Malvina                                                  | fan Daelenner        | nd Threehold Values (DTVs)                                                                                        |                 |
| 657        | Tolerance Factor K (For UTL)                                      |                      | nd Threshold Values (BTVs) d2max (for USL)                                                                        | 2.857           |
| 658        |                                                                   |                      | •                                                                                                                 |                 |
| 659<br>660 | Norr Shapiro Wilk Test Statistic                                  |                      | t on Detects Only Shapiro Wilk GOF Test                                                                           |                 |
| 661        | 1% Shapiro Wilk Critical Value                                    |                      | Data Not Normal at 1% Significance Level                                                                          |                 |
| 662<br>663 | Lilliefors Test Statistic                                         |                      | Lilliefors GOF Test                                                                                               |                 |
| 664        | 1% Lilliefors Critical Value  Data No                             |                      | Data Not Normal at 1% Significance Level  Significance Level                                                      |                 |
| 665        |                                                                   |                      |                                                                                                                   |                 |
| 666<br>667 | Kaplan Meier (KM) Bac<br>KM Mean                                  |                      | tistics Assuming Normal Distribution  KM SD                                                                       | 0.354           |
| 668        | 95% UTL95% Coverage                                               |                      | 95% KM UPL (t)                                                                                                    | 0.932           |
| 669        | 90% KM Percentile (z)                                             |                      | 95% KM Percentile (z)                                                                                             | 0.91            |
| 670<br>671 | 99% KM Percentile (z)                                             | 1.151                | 95% KM USL                                                                                                        | 1.339           |
| 672        |                                                                   |                      | stics Assuming Normal Distribution                                                                                |                 |
| 673<br>674 | Mean<br>95% UTL95% Coverage                                       |                      | SD<br>95% UPL (t)                                                                                                 | 0.381<br>0.925  |
| 675        | 90% Percentile (z)                                                |                      | 95% OPE (t)<br>95% Percentile (z)                                                                                 | 0.925           |
| 676        | 99% Percentile (z)                                                | 1.16                 | 95% USL                                                                                                           | 1.363           |
| 677<br>678 | DL/2 is not a recommended meti                                    | noa. DL/2 pro        | ovided for comparisons and historical reasons                                                                     |                 |
| 679        |                                                                   |                      | etected Observations Only                                                                                         |                 |
| 680<br>681 | A-D Test Statistic<br>5% A-D Critical Value                       |                      | Anderson-Darling GOF Test Data Not Gamma Distributed at 5% Significance Leve                                      | 1               |
| 682        | K-S Test Statistic                                                |                      | Kolmogorov-Smirnov GOF                                                                                            | 1               |
| 683        | 5% K-S Critical Value                                             |                      | Data Not Gamma Distributed at 5% Significance Leve                                                                | I               |
| 684<br>685 | Data Not Gam                                                      | ma Distribute        | ed at 5% Significance Level                                                                                       |                 |
| 686        |                                                                   |                      | Detected Data Only                                                                                                |                 |
| 687<br>688 | k hat (MLE) Theta hat (MLE)                                       |                      | k star (bias corrected MLE) Theta star (bias corrected MLE)                                                       | 1.845<br>0.259  |
| 689        | nu hat (MLE)                                                      | 78.1                 | nu star (bias corrected)                                                                                          | 66.42           |
| 690        | MLE Mean (bias corrected)                                         | 0.477                | 0F0/ P                                                                                                            | 0.004           |
| 691<br>692 | MLE Sd (bias corrected)                                           | 0.351                | 95% Percentile of Chisquare (2kstar)                                                                              | 8.981           |
| 693        |                                                                   |                      | sing Imputed Non-Detects                                                                                          |                 |
| 694<br>695 |                                                                   |                      | 6 NDs with many tied observations at multiple DLs s <1.0, especially when the sample size is small (e.g., <15-20) |                 |
| 696        |                                                                   |                      | yield incorrect values of UCLs and BTVs                                                                           |                 |
| 697        | This is espec                                                     | ially true whe       | en the sample size is small.                                                                                      |                 |
| 698<br>699 | For gamma distributed detected data, BTVs a Minimum               |                      | by be computed using gamma distribution on KM estimates  Mean                                                     | 0.226           |
| 700        | Maximum                                                           | 2.3                  | Median                                                                                                            | 0.01            |
| 701<br>702 | SD<br>k hat (MLE)                                                 |                      | CV<br>k star /hias corrected MLE)                                                                                 | 1.798<br>0.43   |
| 703        | k hat (MLE) Theta hat (MLE)                                       |                      | k star (bias corrected MLE) Theta star (bias corrected MLE)                                                       | 0.43            |
| 704        | nu hat (MLE)                                                      | 34.86                | nu star (bias corrected)                                                                                          | 33.51           |
| 705<br>706 | MLE Mean (bias corrected)<br>95% Percentile of Chisquare (2kstar) | 0.226<br>3.482       | MLE Sd (bias corrected)<br>90% Percentile                                                                         | 0.344<br>0.629  |
| 707        | 95% Percentile                                                    | 0.915                | 99% Percentile                                                                                                    | 1.627           |
| 708<br>709 |                                                                   |                      | g Gamma ROS Statistics on Imputed Data                                                                            |                 |
| 710        | Upper Limits using Wilson WH                                      | n Hilferty (WI<br>HW | H) and Hawkins Wixley (HW) Methods WH                                                                             | HW              |
| 711        | 95% Approx. Gamma UTL with 95% Coverage 1.224                     | 1.368                | 95% Approx. Gamma UPL 0.855                                                                                       | 0.901           |
|            |                                                                   |                      |                                                                                                                   |                 |

|            | A B C D E                                                       |        | F                           | G              | Н            |          | l        | J                             | K                             | L              |
|------------|-----------------------------------------------------------------|--------|-----------------------------|----------------|--------------|----------|----------|-------------------------------|-------------------------------|----------------|
| 712<br>713 | 95% Gamma USL 2.105                                             | 5      | 2.6                         |                |              |          |          |                               |                               |                |
| 714        | Estimates o                                                     | of Gar | mma Parar                   | neters using   | KM Estima    | ates     |          |                               |                               |                |
| 715        | Mean (K                                                         | (M)    | 0.328                       |                |              |          |          |                               | SD (KM)                       | 0.354          |
| 716<br>717 | Variance (K<br>k hat (K                                         |        | 0.125<br>0.859              |                |              |          |          | SE o                          | f Mean (KM)<br>k star (KM)    | 0.0583<br>0.81 |
| 718        | nu hat (K                                                       |        | 67.02                       |                |              |          |          |                               | nu star (KM)                  | 63.2           |
| 719        | theta hat (K                                                    | (M)    | 0.382                       |                |              |          |          | the                           | eta star (KM)                 | 0.405          |
| 720<br>721 | 80% gamma percentile (K                                         |        | 0.536                       |                |              |          |          | % gamma per                   |                               | 0.795          |
| 722        | 95% gamma percentile (K                                         | (IVI)  | 1.059                       |                |              |          | 993      | % gamma per                   | centile (Kivi)                | 1.682          |
| 723        | The following statistics are                                    |        |                             |                |              |          |          |                               |                               |                |
| 724<br>725 | Upper Limits using Wils WH                                      | son F  | Hilterty (WE<br>HW          | i) and Hawki   | ns Wixley    | (HW) I   | Method   | IS                            | WH                            | HW             |
| 726        | 95% Approx. Gamma UTL with 95% Coverage 0.866                   | 3      | 0.846                       |                | (            | 95% A    | pprox.   | Gamma UPL                     |                               | 0.695          |
| 727<br>728 | 95% KM Gamma Percentile 0.695                                   | 5      | 0.674                       |                |              |          | 95%      | Gamma USL                     | 1.179                         | 1.168          |
| 729        | Lognormal                                                       | GOF    | Test on De                  | etected Obse   | ervations C  | nlv      |          |                               |                               |                |
| 730        | Shapiro Wilk Test Statis                                        |        | 0.837                       | otootoa obot   | or valiono c |          | piro Wi  | ilk GOF Test                  |                               |                |
| 731        | 10% Shapiro Wilk Critical Val                                   |        | 0.914                       |                | Data Not     |          |          | t 10% Signific                | ance Level                    |                |
| 732<br>733 | Lilliefors Test Statis<br>10% Lilliefors Critical Val           |        | 0.176<br>0.185              | Dete           | rted Data a  |          |          | GOF Test<br>rmal at 10% S     | Significance I                | evel           |
| 734        | Detected Data appear                                            |        |                             |                |              |          |          |                               | o.g.mounoc                    |                |
| 735        |                                                                 |        |                             | _              |              |          |          |                               |                               |                |
| 736<br>737 | Background Lognormal ROS Statist  Mean in Original Sca          |        | Assuming L<br>0.261         | ognormal Di    | SINDUTION (  | JSING I  | mpute    |                               | <b>s</b><br>in Log Scale      | -1.944         |
| 738        | SD in Original Sca                                              | ale    | 0.389                       |                |              |          |          | SD                            | in Log Scale                  | 1.093          |
| 739        | 95% UTL95% Covera                                               |        | 1.46                        |                |              |          | 95%      | BCA UTL95                     | % Coverage                    |                |
| 740<br>741 | 95% Bootstrap (%) UTL95% Covera 90% Percentile                  |        | 2.3<br>0.581                |                |              |          |          |                               | 95% UPL (t)<br>Percentile (z) |                |
| 742        | 99% Percentile                                                  |        | 1.82                        |                |              |          |          | JJ /0 F                       | 95% USL                       | 3.251          |
| 743        |                                                                 |        |                             |                |              |          |          |                               |                               |                |
| 744<br>745 | Statistics using KM estimate KM Mean of Logged Da               |        | n <b>Logged</b> E<br>-1.322 | oata and Ass   |              |          |          | <b>bution</b><br>₋ognormal)95 | % Coverage                    | 0.794          |
| 746        | KM SD of Logged Da                                              |        | 0.514                       |                |              | 70 14141 |          | 95% KM UPL                    |                               | 0.641          |
| 747        | 95% KM Percentile Lognormal                                     |        | 0.62                        |                |              |          |          | 95% KM USL                    |                               | 1.157          |
| 748<br>749 | Background DL                                                   | /2 St  | atistics Ass                | sumina Loan    | ormal Diet   | ributio  | n        |                               |                               |                |
| 750        | Mean in Original Sca                                            | ale    | 0.274                       | ig Logii       | ai 2130      |          |          |                               | in Log Scale                  |                |
| 751        | SD in Original Sca                                              | ale    | 0.381                       |                |              |          |          | SD                            | in Log Scale                  | 0.783          |
| 752<br>753 | 95% UTL95% Covera 90% Percentile                                |        | 0.969<br>0.501              |                |              |          |          |                               | 95% UPL (t)<br>Percentile (z) | 0.699<br>0.665 |
| 754        | 99% Percentile                                                  |        | 1.135                       |                |              |          |          | 33701                         | 95% USL                       | 1.719          |
| 755        | DL/2 is not a Recommended M                                     | lethod | d. DL/2 pro                 | vided for co   | mparisons    | and hi   | istorica | I reasons.                    |                               |                |
| 756<br>757 | Nonparamet                                                      | tric D | istribution                 | Free Backar    | ound Statis  | stics    |          |                               |                               |                |
| 758        |                                                                 |        |                             | Discernible [  |              |          |          |                               |                               |                |
| 759<br>760 | Nonparametric Upper Limits for                                  | r RT\/ | /e/no dietir                | oction made l  | hetween de   | atacte   | and no   | andetecte)                    |                               |                |
| 761        | Order of Statistic                                              |        | 39                          | iction made i  | between de   | elecis   |          | % UTL with95                  | % Coverage                    | 2.3            |
| 762        | Approx, f used to compute achieved 0                            |        | 2.053                       | Approximat     | te Actual C  | onfide   | nce Co   | efficient achie               |                               | 0.865          |
| 763<br>764 | Approximate Sample Size needed to achieve specified C<br>95% U  |        | 59<br>2.3                   |                |              |          |          | 95% KM Che                    | 95% UPL                       | 0.97<br>1.89   |
| 765        |                                                                 |        |                             |                |              |          |          |                               | •                             | 1.00           |
| 766        | Note: The use of USL tends to yield a conserv                   |        |                             |                |              |          |          |                               |                               |                |
| 767<br>768 | Therefore, one may use USL to estimate a B and consists of obse |        |                             |                |              |          |          | uata set free                 | of outliers                   |                |
| 769        | The use of USL tends to provide a ba                            | alance | e between                   | false positive | es and false | e nega   | tives pi |                               |                               |                |
| 770<br>771 | represents a background data set and                            | d whe  | en many on                  | site observat  | tions need   | to be c  | compar   | ed with the B                 | TV.                           |                |
|            | Lead                                                            |        |                             |                |              |          |          |                               |                               |                |
| 773        |                                                                 |        |                             |                |              |          |          |                               |                               |                |
| 774<br>775 | Total Number of Observation                                     | one    | General S                   | Statistics     |              |          | Numba    | r of Missins C                | )hearyation=                  |                |
| 776        | Total Number of Observatio Number of Distinct Observatio        |        | 39<br>6                     |                |              |          | numbe    | r of Missing C                | buservations                  | 0              |
| 777        | Number of Detection                                             | ects   | 3                           |                |              |          |          |                               | Non-Detects                   | 36             |
| 778<br>779 | Number of Distinct Detec                                        |        | 1                           |                |              |          | Numbe    | er of Distinct I              |                               | 5              |
| 780        | Minimum Dete<br>Maximum Dete                                    |        | 1.5                         |                |              |          |          |                               | Non-Detect<br>Non-Detect      | 10             |
| 781        | Variance Detect                                                 | ted    | 0.0833                      |                |              |          |          |                               | Non-Detects                   | 92.31%         |
| 782<br>783 | Mean of Detected Legged De                                      |        | 1.167                       |                |              |          | C F      |                               | SD Detected                   | 0.289          |
| 783<br>784 | Mean of Detected Logged Da                                      | ата    | 0.135                       |                |              |          | SD       | of Detected I                 | Logged Data                   | 0.234          |
| 785        |                                                                 |        |                             | only 3 Detect  |              |          |          |                               |                               |                |
| 786<br>787 | This is not enough to co                                        |        |                             |                |              |          | stimate  | es.                           |                               |                |
| 787<br>788 |                                                                 |        |                             |                |              |          |          |                               |                               |                |
| 789        | Critical Value                                                  |        | Backgrour                   | nd Threshold   | Values (B    | TVs)     |          |                               |                               |                |
| 790        | Tolerance Factor K (For UT                                      | TL)    | 2.124                       |                |              |          |          | d2m                           | ax (for USL)                  | 2.857          |

|            | Α         | В         |          | С               | Т      | D         | $\top$               | E                          | F                 | G                        | ŀ           | Н             |                | 1             | J                        |                      |               | K                | L              |
|------------|-----------|-----------|----------|-----------------|--------|-----------|----------------------|----------------------------|-------------------|--------------------------|-------------|---------------|----------------|---------------|--------------------------|----------------------|---------------|------------------|----------------|
| 791        |           |           |          |                 |        |           |                      |                            |                   |                          |             |               |                |               |                          | •                    |               | •                |                |
| 792<br>793 |           |           |          |                 | Chan   | iro Mille | , Toot C             |                            |                   | est on Dete              | cts Only    |               | Cha            | nina \A/i     | IL 00E                   | Tool                 |               |                  |                |
| 793        |           |           |          |                 |        |           | k Test S<br>Critica  |                            |                   |                          | D:          | ata N         |                |               | <b>lk GOF</b><br>1% Sigr |                      | ים ו ם        | امر              |                |
| 795        |           |           |          | 170 0           |        |           | s Test S             |                            |                   |                          |             | ata i v       |                |               | GOF T                    |                      | JO E0         | V C1             |                |
| 796        |           |           |          | -               |        |           | Critica              |                            | 0.429             |                          | Detected    |               |                |               | mal at 1                 | % Sigr               | nificar       | nce Lev          | el             |
| 797        |           |           |          |                 |        | Detected  | d Data               | appear                     | · Approxima       | ate Normal               | at 1% Sig   | <b>ynific</b> | ance L         | .evel         |                          |                      |               |                  |                |
| 798<br>799 |           |           |          |                 | Va     | nlan M    | olor /Vi             | M) Poo                     | karound Ct        | atiatiaa Aa              | oumina Na   |               | l Diatril      | hutian        |                          |                      |               |                  |                |
| 800        |           |           |          |                 | Na     | ріап м    |                      | <b>м) вас</b> і<br>/I Mean |                   | atistics Ass             | suming inc  | ərmai         | II DISTIII     | bution        |                          |                      | k             | (M SD            | 0.0912         |
| 801        |           |           |          |                 | 959    | % UTL9    | 95% Co               |                            |                   |                          |             |               |                |               |                          | 95%                  |               | JPL (t)          | 1.173          |
| 802        |           |           |          |                 |        |           | l Percer             |                            |                   |                          |             |               |                |               | 95%                      |                      |               | tile (z)         | 1.167          |
| 803<br>804 |           |           |          |                 | 9      | 9% KM     | l Percer             | ntile (z)                  | 1.229             |                          |             |               |                |               |                          | 95                   | 5% KN         | M USL            | 1.278          |
| 805        |           |           |          |                 |        | l /2 Sub  | netitutio            | n Rack                     | around Sta        | ntistics Ass             | umina No    | rmal          | Dietrih        | ution         |                          |                      |               |                  |                |
| 806        |           |           |          |                 |        |           | Journalio            | Mean                       |                   | 100000                   | unning 140  | iiiiai        | Distrib        | duon          |                          |                      |               | SD               | 1.231          |
| 807        |           |           |          |                 | 959    |           | 95% Co               |                            |                   |                          |             |               |                |               |                          |                      |               | JPL (t)          | 3.166          |
| 808        |           |           |          |                 |        |           | Percer               |                            |                   |                          |             |               |                |               | (                        | 95% Pe               |               | tile (z)         | 3.089          |
| 809<br>810 |           |           |          | 11 /2 ie        | not :  |           | Percer               |                            |                   | rovided for              | comparis    | one           | and his        | etorica       | l resent                 | 10                   | 95%           | % USL            | 4.581          |
| 811        |           |           |          | <i>)</i> L/2 15 | HOL &  | a recom   | illelide             | a meu                      | ю <b>и.</b> DD2 р | iovided ioi              | Compans     | OI IS         | anu m          | Storica       | i ieasui                 | 15                   |               |                  |                |
| 812        |           |           |          |                 |        |           | Gamm                 | a GOF                      | Tests on D        | Detected O               | bservation  |               |                |               |                          |                      |               |                  |                |
| 813        |           |           |          |                 |        | A-D       | Test S               | Statistic                  | 0.619             |                          |             | -             | Anders         | on-Da         | rling GO                 | OF Tes               | st            |                  |                |
| 814        |           |           |          |                 | Ę      |           | Critica              |                            |                   | Dete                     | cted data   |               |                |               |                          |                      |               | nifican          | e Level        |
| 815<br>816 |           |           |          |                 |        |           | S Test S<br>Critica  |                            |                   | Deta                     | cted data   |               |                |               | Smirno                   |                      |               | nifican          | 'e l evel      |
| 817        |           |           |          |                 |        |           |                      |                            |                   | Ited at 5%               |             |               |                | а D           | ion ibute                | u al J               | ,o Oig        | imicail          | ,C LCV61       |
| 818        |           |           |          |                 |        |           |                      |                            |                   |                          | _           |               |                |               |                          |                      |               |                  |                |
| 819        |           |           |          |                 |        |           |                      |                            |                   | on Detected              | d Data On   | ıly           |                |               |                          |                      |               |                  |                |
| 820<br>821 |           |           |          |                 |        | Th        |                      | t (MLE)                    |                   |                          |             |               |                |               | star (bia                |                      |               |                  | N/A            |
| 822        |           |           |          |                 |        | In        | neta hat             | t (MLE)                    |                   |                          |             |               |                | rneta         | star (bia                |                      |               | ected)           | N/A<br>N/A     |
| 823        |           |           |          | N               | /LE N  | Mean (b   | oias cor             |                            |                   |                          |             |               |                |               | 110 010                  | ai (biac             |               | colou)           | 14/7           |
| 824        |           |           |          |                 |        |           | oias cor             |                            |                   |                          |             |               | 95%            | Percer        | ntile of (               | Chisqu               | are (2        | 2kstar)          | N/A            |
| 825        |           |           |          |                 |        |           |                      |                            |                   |                          |             |               |                |               |                          |                      |               |                  |                |
| 826<br>827 |           |           | GR       | OS ma           | v noi  | ha uca    | Gamm                 | ia KOS                     | Statistics        | using Impu<br>1% NDs wit | ted Non-L   | Jetec         | CTS<br>Servati | ione at       | multiple                 | n DI e               |               |                  |                |
| 828        |           | GROS ma   | av not   | be use          | d wh   | en ksta   | r of det             | ects is                    | small such        | as <1.0, es              | specially w | vhen          | the sar        | mple si       | ze is sr                 | nall (e.             | a <1          | 15-20)           |                |
| 829        |           |           |          |                 |        | ch situa  | ations, (            | GROS                       | method ma         | y yield inco             | orrect valu | ies of        | f UCLs         |               |                          | ( )                  | <b>3</b> -, . |                  |                |
| 830        |           |           |          |                 |        |           |                      |                            |                   | nen the san              |             |               |                |               |                          |                      |               |                  |                |
| 831<br>832 |           | For ga    | amma     | distribu        | ıted ( | detected  |                      | BTVs a                     |                   | nay be com               | puted usir  | ng ga         | amma d         | distribu      | tion on                  | KM es                |               | es<br>Mean       | 0.164          |
| 833        |           |           |          |                 |        |           |                      | aximum                     |                   |                          |             |               |                |               |                          |                      |               | ledian           | 0.104          |
| 834        |           |           |          |                 |        |           |                      | SD                         |                   |                          |             |               |                |               |                          |                      |               | CV               | 2.022          |
| 835        |           |           |          |                 |        |           |                      | t (MLE)                    |                   |                          |             |               |                |               | star (bia                |                      |               |                  | 0.378          |
| 836<br>837 |           |           |          |                 |        | Th        | neta hat             |                            |                   |                          |             |               |                | Theta         | star (bia                |                      |               |                  | 0.434          |
| 838        |           |           |          |                 | /I ⊏ r | Mean (h   | nu nat<br>ias cori   | t (MLE)                    |                   |                          |             |               |                |               | MLE S                    | ar (bias             |               |                  | 29.5<br>0.267  |
| 839        |           |           | 95%      |                 |        |           | quare (              |                            |                   |                          |             |               |                |               | IVILL                    |                      |               | centile          | 0.468          |
| 840        |           |           |          |                 |        | 9         | 5% Per               | rcentile                   | 0.695             |                          |             |               |                |               |                          | 99%                  | Perc          | entile           | 1.27           |
| 841        |           |           |          |                 |        |           |                      |                            |                   | ng Gamma                 |             |               |                |               |                          |                      |               |                  |                |
| 842<br>843 |           |           |          |                 | Uppe   | er Limits |                      | Wilsor<br>/H               | HW                | VH) and Ha               | WKINS WI    | xiey (        | (HW) N         | Method        | S                        |                      | WI            | Ц                | HW             |
| 844        | 95% App   | rox. Gamm | na UTL   | with 9          | 5% C   | Coverag   |                      | ).879                      | 0.919             |                          |             | Ç             | 95% Ar         | oprox. (      | Gamma                    | UPL                  |               | 602              | 0.594          |
| 845        |           | 2.3       |          |                 |        | nma US    | L 1                  | .552                       | 1.79              |                          |             |               |                |               |                          |                      |               |                  |                |
| 846        |           |           |          |                 |        |           |                      |                            |                   |                          | 1 125 -     |               |                |               |                          |                      |               |                  |                |
| 847<br>848 |           |           |          |                 |        | E         |                      |                            |                   | ameters us               | ing KM E    | stima         | ates           |               |                          |                      | C.L           | ) (KVV)          | 0.0912         |
| 849        |           |           |          |                 |        | ١         | меа<br>Varianc       | n (KM)<br>e (KM)           |                   | )                        |             |               |                |               |                          | SF of                |               | ) (KM)<br>n (KM) | 0.0912         |
| 850        |           |           |          |                 |        | <b>'</b>  |                      | at (KM)                    |                   | -                        |             |               |                |               |                          |                      |               | r (KM)           | 114.8          |
| 851        |           |           |          |                 |        |           | nu ha                | at (KM)                    | 9697              |                          |             |               |                |               |                          | n                    | ıu sta        | r (KM)           | 8952           |
| 852        |           |           |          |                 | 0/     |           | theta ha             |                            |                   | 3                        |             |               |                | 000           | /                        |                      |               | r (KM)           | 0.00886        |
| 853<br>854 |           |           |          |                 |        |           | ercentil<br>ercentil |                            |                   |                          |             |               |                |               | % gamn<br>% gamn         |                      |               |                  | 1.141<br>1.251 |
| 855        |           |           |          |                 | ∕∘ ya  | a pt      | OI OCI IIII          | C (IVIVI)                  | 1.170             |                          |             |               |                | 337           | o garrill                | ia p <del>e</del> it | CHILIE        | ~ (1X1VI)        | 1.201          |
| 856        |           |           |          | The             | e foll | owing s   | statistic            | s are c                    | omputed u         | sing gamm                | a distribut | tion &        | and KM         | /l estim      | ates                     |                      |               |                  |                |
| 857        |           |           |          |                 | Uppe   | er Limits |                      |                            |                   | VH) and Ha               | ıwkins Wi   | xley (        | (HW) N         | <b>dethod</b> | s                        |                      | 1             |                  | 1.1547         |
| 858<br>859 | 95% Ann   | rox. Gamm | ıa I ITI | with O          | 5% C   | `OVETOG   |                      | /H<br>.195                 | HW<br>1.193       |                          |             |               | 95% Ar         | nnroy (       | Gamma                    | IIDI                 | WI<br>1       | H<br>158         | HW<br>1.156    |
| 860        | 20 /0 App |           |          |                 |        | ercentil  |                      | .152                       | 1.151             |                          |             |               | JU /0 /A       |               | Gamma                    |                      |               | 261              | 1.150          |
| 861        |           |           |          |                 |        |           |                      |                            |                   |                          |             |               |                |               |                          |                      |               |                  |                |
| 862        |           |           |          |                 |        |           |                      |                            |                   | Detected C               | )bservatio  | ons C         |                |               |                          | _                    |               |                  |                |
| 863<br>864 |           |           |          |                 |        |           | k Test S<br>Critica  |                            |                   |                          | Doto        | Not           |                |               | Ik GOF<br>: 10% S        |                      | anco I        | AVOI             |                |
| 865        |           |           |          | 10 /0 5         |        |           | s Test S             |                            |                   |                          | Data        | I INUL        |                |               | GOF T                    |                      | ance L        | _evel            |                |
| 866        |           |           |          | 10              | 0% L   | illiefors | Critica              | l Value                    | 0.389             |                          | etected D   |               | appear         | Logno         | rmal at                  |                      | ignific       | cance L          | evel           |
| 867        |           |           |          |                 |        |           |                      |                            |                   | Lognorma                 |             |               |                |               |                          |                      |               |                  |                |
| 868        |           |           | D = -'   |                 | 1 -    |           | D00 C                | L 11 - 11                  | . A = · ·         | . 1                      | 1 D!"       | u             | 1-2            |               | J & J                    | \_I-                 |               |                  |                |
| 869        |           |           | Backg    | round           | ∟ogr   | iormal F  | <u>KUS SI</u>        | atistics                   | s Assuming        | Lognorma                 | וטistribut  | <u>iion L</u> | using li       | mputed        | ı Non-E                  | etects               | i             |                  |                |

|                                                      | A                 | В                   | С                                      | D                                     |                                                    | E                                                 | F                                                 | G               | Н          |         | ı                   |                             | J                       | K                                                   | L                       |
|------------------------------------------------------|-------------------|---------------------|----------------------------------------|---------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------|------------|---------|---------------------|-----------------------------|-------------------------|-----------------------------------------------------|-------------------------|
| 870                                                  | П                 | ر ر                 | U                                      | Mean in C                             | ı<br>Origina                                       |                                                   | 0.374                                             | <u> </u>        | - 11       |         | - 1                 |                             |                         | n Log Scale                                         | -1.219                  |
| 871                                                  |                   |                     |                                        | SD in C                               |                                                    |                                                   | 0.289                                             |                 |            |         |                     |                             | SD                      | n Log Scale                                         | 0.692                   |
| 872                                                  |                   |                     |                                        | 95% UTL95                             |                                                    |                                                   |                                                   |                 |            |         | 9!                  | 5% BC                       |                         | % Coverage                                          | 1.05                    |
| 873                                                  |                   | 95%                 | % Bootstrap                            | (%) UTL95                             |                                                    |                                                   |                                                   |                 |            |         |                     |                             |                         | 95% UPL (t)                                         | 0.964                   |
| 874<br>875                                           |                   |                     |                                        |                                       |                                                    | ntile (z)                                         |                                                   |                 |            |         |                     |                             | 95% P                   | ercentile (z)                                       | 0.923                   |
| 876                                                  |                   |                     |                                        | 99% 1                                 | ercei                                              | ntile (z)                                         | 1.479                                             |                 |            |         |                     |                             |                         | 95% USL                                             | 2.136                   |
| 877                                                  |                   |                     | Statis                                 | tics usina K                          | M est                                              | imates                                            | on Logged [                                       | Data and Assu   | ımina La   | anori   | mal Dis             | tributio                    | on                      |                                                     |                         |
| 878                                                  |                   |                     | K                                      | M Mean of                             | Logge                                              | ed Data                                           | 0.014                                             |                 |            |         |                     | . (Logn                     | ormal)95                | % Coverage                                          | 1.187                   |
| 879                                                  |                   |                     |                                        | KM SD of                              | Logge                                              | ed Data                                           | 0.074                                             |                 |            |         |                     |                             |                         | (Lognormal)                                         | 1.151                   |
| 880<br>881                                           |                   |                     | 95% KM                                 | Percentile L                          | .ognor                                             | mal (z)                                           | 1.145                                             |                 |            |         |                     | 95%                         | KM USL                  | (Lognormal)                                         | 1.253                   |
| 882                                                  |                   |                     |                                        | Back                                  | aroun                                              | d DI /2 :                                         | Statietice Ae                                     | suming Logno    | rmal Die   | etribut | tion                |                             |                         |                                                     |                         |
| 883                                                  |                   |                     |                                        | Mean in C                             |                                                    |                                                   |                                                   | Summy Logic     | mai Di     | Suibu   | LIOII               |                             | Mean                    | n Log Scale                                         | -0.273                  |
| 884                                                  |                   |                     |                                        | SD in C                               | rigina                                             | I Scale                                           | 1.231                                             |                 |            |         |                     |                             | SD                      | n Log Scale                                         | 0.704                   |
| 885                                                  |                   |                     |                                        | 95% UTL95                             |                                                    |                                                   |                                                   |                 |            |         |                     |                             |                         | 95% UPL (t)                                         | 2.533                   |
| 886<br>887                                           |                   |                     |                                        |                                       |                                                    | ntile (z)                                         |                                                   |                 |            |         |                     |                             | 95% P                   | ercentile (z)                                       | 2.424                   |
| 888                                                  |                   |                     | DI /2 is no                            |                                       |                                                    | ntile (z)                                         |                                                   | vided for con   | naricon    | e and   | l histori           | cal res                     | eone                    | 95% USL                                             | 5.692                   |
| 889                                                  |                   |                     | DELIGITO                               | or a moodiii                          | Horiac                                             | Ju Mou                                            | iou. DDZ pic                                      | ovided for con  | траноон    | o una   | Tilotori            | our roc                     | 100110.                 |                                                     |                         |
| 890                                                  |                   |                     |                                        | No                                    |                                                    |                                                   |                                                   | Free Backgro    |            |         | 3                   |                             |                         |                                                     |                         |
| 891                                                  |                   |                     |                                        |                                       | Data                                               | a appea                                           | ar to follow a                                    | Discernible D   | istributio | on      |                     |                             |                         |                                                     |                         |
| 892<br>893                                           |                   |                     | Nonnerer                               | netrie I Inne                         | r I imi                                            | te for D'                                         | T\/e/po dio±i-                                    | nction made b   | etwoon     | dotos   | te and              | nondo                       | tects)                  |                                                     |                         |
| 894                                                  |                   |                     | ivoliparan                             |                                       |                                                    | atistic, r                                        |                                                   |                 | GIMAGE!!   | uetec   | <b>เอ ariu</b><br>ด | 11011 <b>08</b><br>15% 1 17 | (Cus)                   | % Coverage                                          | 10                      |
| 895                                                  |                   |                     |                                        | to compute                            | achiev                                             | ved CC                                            | 2.053                                             | Approximate     | e Actual   | Confi   |                     |                             |                         |                                                     | 0.865                   |
| 896                                                  | Approximate S     |                     |                                        |                                       | specif                                             | fied CC                                           | 59                                                |                 |            |         |                     |                             |                         | 95% UPL                                             | 10                      |
| 897                                                  |                   |                     |                                        |                                       | 95                                                 | % USL                                             | 10                                                |                 |            |         |                     | 95%                         | KM Che                  | byshev UPL                                          | 1.42                    |
| 898<br>899                                           | No                | te: The us          | en of Hel                              | ande to viola                         | 1 2 00                                             | ncervot                                           | ive estimate                                      | of BTV, espec   | sially who | on the  | campl               | o cizo                      | etarte eva              | peding 20                                           |                         |
| 900                                                  |                   |                     |                                        |                                       |                                                    |                                                   |                                                   | ne data set rep |            |         |                     |                             |                         |                                                     |                         |
| 901                                                  |                   |                     |                                        |                                       |                                                    |                                                   |                                                   | ed from clean   |            |         |                     |                             |                         |                                                     |                         |
| 902                                                  |                   |                     |                                        |                                       |                                                    |                                                   |                                                   | false positive  |            |         |                     |                             |                         |                                                     |                         |
| 903<br>904                                           |                   | repre               | esents a ba                            | ckground d                            | ata se                                             | t and w                                           | hen many or                                       | site observat   | ons need   | d to b  | e comp              | oared v                     | vith the B              | ΓV.                                                 |                         |
|                                                      | Lithium           |                     |                                        |                                       |                                                    |                                                   |                                                   |                 |            |         |                     |                             |                         |                                                     |                         |
| 906                                                  | Littiuiii         |                     |                                        |                                       |                                                    |                                                   |                                                   |                 |            |         |                     |                             |                         |                                                     |                         |
|                                                      | General Statistic | s                   |                                        |                                       |                                                    |                                                   |                                                   |                 |            |         |                     |                             |                         |                                                     |                         |
| 908                                                  |                   |                     | Total                                  | Number of (                           |                                                    |                                                   |                                                   |                 |            |         | Num                 | ber of                      |                         | bservations                                         | 30                      |
| 910                                                  |                   |                     |                                        | Sa                                    |                                                    | inimum<br>Largest                                 |                                                   |                 |            |         |                     |                             | F                       | irst Quartile<br>Median                             | 197<br>220              |
| 911                                                  |                   |                     |                                        |                                       |                                                    | aximum                                            |                                                   |                 |            |         |                     |                             | Т                       | nird Quartile                                       | 230.5                   |
| 912                                                  |                   |                     |                                        |                                       |                                                    | Mean                                              | 222.3                                             |                 |            |         |                     |                             |                         | SD                                                  | 38.14                   |
| 913                                                  |                   |                     |                                        | Coefficien                            |                                                    |                                                   |                                                   |                 |            |         |                     |                             | 05 1                    | Skewness                                            | 2.551                   |
| 914<br>915                                           |                   |                     |                                        | Mean of                               | iogge                                              | ea Data                                           | 5.392                                             |                 |            |         |                     |                             | SD of                   | logged Data                                         | 0.149                   |
| 916                                                  |                   |                     |                                        | Cri                                   | tical V                                            | alues f                                           | or Backgrou                                       | nd Threshold    | Values (   | (BTVs   | 5)                  |                             |                         |                                                     |                         |
| 917                                                  |                   |                     | Toler                                  | ance Factor                           |                                                    |                                                   |                                                   |                 |            |         | •                   |                             | d2m                     | ax (for USL)                                        | 2.857                   |
| 918                                                  |                   |                     |                                        |                                       |                                                    |                                                   | A1                                                | OC T :          |            |         |                     |                             |                         |                                                     |                         |
| 919<br>920                                           |                   |                     | CI                                     | napiro Wilk                           | Tect C                                             | Statietic                                         | 0.767                                             | GOF Test        |            | e       | haniro              | Wilk C                      | OF Test                 |                                                     |                         |
| 921                                                  |                   |                     |                                        | napiro wiik<br>napiro Wilk (          |                                                    |                                                   |                                                   |                 | Data       |         |                     |                             | Significan              | ce Level                                            |                         |
| 922                                                  |                   |                     |                                        | Lilliefors                            |                                                    |                                                   |                                                   |                 |            |         |                     |                             | F Test                  |                                                     |                         |
| 923                                                  |                   |                     | 19                                     | % Lilliefors (                        |                                                    |                                                   | 0.163                                             |                 |            | Not N   | lormal              | at 1%                       | Significan              | ce Level                                            |                         |
| 924<br>925                                           |                   |                     |                                        |                                       | D                                                  | ata Not                                           | t Normal at 1                                     | % Significand   | e Level    |         |                     |                             |                         |                                                     |                         |
| 925                                                  |                   |                     |                                        | F                                     | Backer                                             | round S                                           | tatistice ∆ee                                     | uming Norma     | l Distrib  | ution   |                     |                             |                         |                                                     |                         |
| 927                                                  |                   |                     | 95% U                                  | ITL with 95                           |                                                    |                                                   |                                                   |                 | . 21001100 | -u-U11  |                     |                             | 90% P                   | ercentile (z)                                       | 271.2                   |
| 928                                                  |                   |                     |                                        |                                       | 95%                                                | UPL (t)                                           | 287.5                                             |                 |            |         |                     |                             | 95% P                   | ercentile (z)                                       | 285.1                   |
| 929                                                  |                   |                     |                                        |                                       | 95°                                                | % USL                                             | 331.3                                             |                 |            |         |                     |                             | 99% P                   | ercentile (z)                                       | 311.1                   |
| 930<br>931                                           |                   |                     |                                        |                                       |                                                    |                                                   | Commo                                             | GOF Test        |            |         |                     |                             |                         |                                                     |                         |
| 932                                                  |                   |                     |                                        | A-D                                   | Test S                                             | Statistic                                         |                                                   | GOF TEST        | And        | derso   | n-Darli             | ng Ga                       | mma GOI                 | - Test                                              |                         |
| 933                                                  |                   |                     |                                        | 5% A-D (                              |                                                    |                                                   |                                                   | Da              | ta Not G   | iamma   | a Distril           | buted a                     | at 5% Sig               | nificance Lev                                       | el                      |
| 934                                                  |                   |                     |                                        |                                       |                                                    | Statistic                                         |                                                   |                 | Kolm       | nogor   | ov-Smi              | rnov G                      | amma G                  | OF Test                                             |                         |
| 935                                                  |                   |                     |                                        | 5% K-S (                              |                                                    |                                                   |                                                   |                 |            |         |                     | buted a                     | at 5% Sig               | nificance Lev                                       | el                      |
| 936<br>937                                           |                   |                     |                                        | D                                     | ata No                                             | ot Gami                                           | ma טופולווט stribute                              | ed at 5% Sign   | ırıcance   | Leve    | <u> </u>            |                             |                         |                                                     |                         |
| 938                                                  |                   |                     |                                        |                                       |                                                    |                                                   | Gamma                                             | Statistics      |            |         |                     |                             |                         |                                                     |                         |
|                                                      |                   |                     |                                        |                                       |                                                    | t (MLE)                                           | 42.55                                             | _               |            |         |                     |                             |                         | rected MLE)                                         | 39.3                    |
| 939                                                  |                   |                     |                                        |                                       |                                                    | t (MLE)                                           |                                                   |                 |            |         | The                 |                             |                         | rected MLE)                                         | 5.658                   |
| 939<br>940                                           |                   |                     |                                        |                                       |                                                    |                                                   |                                                   | i .             |            |         |                     |                             |                         |                                                     | 000-                    |
| 939<br>940<br>941                                    |                   |                     | N A I                                  |                                       | nu hat                                             | t (MLE)                                           |                                                   |                 |            |         |                     |                             |                         | s corrected)                                        | 3065                    |
| 939<br>940<br>941<br>942                             |                   |                     | ML                                     |                                       | nu hat                                             | t (MLE)                                           |                                                   |                 |            |         |                     |                             |                         |                                                     | 3065<br>35.47           |
| 939<br>940<br>941<br>942<br>943<br>944               |                   |                     | ML                                     | E Mean (bi                            | nu hat<br>as cor                                   | t (MLE)<br>rected)                                | 222.3                                             | uming Gamm      | a Distrib  | ution   |                     |                             |                         | s corrected)                                        |                         |
| 939<br>940<br>941<br>942<br>943<br>944<br>945        |                   |                     | Hilferty (W                            | E Mean (bia<br>B<br>H) Approx.        | nu hat<br>as cor<br>ackgr<br>Gamn                  | t (MLE)<br>rected)<br>round S<br>na UPL           | 222.3<br>tatistics Ass<br>284.5                   | uming Gamm      | a Distrib  | ution   |                     |                             | E Sd (bia               | s corrected) s corrected) % Percentile              | 35.47<br>268.8          |
| 939<br>940<br>941<br>942<br>943<br>944<br>945<br>946 | 95%               | Hawkins             | Hilferty (W<br>Wixley (H)              | E Mean (bia  B H) Approx.  V) Approx. | nu hat<br>as cor<br>ackgr<br>Gamn<br>Gamn          | t (MLE)<br>rected)<br>round S<br>na UPL<br>na UPL | 222.3<br>tatistics Ass<br>284.5<br>284.2          | uming Gamm      | a Distrib  | ution   |                     |                             | E Sd (bia<br>90°<br>95° | s corrected) s corrected) % Percentile % Percentile | 35.47<br>268.8<br>283.7 |
| 939<br>940<br>941<br>942<br>943<br>944<br>945        | 95%<br>95% WI     | Hawkins<br>H Approx | Hilferty (W<br>Wixley (H\<br>. Gamma U | E Mean (bia<br>B<br>H) Approx.        | nu hat<br>as cor<br>ackgr<br>Gamn<br>Gamn<br>5% Co | rected) round S na UPL na UPL overage             | 222.3<br>tatistics Ass<br>284.5<br>284.2<br>301.8 | uming Gamm      | a Distrib  | ution   |                     |                             | E Sd (bia<br>90°<br>95° | s corrected) s corrected) % Percentile              | 35.47<br>268.8          |

|              | А          | В            |         | С         |         | D        |            | Е                       | F             | G                                | Н         |               | I                   |           | J        |           | K                  | L               |
|--------------|------------|--------------|---------|-----------|---------|----------|------------|-------------------------|---------------|----------------------------------|-----------|---------------|---------------------|-----------|----------|-----------|--------------------|-----------------|
| 949<br>950   | •          |              |         |           |         |          | 95% V      | VH USL                  | 333.8         |                                  |           |               |                     |           |          | 95% H     | IW USL             | 334.3           |
| 950          |            |              |         |           |         |          |            |                         | Loanorma      | I GOF Test                       |           |               |                     |           |          |           |                    |                 |
| 952          |            |              |         |           |         |          |            | Statistic               | 0.864         |                                  |           |               | o Wilk L            |           |          |           |                    |                 |
| 953<br>954   |            |              |         | 10% S     |         |          |            | al Value                | 0.948         |                                  | Data      |               | gnormal             |           |          |           | Level              |                 |
| 955          |            |              |         | 10        |         |          |            | Statistic<br>al Value   |               |                                  | Data      |               | fors Log<br>gnormal |           |          |           | e Level            |                 |
| 956          |            |              |         |           |         |          |            |                         |               | 10% Signific                     |           |               | 9                   |           | 70 G.g   |           |                    |                 |
| 957<br>958   |            |              |         |           |         |          | )l         |                         |               |                                  | aal Dia   | المداد ما اسم |                     |           |          |           |                    |                 |
| 959          |            |              |         | 95%       | UTL     |          |            | overage                 |               | ming Lognori                     | nai Dis   | uribuuc       | )TI                 |           | 90%      | Perce     | ntile (z)          | 265.9           |
| 960          |            |              |         |           |         |          | 95%        | UPL (t)                 | 283.4         |                                  |           |               |                     |           | 95%      | Perce     | ntile (z)          | 280.7           |
| 961<br>962   |            |              |         |           |         |          | 9          | 5% USL                  | 336.3         |                                  |           |               |                     |           | 99%      | Perce     | ntile (z)          | 310.7           |
| 963          |            |              |         |           |         |          | Nonpai     | ametric                 | Distribution  | Free Backgr                      | ound S    | tatistic      | s                   |           |          |           |                    |                 |
| 964          |            |              |         |           |         |          |            |                         |               | Discernible Di                   |           |               |                     |           |          |           |                    |                 |
| 965<br>966   |            |              |         |           |         | Non      | narame     | etric Uni               | per Limits fo | r Background                     | Thresi    | hold Va       | alues               |           |          |           |                    |                 |
| 967          |            |              |         |           |         | der of   | Statisti   | c, order                | 39            |                                  |           |               | 959                 |           |          |           | overage            | 383             |
| 968          |            | <i>F</i>     | Approx  | x, f used | d to co | omput    | e achie    | ved CC                  | 2.053         | Approxima                        |           |               |                     |           |          |           |                    | 0.865           |
| 969<br>970   | 95         | % Percent    | tile Bo | notstran  | UTL .   | with (   | 95% C      | overage                 | 383           | Approxim                         |           |               |                     |           |          |           | overage            | 59<br>383       |
| 971          | 33         | .5 . 6.66111 | 20      | Juliap    |         |          | 9          | 5% UPL                  | 330           |                                  | 3070      | . DOA         |                     | ۱۱ ک م.   | ç        | 90% Pe    | rcentile           | 249.6           |
| 972          |            |              |         |           |         |          |            | ev UPL                  |               |                                  |           |               |                     |           |          |           | rcentile           | 270.6           |
| 973<br>974   |            |              |         |           | ç       | 15% C    |            | ev UPL<br>5% USL        |               |                                  |           |               |                     |           |          | я» Ре     | rcentile           | 362.9           |
| 975          |            |              |         |           |         |          |            |                         |               |                                  |           |               |                     |           |          |           |                    |                 |
| 976          |            |              |         |           |         |          |            |                         |               | of BTV, espe                     |           |               |                     |           |          |           |                    |                 |
| 977<br>978   |            | ı neretoi    | re, one | e may u   |         |          |            |                         |               | he data set re<br>ted from clea  |           |               |                     |           | set fre  | e of ou   | ıtııers            |                 |
| 979          |            |              |         |           | SL ter  | nds to   | provide    | e a balaı               | nce betweer   | false positive                   | es and f  | false ne      | egatives            | provi     |          |           |                    |                 |
| 980          |            | r            | repres  | ents a b  | ackg    | round    | data se    | et and w                | hen many o    | nsite observa                    | tions ne  | eed to I      | oe comp             | ared      | with the | BTV.      |                    |                 |
| 981<br>982   | Mercury    |              |         |           |         |          |            |                         |               |                                  |           |               |                     |           |          |           |                    |                 |
| 983          |            |              |         |           |         |          |            |                         |               |                                  |           |               |                     |           |          |           |                    |                 |
| 984<br>985   |            |              |         | T-4-      | I NI    |          | f Ohaa     |                         |               | Statistics                       |           |               | Nima                | h - u - f | Minning  | . Ob      |                    |                 |
| 986          |            |              |         |           |         |          |            | rvations<br>rvations    | 39<br>2       |                                  |           |               | Num                 | ber or    | wiissing | Obser     | rvations           | 0               |
| 987          |            |              |         |           |         | Num      | nber of    | Detects                 | 0             |                                  |           |               |                     |           |          |           | Detects            | 39              |
| 988<br>989   |            |              |         | N         | lumb    |          |            | Detects<br>Detect       | _             |                                  |           |               | Nun                 | nber o    |          |           | Detects<br>-Detect | 0.1             |
| 990          |            |              |         |           |         |          |            | Detect                  |               |                                  |           |               |                     |           |          |           | -Detect            | 0.1             |
| 991          |            |              |         |           |         |          |            | etected                 | N/A           |                                  |           |               |                     |           | Percer   |           | Detects            | 100%            |
| 992<br>993   |            |              |         | Mean      | of D    |          |            | etected<br>ed Data      |               |                                  |           |               |                     | SD of I   | Detecto  |           | etected<br>ed Data | N/A<br>N/A      |
| 994          |            |              |         | Wican     | 1010    | CICCIC   | u Logg     | ca Data                 | 14//-1        |                                  |           |               |                     | 011       | Joiceic  | a Loggi   | ca Data            | 14//            |
| 995          |            |              |         |           |         |          |            |                         |               | refore all stat                  |           |               |                     |           |          |           |                    |                 |
| 996<br>997   | TI         |              |         |           |         |          |            |                         |               | stics are also<br>alues to estir |           |               |                     |           |          |           |                    |                 |
| 998          |            |              |         |           |         |          |            |                         | •             |                                  |           |               | _                   |           | (5.      | g.,       | -,                 |                 |
| 999<br>1000  |            |              |         |           |         |          | The da     | ata set f               | or variable N | lercury was r                    | ot proc   | essed         |                     |           |          |           |                    |                 |
| 1001         |            |              |         |           |         |          |            |                         |               |                                  |           |               |                     |           |          |           |                    |                 |
| 1002         | Molybdenum | 1            |         |           |         |          |            |                         |               |                                  |           |               |                     |           |          |           |                    |                 |
| 1003<br>1004 |            |              |         |           |         |          |            |                         | General       | Statistics                       |           |               |                     |           |          |           |                    |                 |
| 1005         |            |              |         |           |         |          |            | rvations                | 39            |                                  |           |               | Num                 | ber of    | Missing  | ) Obser   | rvations           | 0               |
| 1006<br>1007 |            |              |         | Numbe     | er of E |          |            | rvations                | 34            |                                  |           |               |                     |           |          | £ NI -    | Data -             |                 |
| 1007         |            |              |         | N         | lumh    |          |            | Detects<br>Detects      | 35<br>32      |                                  |           |               | Nun                 |           |          |           | Detects<br>Detects | 3               |
| 1009         |            |              |         |           |         | М        | linimun    | n Detect                | 2.3           |                                  |           |               |                     |           | Minimu   | ım Non    | -Detect            | 5               |
| 1010<br>1011 |            |              |         |           |         |          |            | Detect                  |               |                                  |           |               |                     |           |          |           | -Detect            | 20              |
| 1012         |            |              |         |           |         |          |            | etected<br>etected      |               |                                  |           |               |                     |           | rercer   |           | Detects            | 10.26%<br>11.01 |
| 1013         |            |              |         | Mean      | of D    |          |            | ed Data                 |               |                                  |           |               | 5                   | SD of I   | Detecte  |           | ed Data            | 0.86            |
| 1014<br>1015 |            |              |         |           |         |          | 'ritiaal ' | /aluaa <del>1</del>     | or Backara    | ınd Threshold                    | ا المالية | e (DT\        | 'e)                 |           |          |           |                    |                 |
| 1015         |            |              |         | Tole      | eranc   |          |            | or UTL)                 | 2.124         | 11110511010                      | value:    | 5 (DIV        | <i>a)</i>           |           | d2       | 2max (f   | or USL)            | 2.857           |
| 1017         |            |              |         |           |         |          | ,          |                         |               |                                  |           |               |                     |           |          | ,-        | /                  |                 |
| 1018<br>1019 |            |              |         |           | Shani   | ro \//il | k Test     | <b>Nom</b><br>Statistic |               | st on Detects                    | Only      |               | Shapiro             | Wilk (    | OF TO    | et        |                    |                 |
| 1020         |            |              |         |           |         |          |            | al Value                |               |                                  | Da        |               | Normal :            |           |          |           | evel               |                 |
| 1021         |            |              |         |           | Ĺ       | illiefor | s Test     | Statistic               | 0.162         | _                                |           |               | Lilliefo            | rs GC     | F Test   |           |                    |                 |
| 1022<br>1023 |            |              |         | 1         |         |          |            | al Value                |               | │ De<br>t <b>e Normal at</b>     |           |               |                     |           | at 1% S  | significa | ance Lev           | /el             |
| 1024         |            |              |         |           |         | GIGUIE   | o Dala     | appedi                  | Approxima     | ai al                            | ı 70 Olyl | micall        | oe Leve             |           |          |           |                    |                 |
| 1025         |            |              |         |           | Kaj     | olan M   |            |                         |               | tistics Assum                    | ing No    | rmal D        | istributio          | on        |          |           | IZB 4 0 =          | 40.05           |
| 1026         |            |              |         |           | OE 0    | / LITL   |            | M Mean<br>overage       |               |                                  |           |               |                     |           | QI       |           | KM SD<br>UPL (t)   | 10.65<br>31.53  |
| 1027         |            |              |         |           |         |          |            |                         |               |                                  |           |               |                     |           |          |           |                    |                 |

|              | A B C D                                                            | E                        | l F l                           | G                            | Н              |               | J                                | K                              | L              |
|--------------|--------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------|----------------|---------------|----------------------------------|--------------------------------|----------------|
| 1028         | 90% KM Per                                                         |                          |                                 | <u> </u>                     | <u> </u>       |               |                                  | ercentile (z)                  | 30.86          |
| 1029         | 99% KM Per                                                         | centile (z)              | 38.12                           |                              |                |               | 9                                | 5% KM USL                      | 43.77          |
| 1030<br>1031 | DL/2 Substitu                                                      | ition Book               | around Static                   | otice Accumin                | a Normal Die   | etribution    |                                  |                                |                |
| 1031         | DL/2 Subsuit                                                       | Mean                     |                                 | sucs Assumm                  | y Nomiai Dis   | suibudon      |                                  | SD                             | 10.71          |
| 1033         | 95% UTL95%                                                         | Coverage                 | 36.14                           |                              |                |               |                                  | 95% UPL (t)                    | 31.68          |
| 1034         |                                                                    | centile (z)              |                                 |                              |                |               | 95% F                            | ercentile (z)                  | 31.01          |
| 1035<br>1036 |                                                                    | centile (z)              |                                 |                              |                | احدادها والما | l                                | 95% USL                        | 43.99          |
| 1036         | DL/2 is not a recommen                                             | naea metn                | oa. ט⊔∠ pro                     | viaea for com                | parisons and   | ı nistoricai  | reasons                          |                                |                |
| 1038         | Gar                                                                | nma GOF                  | Tests on De                     | tected Observ                | vations Only   |               |                                  |                                |                |
| 1039         |                                                                    | st Statistic             |                                 |                              |                |               | rling GOF Te                     |                                |                |
| 1040<br>1041 | 5% A-D Crit                                                        |                          |                                 | Detected                     |                |               |                                  | % Significand                  | e Level        |
| 1041         | K-S Tes<br>5% K-S Crit                                             | st Statistic             |                                 | Detected                     |                |               | Smirnov GO                       | <del>r</del><br>5% Significand | ו פעפן         |
| 1043         |                                                                    |                          |                                 | tributed at 5%               |                |               | istributou at c                  | 770 Olgrillicaric              | C LOVOI        |
| 1044         |                                                                    |                          |                                 |                              |                |               |                                  |                                |                |
| 1045         | 1.                                                                 |                          |                                 | Detected Dat                 | ta Only        |               | -t (l-:                          | t  NAL (T.)                    | 1 5 4 4        |
| 1046<br>1047 |                                                                    | hat (MLE)<br>hat (MLE)   |                                 |                              |                |               | star (bias cor<br>star (bias cor |                                | 1.544<br>9.161 |
| 1048         |                                                                    | hat (MLE)                |                                 |                              |                | Tilota        |                                  | s corrected)                   | 108.1          |
| 1049         | MLE Mean (bias o                                                   | corrected)               | 14.14                           |                              |                |               | ·                                | ,                              |                |
| 1050         | MLE Sd (bias o                                                     | corrected)               | 11.38                           |                              | 9              | 5% Percen     | ntile of Chisqu                  | uare (2kstar)                  | 7.966          |
| 1051<br>1052 | Got                                                                | mma POS                  | Statistics us                   | ing Imputed N                | Non-Detecto    |               |                                  |                                |                |
| 1052         | GROS may not be used wi                                            |                          |                                 |                              |                | vations at    | multiple DLs                     |                                |                |
| 1054         | GROS may not be used when kstar of                                 | detects is               | small such as                   | <1.0, especia                | ally when the  | sample si     | ze is small (e                   | e.g., <15-20)                  |                |
| 1055         | For such situation                                                 |                          |                                 |                              |                |               | TVs                              |                                |                |
| 1056<br>1057 | This For gamma distributed detected da                             |                          |                                 | n the sample :               |                |               | tion on KM o                     | stimates                       |                |
| 1058         | i or garrina distributed detected da                               | Minimum                  |                                 | y De Computer                | u uəniy yailli | าเล นเอนามน   | aon on rivi es                   | Mean                           | 13.33          |
| 1059         |                                                                    | Maximum                  | 40                              |                              |                |               |                                  | Median                         | 9.6            |
| 1060         |                                                                    | SD                       |                                 |                              |                |               | . "                              | CV                             | 0.806          |
| 1061<br>1062 |                                                                    | hat (MLE)<br>hat (MLE)   | 1.653<br>8.062                  |                              |                |               | star (bias cor<br>star (bias cor |                                | 1.543<br>8.637 |
| 1063         |                                                                    | hat (MLE)                |                                 |                              |                | IIIeta        |                                  | s corrected)                   | 120.4          |
| 1064         | MLE Mean (bias of                                                  |                          | 13.33                           |                              |                |               | MLE Sd (bia                      |                                | 10.73          |
| 1065         | 95% Percentile of Chisquar                                         |                          |                                 |                              |                |               |                                  | % Percentile                   | 27.58          |
| 1066<br>1067 | 95%  <br>The following statist                                     | Percentile               |                                 | . Commo BO                   | C Statiation c | n Imputed     |                                  | 6 Percentile                   | 49.73          |
| 1068         | Upper Limits us                                                    | ina Wilsor               | ilputed using<br>i Hilferty (WF | ) damina RO<br>1) and Hawkin | s Wixlev (H\   | M) Method     | s Data                           |                                |                |
| 1069         |                                                                    | WH                       | HW                              |                              |                |               |                                  | WH                             | HW             |
| 1070         | 95% Approx. Gamma UTL with 95% Coverage                            | 43.94                    | 46.19                           |                              | 95%            | 6 Approx. (   | Gamma UPL                        | 34.94                          | 35.91          |
| 1071<br>1072 | 95% Gamma USL                                                      | 63.28                    | 69.38                           |                              |                |               |                                  |                                |                |
| 1073         | Estir                                                              | nates of G               | amma Parar                      | neters using k               | KM Estimate    | S             |                                  |                                |                |
| 1074         | N                                                                  | lean (KM)                | 13.35                           |                              |                |               |                                  | SD (KM)                        | 10.65          |
| 1075<br>1076 |                                                                    | ance (KM)                |                                 |                              |                |               | SE o                             | f Mean (KM)                    | 1.744          |
| 1076         |                                                                    | k hat (KM)<br>u hat (KM) |                                 |                              |                |               |                                  | k star (KM)<br>nu star (KM)    | 1.467<br>114.4 |
| 1078         |                                                                    | a hat (KM)               |                                 |                              |                |               |                                  | eta star (KM)                  | 9.098          |
| 1079         | 80% gamma perce                                                    | entile (KM)              | 20.7                            |                              |                |               | % gamma per                      | centile (KM)                   | 27.96          |
| 1080<br>1081 | 95% gamma perce                                                    | ntile (KM)               | 35.03                           |                              |                | 99%           | % gamma per                      | centile (KM)                   | 51             |
| 1081         | The following statis                                               | stics are o              | omputed usir                    | ng gamma die                 | tribution and  | KM estim      | ates                             |                                |                |
| 1083         | Upper Limits us                                                    |                          |                                 |                              |                |               |                                  |                                |                |
| 1084         |                                                                    | WH                       | HW                              |                              |                |               |                                  | WH                             | HW             |
| 1085<br>1086 | 95% Approx. Gamma UTL with 95% Coverage<br>95% KM Gamma Percentile | 43.74<br>33.56           | 45.98<br>34.39                  |                              | 95%            |               | Gamma UPL<br>Gamma USL           | 34.79<br>62.95                 | 35.76<br>69.05 |
| 1086         | 95% KIVI GAMIMA Percentile                                         | 33.30                    | 34.39                           |                              |                | 95% (         | Ganina USL                       | 02.90                          | 09.00          |
| 1088         | Logr                                                               | normal GO                | F Test on De                    | etected Obser                |                |               |                                  |                                |                |
| 1089         | Shapiro Wilk Tes                                                   | st Statistic             | 0.941                           |                              | 5              | Shapiro Wi    | lk GOF Test                      |                                |                |
| 1090<br>1091 | 10% Shapiro Wilk Crit<br>Lilliefors Tes                            |                          |                                 |                              | Data Not Lo    |               | : 10% Signific<br>GOF Test       | ance Level                     |                |
| 1091         | Lilletors Tes<br>10% Lilliefors Crit                               |                          |                                 | Detec                        | ted Data ann   |               |                                  | Significance L                 | evel           |
| 1093         | Detected Data                                                      |                          |                                 |                              |                |               |                                  |                                |                |
| 1094         |                                                                    |                          |                                 |                              |                |               |                                  |                                |                |
| 1095<br>1096 | Background Lognormal ROS                                           |                          |                                 | ognormal Dis                 | tribution Usir | ng Imputed    |                                  |                                | 2.26           |
| 1096         | Mean in Orig<br>SD in Orig                                         |                          |                                 |                              |                |               |                                  | in Log Scale<br>in Log Scale   | 0.84           |
| 1098         | 95% UTL95%                                                         |                          | 57.16                           |                              |                | 95%           | BCA UTL95                        |                                | 40             |
| 1099         | 95% Bootstrap (%) UTL95%                                           | Coverage                 | 40                              |                              |                |               |                                  | 95% UPL (t)                    | 40.26          |
| 1100<br>1101 |                                                                    | centile (z)              |                                 |                              |                |               | 95% F                            | ercentile (z)                  | 38.2           |
| 1101         | 99% Per                                                            | centile (z)              | 67.73                           |                              |                |               |                                  | 95% USL                        | 105.8          |
| 1103         | Statistics using KM of                                             | estimates                | on Logged D                     | ata and Assu                 | ming Lognor    | rmal Distrit  | oution                           |                                |                |
| 1104         | KM Mean of Log                                                     | gged Data                | 2.252                           |                              |                | KM UTL (L     | ognormal)95                      |                                | 57.8           |
|              | 101.00 (1                                                          | ctc C hann               | 0.85                            |                              |                | 9             | 5% KM UPL                        | (Lognormal)                    | 40.56          |
| 1105<br>1106 | KM SD of Log<br>95% KM Percentile Logi                             |                          |                                 |                              |                |               | 5% KM USL                        |                                | 107.7          |

|              | Α         |        | В         |        | С        |          | D                        |                             | E            |        | F                        | G                    |          | Н         |          | I                                     |         | J                          |                  | K                   | L              |
|--------------|-----------|--------|-----------|--------|----------|----------|--------------------------|-----------------------------|--------------|--------|--------------------------|----------------------|----------|-----------|----------|---------------------------------------|---------|----------------------------|------------------|---------------------|----------------|
| 1107<br>1108 |           |        |           |        |          |          | Back                     | carounc                     | I DL/2       | Statis | stics As                 | suming I             | oanor    | nal Dist  | ributio  | n                                     |         |                            |                  |                     |                |
| 1109         |           |        |           |        |          | M        | lean in (                | Original                    | l Scale      | 1      | 3.4                      |                      | _og.ioi. | nai biot  | i ibadio | ••                                    |         |                            | n in Log         |                     | 2.265          |
| 1110<br>1111 |           |        |           |        |          | OF       | SD in                    | Original                    | l Scale      | 1      | 0.71                     |                      |          |           |          |                                       |         | SI                         | O in Log         |                     | 0.85           |
| 1112         |           |        |           |        |          | 95       | % UTL9                   | Percer                      |              | 2      | 8.67<br>8.65             |                      |          |           |          |                                       |         | 95%                        |                  | UPL (t)             | 41.15<br>39.02 |
| 1113         |           |        |           |        |          |          |                          | Percer                      |              |        | 9.66                     |                      |          |           |          |                                       |         | 30 70                      |                  | % USL               | 109.4          |
| 1114         |           |        |           |        | DL/2 is  | not a    | Recom                    | mende                       | d Meth       | nod. [ | DL/2 pr                  | ovided fo            | r comp   | arisons   | and h    | istorica                              | al rea  | sons.                      |                  |                     |                |
| 1115<br>1116 |           |        |           |        |          |          |                          | lonnara                     | metric       | Dietr  | ibution                  | Free Ba              | ckarou   | nd Statio | etice    |                                       |         |                            |                  |                     |                |
| 1117         |           |        |           |        |          |          |                          |                             |              |        |                          | Discerni             |          |           |          |                                       |         |                            |                  |                     |                |
| 1118         |           |        |           |        |          |          |                          |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1119<br>1120 |           |        |           |        | Nonpa    | ramet    |                          | <b>er Limit</b><br>r of Sta |              |        |                          | nction m             | ade be   | ween de   | etects   |                                       |         | <b>tects)</b><br>L with9   | 15% Co           | verage              | 40             |
| 1121         |           |        | Α         | Appro  | x, f us  | ed to c  | compute                  |                             |              | _      | 2.053                    | Approx               | kimate / | Actual C  | onfide   |                                       |         |                            |                  |                     | 0.865          |
| 1122         | Approx    | imate  | e Sampl   | le Siz | e need   | ded to   | achieve                  |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  | % UPL               | 36.8           |
| 1123<br>1124 |           |        |           |        |          |          |                          | 959                         | % USL        | . 4    | 0                        |                      |          |           |          |                                       | 95%     | KM Ch                      | nebyshe          | ev UPL              | 60.36          |
| 1125         |           | N      | lote: The | e use  | of US    | L tend   | s to yie                 | ld a cor                    | servat       | ive es | stimate                  | of BTV,              | especia  | Illy wher | the s    | ample                                 | size    | starts e                   | xceedir          | ng 20.              |                |
| 1126         |           |        |           |        |          | use U    | SL to e                  | stimate                     | a BTV        | only   | when t                   | he data s            | et repre | esents a  | back     | ground                                | data    |                            |                  |                     |                |
| 1127<br>1128 |           |        | -         | Thou   | ico of l |          |                          |                             |              |        |                          | ted from false po    |          |           |          |                                       |         | lod tha                    | data             |                     |                |
| 1129         |           |        |           |        |          |          |                          |                             |              |        |                          | nsite obs            |          |           |          |                                       |         |                            |                  |                     |                |
| 1130         |           |        |           | •      |          | `        |                          |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1131<br>1132 | Radium    |        |           |        |          |          |                          |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1133         | General S | tatist | ics       |        |          |          |                          |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1134         |           |        |           |        | То       | tal Nu   | mber of                  | Observ                      | /ations      | 3      | 8                        |                      |          |           |          |                                       |         | Distinct                   |                  |                     | 37             |
| 1135<br>1136 |           |        |           |        |          |          |                          | N #:                        | nimum        |        | 1                        |                      |          |           |          | Numbe                                 | er of N | Missing                    |                  | vations<br>Quartile | 1<br>0.54      |
| 1137         |           |        |           |        |          |          | Se                       | econd L                     |              |        | 2.81                     |                      |          |           |          |                                       |         |                            |                  | Median              | 0.867          |
| 1138         |           |        |           |        |          |          |                          |                             | ximum        | 3      | 3.2                      |                      |          |           |          |                                       |         |                            | Third C          |                     | 1.35           |
| 1139<br>1140 |           |        |           |        |          |          | <b>c</b>                 | -+ -£\/-                    | Mean         |        | .013                     |                      |          |           |          |                                       |         |                            | Ol.              | SD                  | 0.678          |
| 1141         |           |        |           |        |          | C        | oefficie                 | nt of va                    | iriation     | (      | 0.669                    |                      |          |           |          |                                       |         |                            | SKE              | ewness              | 1.408          |
| 1142         |           |        |           |        |          |          |                          |                             |              |        | ckgrou                   | nd Thres             | shold V  | alues (B  | TVs)     |                                       |         |                            |                  |                     |                |
| 1143<br>1144 |           |        |           |        | To       | olerano  | ce Facto                 | or K (Fo                    | r UTL)       | 2      | 2.132                    |                      |          |           |          |                                       |         | d2                         | max (fc          | r USL)              | 2.846          |
| 1145         |           |        |           |        |          |          |                          |                             |              | N      | ormal                    | GOF Tes              | t        |           |          |                                       |         |                            |                  |                     |                |
| 1146         |           |        |           |        |          |          | iro Wilk                 |                             |              |        | .89                      |                      |          |           |          |                                       |         | OF Tes                     |                  |                     |                |
| 1147<br>1148 |           |        |           |        | 1%       |          | iro Wilk                 |                             |              |        | 0.916                    |                      |          | Data N    |          |                                       |         | Significa                  | ance Le          | evel                |                |
| 1149         |           |        |           |        |          |          | _illiefors<br>.illiefors |                             |              |        | ).17<br>).165            |                      |          | Data N    |          |                                       |         | <b>F Test</b><br>Significa | ance Le          | evel                |                |
| 1150         |           |        |           |        |          | 170 L    |                          |                             |              |        |                          | l% Signif            | ficance  |           | 101110   | i i i i i i i i i i i i i i i i i i i | . 170   | Sigillio                   | arioo Ec         | 7701                |                |
| 1151         |           |        |           |        |          |          |                          |                             |              |        |                          |                      |          |           | •        |                                       |         |                            |                  |                     |                |
| 1152<br>1153 |           |        |           |        | 959      | % LITI   | with 9                   |                             |              |        | i <b>cs ass</b><br>2.458 | suming N             | ıormaı ı | JISTRIDUT | ion      |                                       |         | 90%                        | Percer           | ntile (z)           | 1.882          |
| 1154         |           |        |           |        | 30       | 70 O I L | With 0                   |                             | JPL (t)      |        | 2.171                    |                      |          |           |          |                                       |         | 95%                        | Percer           | ntile (z)           | 2.128          |
| 1155         |           |        |           |        |          |          |                          | 95%                         | 6 USL        | 2      | 2.942                    |                      |          |           |          |                                       |         | 99%                        | Percer           | ntile (z)           | 2.59           |
| 1156<br>1157 |           |        |           |        |          |          |                          |                             |              | c      | amma                     | Statistics           | •        |           |          |                                       |         |                            |                  |                     |                |
| 1158         |           |        |           |        |          |          |                          |                             | Ga           |        |                          | ics Not A            |          | )         |          |                                       |         |                            |                  |                     |                |
| 1159         |           |        |           |        |          |          |                          |                             | 0            | 0-     |                          | 0                    | 04-4-4   | 1         |          |                                       |         |                            |                  |                     |                |
| 1160<br>1161 |           |        |           |        |          |          |                          |                             | Cann         | ot Co  | mpute                    | Gamma                | Statist  | CS!       |          |                                       |         |                            |                  |                     |                |
| 1162         |           |        |           |        |          |          |                          |                             | Ca           | nnot   | Compu                    | te Log S             | tatistic | 3         |          |                                       |         |                            |                  |                     |                |
| 1163<br>1164 |           |        |           |        |          |          | <u> </u>                 | lonner                      | motel        | Dict-  | ibustan                  | Eroo Do              | okare    | nd Ctat   | otics    |                                       |         |                            |                  |                     |                |
| 1165         |           |        |           |        |          |          |                          |                             |              |        |                          | Free Ba<br>Discernib |          |           | ธนตร     |                                       |         |                            |                  |                     |                |
| 1166         |           |        |           |        |          |          |                          |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1167<br>1168 |           |        |           |        |          | 0        | Nonp<br>rder of S        | aramet                      | ric Up       | per Li |                          | r Backgro            | ound T   | nreshold  | i Value  |                                       | LITI    | with 0                     | 150/ C-          | voroco              | 2 2            |
| 1169         |           |        | Δ         | Appro  | x, fus   |          | raer of 8<br>compute     |                             |              |        |                          | Approx               | cimate . | Actual C  | onfide   |                                       |         | with 9 ient ach            |                  |                     | 3.2<br>0.858   |
| 1170         |           |        |           |        |          |          | •                        |                             |              |        |                          |                      |          | e Sampl   | e Size   | neede                                 | ed to   | achieve                    | e specif         | ied CC              | 59             |
| 1171<br>1172 |           | 95%    | Percent   | ile B  | ootstra  | p UTL    | with 9                   |                             | verage % UPL |        | 3.2<br>2.83              |                      |          | 95% BC    | CA Boo   | otstrap                               | UTL     |                            | 05% Co<br>0% Pei |                     | 3.2<br>1.751   |
| 1173         |           |        |           |        |          |          | 90% Cr                   |                             |              |        | 3.83<br>3.073            |                      |          |           |          |                                       |         |                            | 5% Per           |                     | 2.062          |
| 1174         |           |        |           |        |          |          | 95% Ch                   | ebyshe                      | v UPL        | . 4    | .006                     |                      |          |           |          |                                       |         |                            | 9% Per           |                     | 3.056          |
| 1175<br>1176 |           |        |           |        |          |          |                          | 959                         | % USL        | .  3   | 3.2                      |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1177         |           | N      | lote: The | e use  | of US    | L tend   | s to vie                 | ld a cor                    | servat       | ive es | stimate                  | of BTV,              | especia  | Illy wher | n the s  | ample                                 | size    | starts e                   | xceedir          | ng 20.              |                |
| 1178         |           |        |           |        |          | use U    | SL to e                  | stimate                     | a BTV        | only   | when t                   | he data s            | et repre | esents a  | back     | ground                                | data    |                            |                  |                     |                |
| 1179<br>1180 |           |        | -         | Tho    | ico of l |          |                          |                             |              |        |                          | ted from             |          |           |          |                                       |         | lad tha                    | data             |                     |                |
| 1181         |           |        |           |        |          |          |                          |                             |              |        |                          | false po             |          |           |          |                                       |         |                            |                  |                     |                |
| 1182         |           |        |           |        |          |          | ,                        |                             |              |        | y 01                     | 20 000               |          |           |          | pu                                    |         |                            |                  |                     |                |
| 1183<br>1184 | Selenium  |        |           |        |          |          |                          |                             |              |        |                          |                      |          |           |          |                                       |         |                            |                  |                     |                |
| 1185         |           |        |           |        |          |          |                          |                             |              | G      | eneral                   | Statistic            | S        |           |          |                                       |         |                            |                  |                     |                |
|              |           |        |           |        |          |          |                          |                             |              |        |                          |                      | -        |           |          |                                       |         |                            |                  |                     |                |

|              | АВ                                                                   | С            | D                                | Е                              | F                    | G             | Н             | l J                                                     | K                           | L              |  |  |
|--------------|----------------------------------------------------------------------|--------------|----------------------------------|--------------------------------|----------------------|---------------|---------------|---------------------------------------------------------|-----------------------------|----------------|--|--|
| 1186         |                                                                      |              | Number of C                      |                                | 39                   |               |               | Number of Missing C                                     | bservations                 | 0              |  |  |
| 1187<br>1188 |                                                                      | Numbe        | r of Distinct C<br>Numbe         | r of Detects                   | 25<br>25             |               |               | Number of N                                             | Von-Detects                 | 14             |  |  |
| 1189         |                                                                      | N            | umber of Dist                    |                                |                      |               |               | Number of Distinct N                                    |                             | 6              |  |  |
| 1190         |                                                                      |              |                                  | mum Detect                     |                      |               |               |                                                         | Non-Detect                  | 1              |  |  |
| 1191<br>1192 |                                                                      |              |                                  | mum Detect<br>ce Detected      |                      |               |               |                                                         | Non-Detect<br>Non-Detects   | 15<br>35.9%    |  |  |
| 1193         |                                                                      |              |                                  | an Detected                    |                      |               |               |                                                         | SD Detected                 | 74             |  |  |
| 1194         |                                                                      | Mean         | of Detected L                    | ogged Data                     | 3.757                |               |               | SD of Detected L                                        | ogged Data                  | 1.737          |  |  |
| 1195<br>1196 |                                                                      |              | Cula                             | iaal Valuaa f                  | on Dookanou          | nd Thuashald  | I Values /DT  | 7/0)                                                    |                             |                |  |  |
| 1197         |                                                                      | Tole         | erance Factor                    |                                | 2.124                | nd Threshold  | i values (b i |                                                         | ax (for USL)                | 2.857          |  |  |
| 1198         |                                                                      |              |                                  |                                | ı                    | I             |               |                                                         | ( /                         |                |  |  |
| 1199<br>1200 |                                                                      |              | Shanira Wille T                  |                                | nal GOF Tes<br>0.902 | t on Detects  | Only          | Chanina Wills COE Test                                  |                             |                |  |  |
| 1200         |                                                                      |              | Shapiro Wilk T<br>Shapiro Wilk C |                                | 0.902                | De            | tected Data   | Shapiro Wilk GOF Test appear Normal at 1% Sig           | nificance Lev               | /el            |  |  |
| 1202         |                                                                      |              |                                  | est Statistic                  | 0.193                |               |               | Lilliefors GOF Test                                     |                             |                |  |  |
| 1203         |                                                                      | 1            | % Lilliefors C                   |                                |                      |               |               | appear Normal at 1% Sig                                 | nificance Lev               | el             |  |  |
| 1204<br>1205 |                                                                      |              | Det                              | ected Data                     | appear Norm          | nal at 1% Sig | nificance Le  | evel                                                    |                             |                |  |  |
| 1206         |                                                                      |              | Kaplan Mei                       | er (KM) Bac                    | kground Stat         | istics Assum  | ing Normal    | Distribution                                            |                             |                |  |  |
| 1207         |                                                                      |              |                                  | KM Mean                        |                      |               |               |                                                         | KM SD                       | 73.9           |  |  |
| 1208<br>1209 |                                                                      |              | 95% UTL95                        | % Coverage ercentile (z)       |                      |               |               | 95%<br>050/ KM D                                        | KM UPL (t)<br>ercentile (z) | 188.4<br>183.8 |  |  |
| 1210         |                                                                      |              |                                  | ercentile (z)                  |                      |               |               |                                                         | 5% KM USL                   | 273.4          |  |  |
| 1211         |                                                                      |              |                                  | ` ,                            | -                    | 1             |               |                                                         | 502                         |                |  |  |
| 1212         | DL/2 Substitution Background Statistics Assuming Normal Distribution |              |                                  |                                |                      |               |               |                                                         |                             |                |  |  |
| 1213<br>1214 |                                                                      |              | 95% UTL95                        | Mean<br>Coverage %             |                      |               |               | (                                                       | SD<br>95% UPL (t)           | 74.83<br>190.1 |  |  |
| 1215         |                                                                      |              |                                  | ercentile (z)                  |                      |               |               |                                                         | ercentile (z)               | 185.4          |  |  |
| 1216         |                                                                      |              |                                  | ercentile (z)                  |                      |               |               |                                                         | 95% USL                     | 276.1          |  |  |
| 1217<br>1218 |                                                                      | DL/2 is      | not a recomm                     | ended meth                     | od. DL/2 pro         | vided for co  | mparisons a   | nd historical reasons                                   |                             |                |  |  |
| 1219         |                                                                      |              | G                                | amma GOF                       | Tests on De          | tected Obse   | rvations On   | lv                                                      |                             |                |  |  |
| 1220         |                                                                      |              | A-D T                            | est Statistic                  | 2.166                |               | Α             | nderson-Darling GOF Te                                  | st                          |                |  |  |
| 1221<br>1222 |                                                                      |              |                                  | ritical Value                  | 0.785                | Da            |               | ma Distributed at 5% Sign                               |                             | el             |  |  |
| 1223         |                                                                      |              |                                  | est Statistic<br>ritical Value |                      | Da            |               | Kolmogorov-Smirnov GOF<br>nma Distributed at 5% Sign    |                             | el             |  |  |
| 1224         |                                                                      |              |                                  |                                |                      | ed at 5% Sigi |               |                                                         | miodiloo Lov                | <u>J1</u>      |  |  |
| 1225         |                                                                      |              |                                  |                                | <b>6</b>             |               |               |                                                         |                             |                |  |  |
| 1226<br>1227 |                                                                      |              |                                  | k hat (MLE)                    |                      | Detected Da   | ata Only      | k star (bias cor                                        | rected MLE)                 | 0.677          |  |  |
| 1228         |                                                                      |              |                                  | ta hat (MLE)                   |                      |               |               | Theta star (bias con                                    |                             | 142.6          |  |  |
| 1229         |                                                                      |              |                                  | u hat (MLE)                    | 36.93                |               |               | nu star (bia                                            | s corrected)                | 33.84          |  |  |
| 1230<br>1231 |                                                                      | M            | LE Mean (bia MLE Sd (bia         |                                |                      |               |               | 95% Percentile of Chisqu                                | iaro (2ketar)               | 4.663          |  |  |
| 1232         |                                                                      |              | IVILL OU (DIA                    | 3 corrected)                   | 117.5                |               |               | 35 % T ercentile of Chisqu                              | iaie (Zkstai)               | 4.003          |  |  |
| 1233         |                                                                      |              | G                                | amma ROS                       | Statistics us        | sing Imputed  | Non-Detec     | ts                                                      |                             |                |  |  |
| 1234<br>1235 | CDOS mov                                                             | GROS may     | y not be used                    | when data s                    | et has > 50%         | NDs with m    | any tied obs  | ervations at multiple DLs<br>he sample size is small (e | a <15.20\                   |                |  |  |
| 1236         | GNOS IIIa                                                            |              |                                  |                                |                      |               |               | UCLs and BTVs                                           | .y., <15-20)                |                |  |  |
| 1237         |                                                                      |              | Т                                | his is espec                   | ally true whe        | n the sample  | size is sma   | III.                                                    |                             |                |  |  |
| 1238<br>1239 | For gar                                                              | mma distribu | ted detected                     |                                |                      | y be compute  | ed using gar  | mma distribution on KM es                               |                             | 6E 04          |  |  |
| 1239         |                                                                      |              |                                  | Minimum<br>Maximum             |                      |               |               |                                                         | Mean<br>Median              | 65.84<br>16.68 |  |  |
| 1241         |                                                                      |              |                                  | SD                             | 72.04                |               |               |                                                         | CV                          | 1.094          |  |  |
| 1242<br>1243 |                                                                      |              |                                  | k hat (MLE)                    | 0.637                |               |               | k star (bias con                                        |                             | 0.605          |  |  |
| 1243         |                                                                      |              |                                  | ta hat (MLE)<br>iu hat (MLE)   | 103.3<br>49.69       |               |               | Theta star (bias corr<br>nu star (bia                   | s corrected)                | 108.8<br>47.21 |  |  |
| 1245         |                                                                      |              | LE Mean (bia                     | s corrected)                   | 65.84                |               |               | MLE Sd (bia                                             | s corrected)                | 84.63          |  |  |
| 1246         |                                                                      | 95% Percei   | ntile of Chisqu                  |                                | 4.342                |               |               | 909                                                     | % Percentile                | 170.9          |  |  |
| 1247<br>1248 |                                                                      | The          |                                  | % Percentile                   |                      | n Gamma PC    | )S Statistics | 99% on Imputed Data                                     | Percentile                  | 393.9          |  |  |
| 1249         |                                                                      |              |                                  |                                |                      |               |               | HW) Methods                                             |                             |                |  |  |
| 1250         | 050/ 4                                                               |              |                                  | WH                             | HW                   |               |               |                                                         | WH                          | HW             |  |  |
| 1251<br>1252 | 95% Approx. Gamma                                                    |              | 5% Coverage<br>Gamma USL         | 326.9<br>533.7                 | 369.5<br>657.2       |               | 9             | 5% Approx. Gamma UPL                                    | 237.5                       | 255.4          |  |  |
| 1253         |                                                                      | 30 /0        | Gamma USL                        | JJJ.1                          | UJ1.Z                | <u> </u>      |               |                                                         |                             |                |  |  |
| 1254         |                                                                      |              | Es                               |                                |                      | meters using  | KM Estima     | tes                                                     |                             |                |  |  |
| 1255<br>1256 |                                                                      |              | \/-                              | Mean (KM)                      |                      |               |               | OF -4                                                   | SD (KM)                     | 73.9<br>12.08  |  |  |
| 1257         |                                                                      |              | Va                               | riance (KM)<br>k hat (KM)      | 0.71                 |               |               | SE 01                                                   | Mean (KM)<br>k star (KM)    | 0.672          |  |  |
| 1258         |                                                                      |              |                                  | nu hat (KM)                    | 55.37                |               |               |                                                         | nu star (KM)                | 52.45          |  |  |
| 1259         |                                                                      | 22.          |                                  | eta hat (KM)                   |                      |               |               |                                                         | ta star (KM)                | 92.6           |  |  |
| 1260<br>1261 |                                                                      |              | % gamma per<br>% gamma per       |                                |                      |               |               | 90% gamma per<br>99% gamma per                          |                             | 157.8<br>352.2 |  |  |
| 1262         |                                                                      |              |                                  |                                |                      |               |               | <u> </u>                                                | Condic (IVIVI)              | JUL.L          |  |  |
| 1263<br>1264 |                                                                      | The          | following sta                    | ntistics are c                 | omputed usi          | ng gamma di   | istribution a | nd KM estimates                                         |                             |                |  |  |
|              |                                                                      |              | Joper Limits                     | usina Wilsor                   | Hilferty (Wh         | 1) and Hawki  | ins Wixley (I | HW) Methods                                             |                             |                |  |  |

|                                                                                                                                                                                                      | Α                                     | В                                                                                                                                          | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G                                                                                                                       | Н                                                                        |                                                    | I                                                             | J                                                                                                                                                              | K                                                                                                                                               | L                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| 1265                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                | WH                                                                                                                                              | HW                                       |  |
| 1266                                                                                                                                                                                                 | 95% Appr                              | rox. Gamma                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                                                                          | 95% A                                              |                                                               | Gamma UPL                                                                                                                                                      | 252.4                                                                                                                                           | 279.5                                    |  |
| 1267                                                                                                                                                                                                 |                                       | 95%                                                                                                                                        | % KM Gamm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a Percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 237.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 260.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                          |                                                    | 95%                                                           | Gamma USL                                                                                                                                                      | 635.9                                                                                                                                           | 850.1                                    |  |
| 1268<br>1269                                                                                                                                                                                         |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E Took on D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | atastad Oba                                                                                                             |                                                                          | Onb.                                               |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1209                                                                                                                                                                                                 |                                       |                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etected Obse                                                                                                            | ervations                                                                |                                                    | niro W                                                        | ilk GOE Toet                                                                                                                                                   |                                                                                                                                                 |                                          |  |
| 1271                                                                                                                                                                                                 |                                       | Shapiro Wilk Test Statistic 0.77 Shapiro Wilk GOF Test  10% Shapiro Wilk Critical Value 0.931 Data Not Lognormal at 10% Significance Level |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1272                                                                                                                                                                                                 |                                       |                                                                                                                                            | 10 70 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lilliefors GOF Test                                                                                                     |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1273                                                                                                                                                                                                 |                                       |                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         | Data No                                                                  |                                                    |                                                               | t 10% Signific                                                                                                                                                 | ance Level                                                                                                                                      |                                          |  |
| 1274                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ognormal at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10% Signific                                                                                                            |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1275                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1276                                                                                                                                                                                                 |                                       | В                                                                                                                                          | ackground L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ognormal Di                                                                                                             | stribution                                                               | Using                                              | Impute                                                        | d Non-Detect                                                                                                                                                   |                                                                                                                                                 |                                          |  |
| 1277<br>1278                                                                                                                                                                                         |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riginal Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean in Log Scale 2.5                                                                                                   |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1279                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riginal Scale<br>% Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.71<br>1445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | SD in Log Scale 2.24<br>95% BCA UTL95% Coverage 228                      |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1280                                                                                                                                                                                                 |                                       | 9!                                                                                                                                         | 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 /                                                                                                                    |                                                                          |                                                    | 565.9                                                         |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1281                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UPL (t) 565.9<br>95% Percentile (z) 491.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1282                                                                                                                                                                                                 | 99% Percentile (z) 2275 95% USL 75    |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1283                                                                                                                                                                                                 | 3577. 3.555 (E) 1000                  |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1284                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data and Ass                                                                                                            |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1285                                                                                                                                                                                                 |                                       |                                                                                                                                            | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KM Mean of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         | 9                                                                        | 5% KM                                              |                                                               | ognormal)95                                                                                                                                                    |                                                                                                                                                 | 1329                                     |  |
| 1286                                                                                                                                                                                                 |                                       |                                                                                                                                            | 050/ 1/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                          |                                                    |                                                               | 95% KM UPL                                                                                                                                                     |                                                                                                                                                 | 522.3                                    |  |
| 1287<br>1288                                                                                                                                                                                         |                                       |                                                                                                                                            | 95% KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Percentile L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ognormal (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 453.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                          |                                                    | (                                                             | 95% KM USL                                                                                                                                                     | (Lognormal)                                                                                                                                     | 6861                                     |  |
| 1289                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Backs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | round DI /2 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Statistics Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | suming Logn                                                                                                             | ormal Dia                                                                | etributio                                          | n                                                             |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1290                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riginal Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ourning LUGII                                                                                                           |                                                                          | งแมนแบ                                             | 71.1                                                          | Mean                                                                                                                                                           | in Log Scale                                                                                                                                    | 2.34                                     |  |
| 1291                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riginal Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                | in Log Scale                                                                                                                                    | 2.413                                    |  |
| 1292                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                | 95% UPL (t)                                                                                                                                     |                                          |  |
| 1293                                                                                                                                                                                                 | 90% Percentile (z)                    |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 228.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                | ercentile (z)                                                                                                                                   |                                          |  |
| 1294                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Percentile (z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               |                                                                                                                                                                | 95% USL                                                                                                                                         | 10249                                    |  |
| 1295                                                                                                                                                                                                 |                                       |                                                                                                                                            | DL/2 is no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ot a Recomn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nended Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | od. DL/2 pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ovided for cor                                                                                                          | mparisons                                                                | s and h                                            | istorica                                                      | I reasons.                                                                                                                                                     |                                                                                                                                                 |                                          |  |
| 1296<br>1297                                                                                                                                                                                         |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fran Bankar                                                                                                             | arrad Ctat                                                               |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1297                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free Background Discernible I                                                                                           |                                                                          |                                                    |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1299                                                                                                                                                                                                 |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data appea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i to ioliow a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Discernible i                                                                                                           | Jisti ibutio                                                             | <i>/</i> 11                                        |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1300                                                                                                                                                                                                 |                                       |                                                                                                                                            | Nonparar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | metric Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limits for B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ΓVs(no distir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nction made I                                                                                                           | between o                                                                | detects                                            | and no                                                        | ndetects)                                                                                                                                                      |                                                                                                                                                 |                                          |  |
| 1301                                                                                                                                                                                                 |                                       |                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Statistic, r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |                                                                          |                                                    |                                                               | % UTL with95                                                                                                                                                   |                                                                                                                                                 | 228                                      |  |
| 1200                                                                                                                                                                                                 | Approx, f used to compute achieved CC |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.053<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approximat                                                                                                              | e Actual (                                                               | ctual Confidence Coefficient achieved by UTL 0.865 |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
|                                                                                                                                                                                                      |                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approximate Sample Size needed to achieve specified CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          | 95% UPL 213                                        |                                                               |                                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1303                                                                                                                                                                                                 | Approxim                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to achieve s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                          |                                                    |                                                               | 050/ 1/14 01                                                                                                                                                   | bysnev UPL                                                                                                                                      | 388.5                                    |  |
| 1303<br>1304                                                                                                                                                                                         | Approxim                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to achieve s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                                                                          |                                                    |                                                               | 95% KM Che                                                                                                                                                     |                                                                                                                                                 |                                          |  |
| 1303<br>1304<br>1305                                                                                                                                                                                 | Approxim                              | nate Sample                                                                                                                                | Size needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% USL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of RTV esne                                                                                                             | cially whe                                                               | an tha c                                           |                                                               |                                                                                                                                                                | needing 20                                                                                                                                      |                                          |  |
| 1303<br>1304<br>1305<br>1306                                                                                                                                                                         | Approxim                              | nate Sample  Note: The                                                                                                                     | Size needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 228<br>ve estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |                                                                          |                                                    | ample                                                         | size starts exc                                                                                                                                                |                                                                                                                                                 |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308                                                                                                                                                         |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ends to yield<br>te USL to est<br>and consis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% USL<br>a conservati<br>imate a BTV<br>its of observa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve estimate only when thations collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne data set re<br>red from clear                                                                                        | presents<br>n unimpac                                                    | a backo<br>cted loc                                | ample s<br>ground<br>ations.                                  | size starts exc<br>data set free                                                                                                                               | of outliers                                                                                                                                     |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309                                                                                                                                                 |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ends to yield<br>te USL to est<br>and consis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% USL<br>a conservati<br>imate a BTV<br>its of observa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve estimate only when thations collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne data set re<br>red from clear                                                                                        | presents<br>n unimpac                                                    | a backo<br>cted loc                                | ample s<br>ground<br>ations.                                  | size starts exc                                                                                                                                                | of outliers                                                                                                                                     |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310                                                                                                                                         |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield<br>te USL to est<br>and consis<br>L tends to pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati imate a BTV sts of observati ovide a balar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve estimate only when thations collect ace between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne data set re<br>led from clear<br>false positive                                                                      | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega                     | ample s<br>ground<br>ations.                                  | size starts exc<br>data set free                                                                                                                               | of outliers<br>ata                                                                                                                              |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311                                                                                                                                 |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield<br>te USL to est<br>and consis<br>L tends to pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati imate a BTV sts of observati ovide a balar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve estimate only when thations collect ace between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne data set re<br>led from clear<br>false positive                                                                      | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega                     | ample s<br>ground<br>ations.                                  | size starts exc<br>data set free<br>rovided the da                                                                                                             | of outliers<br>ata                                                                                                                              |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312                                                                                                                         |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield<br>te USL to est<br>and consis<br>L tends to pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati imate a BTV sts of observati ovide a balar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve estimate only when thations collect ace between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne data set re<br>led from clear<br>false positive                                                                      | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega                     | ample s<br>ground<br>ations.                                  | size starts exc<br>data set free<br>rovided the da                                                                                                             | of outliers<br>ata                                                                                                                              |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313                                                                                                                 |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield<br>te USL to est<br>and consis<br>L tends to pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati imate a BTV sts of observati ovide a balar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve estimate only when the stions collect ace between then many on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega                     | ample s<br>ground<br>ations.                                  | size starts exc<br>data set free<br>rovided the da                                                                                                             | of outliers<br>ata                                                                                                                              |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314                                                                                                         |                                       | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may us<br>ne use of US<br>presents a ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield<br>te USL to est<br>and consis<br>L tends to pr<br>ackground da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati imate a BTV its of observa- ovide a balar ata set and wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ve estimate only when the stions collect ace between then many on General states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da<br>red with the B                                                                                           | of outliers ata TV.                                                                                                                             |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316                                                                                         | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may us<br>ne use of US<br>presents a ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield<br>te USL to est<br>and consis<br>L tends to pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% USL a conservati imate a BTV its of observa- ovide a balar ata set and will Deservations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ve estimate only when the stions collect ace between then many on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da                                                                                                             | of outliers ata TV.                                                                                                                             | 0                                        |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317                                                                                 | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed<br>use of USL to<br>one may us<br>ne use of US<br>presents a ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ends to yield te USL to est and consis L tends to pr ackground da  Number of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% USL a conservati imate a BTV its of observa- ovide a balar ata set and will Deservations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ve estimate only when the stions collect ace between then many on General 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da<br>red with the B                                                                                           | of outliers ata TV.                                                                                                                             |                                          |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318                                                                         | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US nee use of US presents a barresents a b | ends to yield te USL to est and consis L tends to pr ackground da  Number of C r of Distinct C Number of Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% USL a conservationate a BTV ats of observationate a balar ata set and will bbservations bbservations er of Detects tinct Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ve estimate only when the stions collect ince between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the s | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da<br>red with the B                                                                                           | of outliers ata TV.  Observations Non-Detects Non-Detects                                                                                       | 0 39 6                                   |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319                                                                 | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US nee use of US presents a barresents a b | ends to yield te USL to est and consis L tends to pr ackground da  Number of C Number umber of Dis Mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95% USL a conservationate a BTV ats of observa- ovide a balar ata set and will bbservations bbservations er of Detects tinct Detects mum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve estimate only when the stions collect ace between then many on the stions of the stions collect ace between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the  | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da<br>red with the B                                                                                           | of outliers ata TV.  Observations Non-Detects Non-Detects Non-Detect                                                                            | 0<br>39<br>6<br>0.1                      |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319                                                                 | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US nee use of US presents a barresents a b | ends to yield the USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Distinct Of Minimumber of Distinct Of Minimum Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% USL a conservationate a BTV ats of observations ovide a balar ata set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set and with the set  | ve estimate of only when the stions collect size between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of th | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da<br>red with the B                                                                                           | of outliers ata TV.  Observations Non-Detects Non-Detects Non-Detect Non-Detect                                                                 | 0<br>39<br>6<br>0.1<br>10                |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321                                                 | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US nee use of US presents a barresents a b | ends to yield the USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct | a conservations of Deservations of Detects mum Detect mum Detect deep personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and personal and  | ve estimate only when the stions collect size between then many on the stions of the stions collect size between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of th | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | ample s<br>ground<br>ations.<br>atives p<br>compar            | size starts exc<br>data set free<br>rovided the da<br>red with the B'<br>er of Missing C<br>Number of I<br>er of Distinct I<br>Minimum<br>Maximum<br>Percent I | of outliers ata TV.  Observations Non-Detects Non-Detect Non-Detect Non-Detect Non-Detect Non-Detects                                           | 0<br>39<br>6<br>0.1<br>10<br>100%        |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322                                         | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use use of US or one may use use use use use use use use use use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ends to yield e USL to est and consis L tends to pr ackground da  Number of C r of Distinct C Numbe umber of Dis Mini Maxi Varian Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a conservations of Detects mum Detect mum Detect on Detected an Detected an Detected in Detected an Detected in Detected an Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in De | ve estimate only when the stions collect ace between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the st | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | eample s<br>ground<br>cations.<br>atives p<br>compar<br>Numbe | size starts exc<br>data set free<br>rovided the da<br>red with the B'<br>er of Missing C<br>Number of I<br>er of Distinct I<br>Minimum<br>Maximum<br>Percent I | of outliers ata TV.  Observations Non-Detects Non-Detect Non-Detect Non-Detect Non-Detects SD Detected                                          | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1309<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323                                 | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use of US or one may use use use of US or one may use use use use use use use use use use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ends to yield the USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct Of Distinct | a conservations of Detects mum Detect mum Detect on Detected an Detected an Detected in Detected an Detected in Detected an Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in Detected in De | ve estimate only when the stions collect size between then many on the stions of the stions collect size between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of th | ne data set re<br>led from clear<br>false positive<br>nsite observat                                                    | presents<br>n unimpaces and fals                                         | a backo<br>cted loc<br>se nega<br>d to be o        | eample s<br>ground<br>cations.<br>atives p<br>compar<br>Numbe | size starts exc<br>data set free<br>rovided the da<br>red with the B'<br>er of Missing C<br>Number of I<br>er of Distinct I<br>Minimum<br>Maximum<br>Percent I | of outliers ata TV.  Observations Non-Detects Non-Detect Non-Detect Non-Detect Non-Detects SD Detected                                          | 0<br>39<br>6<br>0.1<br>10<br>100%        |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323<br>1324<br>1325                         | Thallium                              | Note: The Therefore,                                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use one may use o | ends to yield e USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Dis Mini Maxi Variar Me of Detected I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a conservations observations observations observations observations or of Detects mum Detect mum Detect oce Detected an Detected ogged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ve estimate only when the stions collect ace between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the st | ne data set re led from clear false positive site observat                                                              | presents<br>n unimpaces and fals<br>tions need                           | a backgoted loc<br>se negad<br>d to be o           | sample signound sations. Satives procompared Number           | size starts exc<br>data set free<br>rovided the dated with the B'<br>er of Missing C<br>Number of I<br>er of Distinct I<br>Minimum<br>Maximum<br>Percent I     | of outliers  ata TV.  Observations  Non-Detects Non-Detect Non-Detect Non-Detect Son-Detect On-Detects Detected Logged Data                     | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323<br>1324<br>1325<br>1326                 | Thallium                              | Note: The Therefore, Therefore, Warn                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of U | ends to yield e USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Dis Mini Maxir Variar Me of Detected I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a conservations of Detects mum Detect mum Detected an Detected an Detected an Detected s, UPLs, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ve estimate only when the stions collect one between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the st | ne data set re led from clear false positive resite observat  Statistics  refore all stat stics are also                | presents n unimpaces and fals tions need                                 | a backgoted loc<br>se negad<br>d to be of          | ample signound sations. atives procompar Number               | r of Missing C  Number of I er of Distinct I Minimum Percent I of Detected I ould also be I gest detection                                                     | of outliers  ata TV.  Observations  Non-Detects Non-Detects Non-Detect Non-Detect Non-Detect On-Detects SD Detected Logged Data  NDs! In limit! | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323<br>1324<br>1325<br>1326<br>1327         | Thallium                              | Note: The Therefore, Therefore, Warn                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of U | ends to yield e USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Dis Mini Maxir Variar Me of Detected I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a conservations of Detects mum Detect mum Detected an Detected an Detected an Detected s, UPLs, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ve estimate only when the stions collect one between then many on the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the stions of the st | ne data set re led from clear false positive resite observat  Statistics  refore all stat stics are also                | presents n unimpaces and fals tions need                                 | a backgoted loc<br>se negad<br>d to be of          | ample signound sations. atives procompar Number               | r of Missing C  Number of I er of Distinct I Minimum Percent I of Detected I                                                                                   | of outliers  ata TV.  Observations  Non-Detects Non-Detects Non-Detect Non-Detect Non-Detect On-Detects SD Detected Logged Data  NDs! In limit! | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323<br>1324<br>1325<br>1326<br>1327<br>1328 | Thallium                              | Note: The Therefore, Therefore, Warn                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of U | ends to yield e USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Dis Mini Maxi Variar Me of Detected I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a conservations of the conservations observations observations or of Detects mum Detect mum Detect mum Detect on Detected an Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on D | ve estimate only when the stions collect one between then many on the stions of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the | ne data set re led from clear false positive resite observat  Statistics  refore all stat stics are also alues to estin | presents n unimpaces and fals tions need istics and NDs lying nate envir | a backgoted loc<br>se negad<br>d to be of          | ample signound sations. atives procompar Number               | r of Missing C  Number of I er of Distinct I Minimum Percent I of Detected I ould also be I gest detection                                                     | of outliers  ata TV.  Observations  Non-Detects Non-Detects Non-Detect Non-Detect Non-Detect On-Detects SD Detected Logged Data  NDs! In limit! | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |
| 1304<br>1305<br>1306<br>1307<br>1308<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329 | Thallium                              | Note: The Therefore, Therefore, Warn                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of U | ends to yield e USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Dis Mini Maxi Variar Me of Detected I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a conservations of the conservations observations observations or of Detects mum Detect mum Detect mum Detect on Detected an Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on D | ve estimate only when the stions collect one between then many on the stions of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the | ne data set re led from clear false positive resite observat  Statistics  refore all stat stics are also                | presents n unimpaces and fals tions need istics and NDs lying nate envir | a backgoted loc<br>se negad<br>d to be of          | ample signound sations. atives procompar Number               | r of Missing C  Number of I er of Distinct I Minimum Percent I of Detected I ould also be I gest detection                                                     | of outliers  ata TV.  Observations  Non-Detects Non-Detects Non-Detect Non-Detect Non-Detect On-Detects SD Detected Logged Data  NDs! In limit! | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |
| 1303<br>1304<br>1305<br>1306<br>1307<br>1308<br>1310<br>1311<br>1312<br>1313<br>1314<br>1315<br>1316<br>1317<br>1318<br>1319<br>1320<br>1321<br>1322<br>1323<br>1324<br>1325<br>1326<br>1327<br>1328 | Thallium                              | Note: The Therefore, Therefore, Warn                                                                                                       | Size needed use of USL to one may use of US one may use of US or one may use of US or one may use use of US or one may use use of US or one may use use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of US or one may use of U | ends to yield e USL to est and consis L tends to pr ackground da  Number of Cr of Distinct Cr Number of Dis Mini Maxi Variar Me of Detected I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a conservations of the conservations observations observations or of Detects mum Detect mum Detect mum Detect on Detected an Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on Detected on D | ve estimate only when the stions collect one between then many on the stions of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the stide of the | ne data set re led from clear false positive resite observat  Statistics  refore all stat stics are also alues to estin | presents n unimpaces and fals tions need istics and NDs lying nate envir | a backgoted loc<br>se negad<br>d to be of          | ample signound sations. atives procompar Number               | r of Missing C  Number of I er of Distinct I Minimum Percent I of Detected I ould also be I gest detection                                                     | of outliers  ata TV.  Observations  Non-Detects Non-Detects Non-Detect Non-Detect Non-Detect On-Detects SD Detected Logged Data  NDs! In limit! | 0<br>39<br>6<br>0.1<br>10<br>100%<br>N/A |  |